Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Mikrochim Acta ; 191(8): 492, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39066907

ABSTRACT

The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.


Subject(s)
Burkholderia , Electrochemical Techniques , Electrodes , Graphite , Hydroxybutyrates , Molecularly Imprinted Polymers , Polyesters , Graphite/chemistry , Polyesters/chemistry , Hydroxybutyrates/chemistry , Burkholderia/chemistry , Burkholderia/metabolism , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Molecularly Imprinted Polymers/chemistry , Limit of Detection , Oxidation-Reduction , Polyhydroxybutyrates
2.
Polymers (Basel) ; 16(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39000613

ABSTRACT

Vegetable fibers are increasingly used in biocomposites, but there is a need for further development in utilizing by-products like cocoa husks. Three-dimensional printing, through Fused Filament Fabrication (FFF), is advancing rapidly and may be of great interest for applying biocomposite materials. This study focuses on developing innovative and fully biodegradable filaments for the FFF process. PLA filaments were prepared using cellulose fibers derived from cocoa husks (5% mass ratio). One set of filaments incorporated fibers from untreated husks (UCFFs), while another set utilized fibers from chemically treated husks (TCFFs). The fabricated materials were analyzed using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) techniques, and they were also tested for tensile strength. ANOVA reveals that both UCFFs and TCFFs significantly predict tensile strength, with the UCFFs demonstrating an impressive R2 value of 0.9981. The optimal tensile strength for the filament test specimens was 16.05 MPa for TCFF8 and 13.58 MPa for UCFF8, utilizing the same printing parameters: 70% infill and a layer thickness of 0.10 mm. Additionally, there was an 18% improvement in the tensile strength of the printed specimens using the filaments filled with chemically treated cocoa husk fibers compared to the filaments with untreated fibers.

3.
Polymers (Basel) ; 16(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000760

ABSTRACT

Most polymeric food packaging materials are non-biodegradable and derived from petroleum, thus recent studies have focused on evaluating alternative biodegradable materials from renewable sources, with polysaccharides and proteins as the main types of employed biopolymers. Therefore, this study aimed to develop biopolymeric films based on sunflower proteins and galactomannans from locust bean gum. The influence of the galactomannan amount (0.10%, 0.30%, 0.50%, and 0.75% w/v) on the physicochemical, thermal, and mechanical properties of cast sunflower protein-based films was studied. Sunflower proteins gave rise to yellowish, shining, and translucid films. With the incorporation of locust bean gum-derived galactomannans, the films became more brown and opaque, although they still maintained some translucency. Galactomannans significantly changed the proteins' secondary structures, giving rise to films with increased tensile resistance and stretchability. Nevertheless, the increase in the galactomannan amount did not have a significant effect on the film's thermal stability. The protein/galactomannan-based films showed values of water vapor and oxygen permeability that were slightly higher than those of the pristine materials. Overall, blending locust bean gum galactomannans with sunflower proteins was revealed to be a promising strategy to develop naturally colored and translucid films with enhanced mechanical resistance while maintaining flexibility, fitting the desired properties for biodegradable food packaging materials.

4.
Polymers (Basel) ; 16(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611157

ABSTRACT

Biocomposites were fabricated utilizing polylactic acid (PLA) combined with native starch sourced from mountain's yam (Dioscorea remotiflora Knuth), an underexplored tuber variety. Different starch compositions (7.5, 15.0, 22.5, and 30.0 wt.%) were blended with PLA in a batch mixer at 160 °C to produce PLA/starch biocomposites. The biocomposites were characterized by analyzing their morphology, particle size distribution, thermal, X-ray diffraction (XDR), mechanical, and dynamic mechanical (DMA) properties, water absorption behavior, and color. The results showed that the amylose content of Dioscorea remotiflora starch was 48.43 ± 1.4%, which corresponds to a high-amylose starch (>30% of amylose). Particle size analysis showed large z-average particle diameters (Dz0) of the starch granules (30.59 ± 3.44 µm). Scanning electron microscopy (SEM) images showed oval-shaped granules evenly distributed throughout the structure of the biocomposite, without observable agglomeration or damage to its structure. XDR and DMA analyses revealed an increase in the crystallinity of the biocomposites as the proportion of the starch increased. The tensile modulus (E) underwent a reduction, whereas the flexural modulus (Eflex) increased with the amount of starch incorporated. The biocomposites with the highest Eflex were those with a starch content of 22.5 wt.%, which increased by 8.7% compared to the neat PLA. The water absorption of the biocomposites demonstrated a higher uptake capacity as the starch content increased. The rate of water absorption in the biocomposites followed the principles of Fick's Law. The novelty of this work lies in its offering an alternative for the use of high-amylose mountain's yam starch to produce low-cost bioplastics for different applications.

5.
Bioprocess Biosyst Eng ; 47(1): 119-129, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006410

ABSTRACT

Inulin is a fructose-based polysaccharide that can be found in several plant species, from grass and onions to chicory roots; thus, it has the potential to be an excellent renewable source of fructose for several industrial applications. Among them, inulin hydrolysis can be coupled to a fermentation operation to produce polyhydroxybutyrate (PHB) using Cupriavidus necator H16. This work reports the PHB production process involving chicory root inulin hydrolysis using inulinase Novozym 960 followed by a C. necator fermentation. It was found that the maximum saccharification (95% wt.) was reached at 269 U/ginulin after 90 min. The hydrolysates obtained were then inoculated with C. necator, leading to a biomass concentration of 4 g/L with 30% (w/w) polymer accumulation. Although PHB production was low, during the first hours, the cell growth and polymer accumulation detected did not coincide with a fructose concentration decrease, suggesting a simultaneous saccharification and fermentation process, potentially alleviating the product inhibition inherent to the inulinase-fructose system. The characterization of the obtained PHB showed a polymer with more homogeneous values of Mw, and better thermal stability than PHB produced using pure fructose as a fermentation substrate. The results obtained demonstrate a viable alternative carbon substrate for PHB production, opening the possibility for inulin-rich renewable feedstock valorization.


Subject(s)
Cupriavidus necator , Inulin , Fermentation , Inulin/metabolism , Polyhydroxybutyrates , Fructose , Hydroxybutyrates
6.
Bioengineering (Basel) ; 10(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38135973

ABSTRACT

Bioplastics hold significant promise in replacing conventional plastic materials, linked to various serious issues such as fossil resource consumption, microplastic formation, non-degradability, and limited end-of-life options. Among bioplastics, polyhydroxyalkanoates (PHA) emerge as an intriguing class, with poly(3-hydroxybutyrate) (P3HB) being the most utilized. The extensive application of P3HB encounters a challenge due to its high production costs, prompting the investigation of sustainable alternatives, including the utilization of waste and new production routes involving CO2 and CH4. This study provides a valuable comparison of two P3HBs synthesized through distinct routes: one via cyanobacteria (Synechocystis sp. PCC 6714) for photoautotrophic production and the other via methanotrophic bacteria (Methylocystis sp. GB 25) for chemoautotrophic growth. This research evaluates the thermal and mechanical properties, including the aging effect over 21 days, demonstrating that both P3HBs are comparable, exhibiting physical properties similar to standard P3HBs. The results highlight the promising potential of P3HBs obtained through alternative routes as biomaterials, thereby contributing to the transition toward more sustainable alternatives to fossil polymers.

7.
World J Microbiol Biotechnol ; 39(11): 293, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37653355

ABSTRACT

Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing ß-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.


Subject(s)
Amylases , Glucan 1,4-alpha-Glucosidase , Biofuels , Biotechnology , Starch
8.
Foods ; 12(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37444258

ABSTRACT

Most polymeric materials are synthetic and derived from petroleum, hence they accumulate in landfills or the ocean, and recent studies have focused on alternatives to replace them with biodegradable materials from renewable sources. Biodegradable wastes from food and agroindustry, such as spent coffee grounds (SCGs), are annually discarded on a large scale and are rich in organic compounds, such as polysaccharides, that could be used as precursors to produce films. Around 6.5 million tons of SCGs are discarded every year, generating an environmental problem around the world. Therefore, it was the aim of this work to develop films from the SCGs polysaccharide fraction, which is comprised of cellulose, galactomannans and arabinogalactans. Two types of crosslinking were performed: the first forming coordination bonds of calcium ions with polysaccharides; and the second through covalent bonds with 1,4-phenylenediboronic acid (PDBA). The films with Ca2+ ions exhibited a greater barrier to water vapor with a reduction of 44% of water permeability vapor and 26% greater tensile strength than the control film (without crosslinkers). Films crosslinked with PDBA presented 55-81% higher moisture contents, 85-125% greater permeability to water vapor and 67-150% larger elongations at break than the films with Ca2+ ions. Film biodegradability was demonstrated to be affected by the crosslinking density, with the higher the crosslinking density, the longer the time for the film to fully biodegrade. The results are promising and suggest that future research should focus on enhancing the properties of these films to expand the range of possible applications.

9.
Polymers (Basel) ; 15(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447469

ABSTRACT

One of the main limitations in the creation of bioplastics is their large-scale development, referred to as the industrial-scale processing of plastics. For this reason, bioplastic engineering emerges as one of the main objectives of researchers, who are attempting to create not only more environmentally friendly but also sustainable, low-cost, and less polluting materials. This review presents the advances in the development of biodegradable and compostable films/containers using eco-friendly components of by-products of the coffee industry, such as coffee flour (CF), coffee mucilage (CM), coffee husks (CH), coffee silverskin (CS), and spent coffee grounds (SCGs), and a brief review of the common industrial processing techniques for the production of food packaging, including extrusion, compression molding, injection molding, and laboratory-scale techniques such as solvent casting. Finally, this review presents various advances in the area that can be scalable or applicable to different products using by-products generated from the coffee industry, taking into account the limitations and drawbacks of using a biomaterial.

10.
Recent Pat Biotechnol ; 17(3): 271-288, 2023.
Article in English | MEDLINE | ID: mdl-36503455

ABSTRACT

BACKGROUND: As global awareness regarding climate change and environmental pollution outcomes arise, eco-friendly and negative emission technologies emerge. METHODS: In this scenario, polyhydroxyalkanoate (PHA)-accumulating microorganisms play an important role in the transition from the petrochemical-based non-biodegradable polymer to renewable, eco-friendly, and biocompatible materials. More specifically, CO2 can be converted to biopolymers through photosynthesis by cyanobacteria and algae, posing as a promising technology for renewable material, CO2, and petroleum-dependence mitigations. However, although many microorganisms can accumulate PHA intracellularly, limitations persist, such as the elevated cost and limited market availability. RESULTS: Herein is presented a patent-based mapping on technological trends of PHAs production, including its production by microalgae and cyanobacteria using the Questel Orbit Intelligence software (version 1.9.8) in complement with the Espacenet Patent Search database. CONCLUSION: The inquiry on PHAs retrieved 34,243 patents filed since 1912, whereas 156 are related to their specific production by photosynthetic microorganisms, evidencing a prospective market for intellectual property.


Subject(s)
Cyanobacteria , Polyhydroxyalkanoates , Carbon Dioxide , Prospective Studies , Patents as Topic
11.
Crit Rev Microbiol ; 49(5): 543-555, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35687715

ABSTRACT

The genus Aeromonas comprises Gram-negative bacilli widely distributed in aquatic habitats that can also be found in the terrestrial environment and in close association with humans and animals. Aeromonas spp. are particularly versatile bacteria, with high genomic plasticity and notable capacity to adapt to different environments and extreme conditions. On account of being mostly associated with their pathogenic potential, research on the biotechnological potentialities of Aeromonas spp. is considerably scarce when compared to other bacterial groups. Nonetheless, studies over the years have been hinting at several interesting hidden potentialities in this bacterial group, especially with the recent advances in whole-genome sequencing, unveiling Aeromonas spp. as interesting candidates for the discovery of novel industrial biocatalysts, bioremediation strategies, and biopolyester production. In this context, the present study aims to provide an overview of the main biotechnological applications reported in the genus Aeromonas and provide new insights into the further exploration of these frequently overlooked, yet fascinating, bacteria.


Subject(s)
Aeromonas , Humans , Animals , Aeromonas/genetics , Biotechnology
12.
Mar Drugs ; 20(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36286425

ABSTRACT

Microalgae and cyanobacteria are photosynthetic microorganisms' sources of renewable biomass that can be used for bioplastic production. These microorganisms have high growth rates, and contrary to other feedstocks, such as land crops, they do not require arable land. In addition, they can be used as feedstock for bioplastic production while not competing with food sources (e.g., corn, wheat, and soy protein). In this study, we review the macromolecules from microalgae and cyanobacteria that can serve for the production of bioplastics, including starch and glycogen, polyhydroxyalkanoates (PHAs), cellulose, polylactic acid (PLA), and triacylglycerols (TAGs). In addition, we focus on the cultivation of microalgae and cyanobacteria for wastewater treatment. This approach would allow reducing nutrient supply for biomass production while treating wastewater. Thus, the combination of wastewater treatment and the production of biomass that can serve as feedstock for bioplastic production is discussed. The comprehensive information provided in this communication would expand the scope of interdisciplinary and translational research.


Subject(s)
Cyanobacteria , Microalgae , Polyhydroxyalkanoates , Microalgae/metabolism , Biomass , Wastewater , Soybean Proteins/metabolism , Cyanobacteria/metabolism , Cellulose , Starch/metabolism , Triglycerides/metabolism , Glycogen/metabolism , Biofuels
13.
Polymers (Basel) ; 14(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015669

ABSTRACT

The automotive industry has used plastics almost since the beginning. The lightness, flexibility, and many qualities of plastics make them ideal for the automotive industry, reducing cars' overall weight and fuel consumption. Engineering plastics in this industry belong to the high-performance segment of non-renewable resources. These plastics exhibit higher properties than commodity plastics. Fortunately, unlike recycled commodity plastics, the super properties and high-performance characteristics make engineering plastics effectively reused after recycling. The substitution of these fossil-fuel-derived plastics adds to the solution of lightweighting, a much-needed solution to waste management, and solves industrial and ecological issues surrounding plastic disposal. All major vehicle manufacturers worldwide use bioplastics and bio-based plastics, including natural-fiber composites and engineering plastics reinforced with natural fibers. Changing the source of plastics to raw materials from renewable resources is the logical approach to sustainability. Thus, high-quality plastics, recycled plastics, bio-based plastics, and biodegradable plastics could be exploited from design, making sustainability an integral concept of mobility development. This review analyzes that switching from fossil-fuel- to renewable-sources-derived plastics is a step toward meeting the current environmental goals for the automotive industry, including electric cars.

14.
Foods ; 11(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35885305

ABSTRACT

Current estimates place the amount of spent coffee grounds annually generated worldwide in the 6 million ton figure, with the sources of spent coffee grounds being classified as domestic (i.e., household), commercial (i.e., coffee houses, cafeterias and restaurants), and industrial (i.e., soluble and instant coffee industries). The majority of the produced spent coffee grounds are currently being inappropriately destined for landfills or to a form of energy recovery (e.g., incineration) as a refuse-derived fuel. The disposal of spent coffee in landfills allows for its anaerobic degradation with consequent generation and emission of aggressive greenhouse gases such as methane and CO2, and energy recovery processes must be considered an end-of-life stage in the lifecycle of spent coffee grounds, as a way of delaying CO2 emissions and of avoiding emissions of toxic organic volatile compounds generated during combustion of this type of waste. Aside from these environmental issues, an aspect that should be considered is the inappropriate disposal of a product (SCG) that presents unique thermo-mechanical properties and textural characteristics and that is rich in a diversity of classes of compounds, such as polysaccharides, proteins, phenolics, lipids and alkaloids, which could be recovered and used in a diversity of applications, including food-related ones. Therefore, researchers worldwide are invested in studying a variety of possible applications for spent coffee grounds and products thereof, including (but not limited to) biofuels, catalysts, cosmetics, composite materials, feed and food ingredients. Hence, the aim of this essay was to present a comprehensive review of the recent literature on the proposals for utilization of spent coffee grounds in food-related applications, with focus on chemical composition of spent coffee, recovery of bioactive compounds, use as food ingredients and as components in the manufacture of composite materials that can be used in food applications, such as packaging.

15.
Polymers (Basel) ; 14(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35335534

ABSTRACT

Plastics have become an essential part of the modern world thanks to their appealing physical and chemical properties as well as their low production cost. The most common type of polymers used for plastic account for 90% of the total production and are made from petroleum-based nonrenewable resources. Concerns over the sustainability of the current production model and the environmental implications of traditional plastics have fueled the demand for greener formulations and alternatives. In the last decade, new plastics manufactured from renewable sources and biological processes have emerged from research and have been established as a commercially viable solution with less adverse effects. Nevertheless, economic and legislative challenges for biobased plastics hinder their widespread implementation. This review summarizes the history of plastics over the last century, including the most relevant bioplastics and production methods, the environmental impact and mitigation of the adverse effects of conventional and emerging plastics, and the regulatory landscape that renewable and recyclable bioplastics face to reach a sustainable future.

16.
Chemosphere ; 287(Pt 3): 132290, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34562707

ABSTRACT

Developing novel renewable (and preferably biodegradable) materials has become recurrent due to the growing concerns with environmental impacts of high volumes of plastic waste produced from oil-based sources over the past decades. This study aimed at developing bioplastics from a mixture of starch and xylan in variable ratios, and the combined effect of α-cellulose and holocellulose extracted from sugarcane bagasse added to the process. The disintegration of bioplastics was evaluated in both soil and composting. The ecotoxicity analyses with Saccharomyces cerevisiae, Bacillus subtilis and seeds of Cucumis sativus were conducted after disintegration. All formulations based on 5% (w/v) of total polysaccharides were dried at 30 °C and resulted in homogeneous and non-brittle bioplastics. The composting results showed that all bioplastic formulations disintegrated in 3 days, whereas the 25/75% (xylan/starch, w/w) formulation vanished in soil within 13 days. The ecotoxicity data showed no inhibition of microbial growth after biodegradation, yielding 100% of seed germination. Despite the positive influence of the bioplastic degradation on the root and hypocotyl growth, temporary inhibition of C. sativus tissues exposed to soil washing (10 days of disintegration) was observed. The study demonstrated that xylan/starch bioplastics result in non-ecotoxic biodegradable materials.


Subject(s)
Composting , Starch , Biodegradation, Environmental , Plastics/toxicity , Xylans
17.
Article in English | MEDLINE | ID: mdl-34886335

ABSTRACT

Production of polyhydroxyalkanoates (PHA) has generated great interest as building blocks for bioplastic production. Their production using mixed microbial cultures represents an interesting alternative, since it enables the use of organic wastes as a carbon source. Feast/famine strategy is a common way to promote selection of microorganisms with PHA accumulation capacity. However, when using waste sources, changes in substrate concentration are expected, that may affect performance and efficiency of the process. This study showed how the dissolved oxygen level can be used for online control of the cycle time, ensuring that the desired feast/famine ratio is effectively applied. An operation strategy is presented and validated, using sequential batch reactors fed with acetate as the carbon source. Production of polyhydroxybutyrate (PHB) was studied, which is the expected type of PHA to be synthetized when using acetate as substrate. Two reactors were operated by applying the proposed control strategy, to provide F/F ratios of 0.2 and 0.6, respectively. A third reactor was operated with a fixed cycle time, for comparison purposes. Results showed that the reactor that operated at an F/F ratio of 0.6 promoted higher biomass productivity and PHB content, as a result of a better use of available time, preventing unnecessary long famine times. The application of the tested strategy is a simple a reliable way to promote a better performance of feast/famine-based bioreactors involving mixed microbial cultures for PHB production.


Subject(s)
Polyhydroxyalkanoates , Acetates , Biomass , Bioreactors , Carbon
18.
Polymers (Basel) ; 13(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34372086

ABSTRACT

The accumulation of plastic wastes in different environments has become a topic of major concern over the past decades; therefore, technologies and strategies aimed at mitigating the environmental impacts of petroleum products have gained worldwide relevance. In this scenario, the production of bioplastics mainly from polysaccharides such as starch is a growing strategy and a field of intense research. The use of plasticizers, the preparation of blends, and the reinforcement of bioplastics with lignocellulosic components have shown promising and environmentally safe alternatives for overcoming the limitations of bioplastics, mainly due to the availability, biodegradability, and biocompatibility of such resources. This review addresses the production of bioplastics composed of polysaccharides from plant biomass and its advantages and disadvantages.

19.
Braz J Microbiol ; 52(2): 715-726, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33590449

ABSTRACT

Nowadays when conventional plastic is being looked as a menace, the possibility of it being replaced with polyhydroxyalkanoates (PHAs) which are biodegradable, environment friendly and biocompatible thermoplastics is not remote. PHAs are a fascinating group of biopolyesters stored within the cytoplasm of numerous bacterial cells as energy and carbon reserves. PHAs signify the best promising biological substitute to certain conventional petrochemical plastics which have wide range of applications in different industries such as biomedical sector, packaging, toners for printing, and adhesives for coating, etc. In the present study, PHAs producing bacterial strains were screened by Sudan black B staining and confirmed by Nile blue A staining. Out of forty bacterial strains showing positive results, six bacterial strains exhibited comparatively higher PHAs production. The highest PHAs producing bacterial strain was identified using 16s rRNA sequencing. Optimization of process parameters was performed by using one factor at a time (OFAT) approach. The isolated bacterium was able to synthesize PHAs when various agro-industrial wastes such as domestic kitchen waste, mixed fruit pulp, sugarcane molasses, and waste flour from bread factory were screened as a carbon substrate in the growth medium. The results showed accumulation of 44.5% PHAs of cell dry weight using domestic kitchen waste as carbon substrate. The characterization of biopolymers was performed using FTIR and XRD analysis. The commercial exploitation of results of this study may serve twin purposes of addressing the challenge of high production cost of PHAs being the major constraint in replacing petro-based plastics as well as address the problem of disposal of recurring domestic kitchen waste and other agro-industrial waste.


Subject(s)
Bacteria/metabolism , Polyhydroxyalkanoates/biosynthesis , Soil Microbiology , Agriculture , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biopolymers/biosynthesis , Industrial Waste/analysis
20.
Polymers (Basel) ; 12(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872115

ABSTRACT

Plant cuticles have attracted attention because they can be used to produce hydrophobic films as models for novel biopolymers. Usually, cuticles are obtained from agroresidual waste. To find new renewable natural sources to design green and commercially available bioplastics, fruits of S. aculeatissimum and S. myriacanthum were analyzed. These fruits are not used for human or animal consumption, mainly because the fruit is composed of seeds. Fruit peels were object of enzymatic and chemical methods to get thick cutins in good yields (approximately 77% from dry weight), and they were studied by solid-state resonance techniques (CPMAS 13C NMR), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and direct injection electrospray ionization mass spectrometry (DIESI-MS) analytical methods. The main component of S. aculeatissimum cutin is 10,16-dihydroxypalmitic acid (10,16-DHPA, 69.84%), while S. myriacanthum cutin besides of 10,16-DHPA (44.02%); another two C18 monomers: 9,10,18-trihydroxy-octadecanoic acid (24.03%) and 18-hydroxy-9S,10R-epoxy-octadecanoic acid (9.36%) are present. The hydrolyzed cutins were used to produce films demonstrating that both cutins could be a potential raw material for different biopolymers.

SELECTION OF CITATIONS
SEARCH DETAIL