Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.606
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124960, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39180967

ABSTRACT

In this study, the molecular, electronic, and chemical properties of the drug hydrochlorothiazide (HCTZ) are determined after cocrystallization with 4-aminobenzoic acid (4-ABA). Analysis has been performed to understand how those variations lead to alteration of physical properties and chemical reactivity in the cocrystal HCTZ-4ABA. IR and Raman characterizations were performed along with quantum chemical calculations. A theoretical investigation of hydrogen bonding interactions in HCTZ-4ABA has been conducted using two functionals: B3LYP and wB97X-D. The results obtained by B3LYP and wB97X-D are compared which leads to the conclusion that B3LYP is the best applied function (density functional theory) to obtain suitable results for spectroscopy. The chemical reactivity descriptors are used to understand various aspects of pharmaceutical properties. Natural bond orbital (NBO) analysis and quantum theory of atoms (QTAIM) are used to analyze nature and strength of hydrogen bonding in HCTZ-4ABA. QTAIM analyzed moderate role of hydrogen bonding interactions in HCTZ-4ABA. The calculated HOMO-LUMO energy gap shows that HCTZ-4ABA is chemically more active than HCTZ drug. These chemical parameters suggest that HCTZ-4ABA is chemically more reactive and softer than HCTZ. The results of this study suggest that cocrystals can be a good alternative for enhancing physicochemical properties of a drug without altering its therapeutic properties.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124963, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39151400

ABSTRACT

Sm3+ions doped Phospho-Borate glasses were synthesized and their physical and spectroscopic parameters were studied to evaluate its potential reddish-orange emission for photonic applications. Structural investigation made through XRD analysis confirms the amorphous nature. The evaluated bonding parameters from the absorption spectral analysis confirm the ionic bonding of the Sm-O network in the prepared glasses. Four emission bands were observed from the luminescence spectra, and the HT 4G5/2 → 6H7/2 is observed at 601 nm. The oscillator strength values elucidate the intensity of the absorption bands, and the PBKZnF:Sm sample exhibits a higher oscillator strength value. The Judd-Ofelt intensity parameters were observed to trail the trend Ω4 > Ω6. > Ω2 for the majority of the samples. The CIE 1931 color chromaticity investigation confirms that the present glass samples are suitable for reddish-orange media. Barium and strontium-incorporated glasses exhibit outstanding lasing potential, which was confirmed through the efficiency of the quantum yield and some of the radiative parameters like effective bandwidth, transition probability and stimulated emission cross-section. Radiative parameters have been calculated from the luminescence spectra. Amid all transitions, 4G5/2 →6H7/2 transition has higher transition probability and higher stimulated emission cross-section values for all the prepared glass samples. Barium-incorporated glass exhibits a higher emission cross-section of 30.55 × 10-22 cm2 and a transition probability of 30.89 s-1 compared to all other glasses. The non-exponential decay profiles of the fabricated samples were plotted by examining the excitation wavelength at 402 nm and emission wavelength at 600 nm. Of all the prepared glasses, the quantum efficiency is found to be higher for the glass sample PBKSrF:Sm (65 %).

3.
J Comput Chem ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39350679

ABSTRACT

The fluxional nature of halogen bonds (XBs) in small molecular clusters, supramolecules, and molecular crystals has received considerable attention in recent years. In this work, based on extensive density-functional theory calculations and detailed electrostatic potential (ESP), natural bonding orbital (NBO), non-covalent interactions-reduced density gradient (NCI-RDG), and quantum theory of atoms in molecules (QTAIM) analyses, we unveil the existence of fluxional halogen bonds (FXBs) in a series of linear (IC6F4I)m(OONC6H4NOO)n (m + n = 2-5) complexes of tetrafluorodiiodobenzene with dinitrobenzene which appear to be similar to the previously reported fluxional hydrogen bonds (FHBs) in small water clusters (H2O)n (n = 2-6). The obtained GS ⇌ TS ⇌ GS ' $$ \mathrm{GS}\rightleftharpoons \mathrm{TS}\rightleftharpoons {\mathrm{GS}}^{\hbox{'}} $$ fluxional mechanisms involve one FXB in the systems which fluctuates reversibly between two linear CI···O XBs in the ground states (GS and GS') via a bifurcated CI O2N van der Waals interaction in the transition state (TS). The cohesive energies (Ecoh) of these complexes with up to four XBs exhibit an almost perfect linear relationship with the numbers of XBs in the systems, with the average calculated halogen bond energy of Ecoh/XB = 3.48 kcal·mol-1 in the ground states which appears to be about 55% of the average calculated hydrogen bond energy (Ecoh/HB = 6.28 kcal·mol-1) in small water clusters.

4.
Angew Chem Int Ed Engl ; : e202417427, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351916

ABSTRACT

Halenium ions (X+) are highly reactive electron deficient species that are prevalent transient intermediates in halogenation reactions. The stabilisation of these species is especially challenging, with the most common approach to sequester reactivity through the formation of bis-pyridine (Py) complexes; [(Py)2X]+. Herein, we present the first example of a macrocyclic stabilisation effect for halenium species. Exploiting a series of bis-pyridine macrocycles, we demonstrate the first example of utilising the macrocyclic ligands to stabilise halenium species via the endotopic complexation of a bromenium cation, impressively facilitating the isolation of a bench stable 'Br+ NO3-' species. Solid state X-ray crystallographic structural comparison of macrocyclic Br(I) complexes with Ag(I) and Au(I) analogues provides insightful information concerning similarities and stark contrasts in halenium/metal cation coordination behaviors. Furthermore, the first chemical ligand exchange reactions of Br(I) complexes are reported between acyclic [(Py)2Br]+ species and a bis-pyridine macrocyclic donor ligand which importantly highlights a macrocycle effect for halenium cation stabilisation in the solution phase.

5.
Cureus ; 16(8): e68346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39355084

ABSTRACT

Introduction The goal of orthodontic treatment is to provide patients with esthetic smiles and functional occlusion. Despite best efforts and continuous evolution of materials, white spot lesions present a persistent hindrance to the desired treatment outcome. Nanoparticles have shown efficacy in reducing microbial activity; however, currently, there is a need for natural anti-cariogenic compounds with minimal side effects. Resveratrol is a natural compound belonging to the polyphenol group and has shown promising anti-microbial efficacy. This study aimed to evaluate the influence of dentin bonding agents incorporated with the following three different nanoparticles on shear bond strength: silver nanoparticles (Ag-Np), zinc oxide nanoparticles (ZnO-Np), and resveratrol nanoparticles (RSV-Np). Materials and methods A total of 40 premolar teeth therapeutically extracted were assigned to four equal groups of n=10 each. Groups 1, 2, and 3 used experimental adhesives doped with silver, zinc oxide, and resveratrol nanoparticles, respectively. Group 4 was bonded using unmodified adhesive. The bonded teeth were then subjected to shear bond strength (SBS) testing which was measured using a Universal Testing Machine (model no. UNITEST-10; Pune, India: ACME Engineers). Statistical analyses were performed using SPSS version 21 (Armonk, NY: IBM Corp.), employing one-way ANOVA and Tukey's post-hoc test for pairwise comparisons. Results Shear bond strength testing revealed that the control group with unmodified adhesive (8.6 MPa) had the highest SBS, followed by RSV-Np (7.6 MPa), Ag-Np (6.3 MPa), and ZnO-Np (5.65 MPa). Although the experimental groups demonstrated decreased SBS compared to the control, the values for Ag-Np and RSV-Np fell within the acceptable range. Conclusion Resveratrol nanoparticles had the least impact on shear bond strength among the experimental groups. These findings suggest that the incorporation of resveratrol nanoparticles in dentin bonding agents can provide anti-cariogenic effect without significantly impacting the adhesive's mechanical properties thereby providing a new and promising alternative to synthetic nanoparticles. Further studies are recommended to optimize the balance between anti-microbial efficacy and bond strength in clinical applications.

6.
Int J Biol Macromol ; : 136159, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357716

ABSTRACT

Chitosan is a functional polymer with diverse applications in biomedicine, agriculture, water treatment, and beyond. Via derivatization of pristine chitosan, its functionality can be tailored to desired applications, e.g. immobilization of biomolecules. Here, we performed molecular dynamics simulations of three aminated chitosan polymers, where one, two, and three long-distanced side chains have been incorporated. These polymers have been previously synthesized and their properties were investigated experimentally, however, the observed dependencies could not be fully explained on the molecular level. Here, we develop a computational protocol for the simulation of functionalized chitosan polymers and perform advanced analysis of their conformational states, intramolecular interactions, and water binding. We demonstrate that intra- and intermolecular forces, especially hydrogen bonds induced by polymer side chain modifications, modulate dihedral angle conformational states of the polymer backbone and interactions with water. We explain the role of the chemical composition of the functionalized chitosans in their tendency to collapse and reveal the key role of the protonation of the amino group near the polymer backbone on the reduction of polymer collapse. We demonstrate that specific binding of water molecules, especially the intermediate water, is more pronounced in the polymer exhibiting such an amino group.

7.
Sci Rep ; 14(1): 22776, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39353996

ABSTRACT

In this study, a structural adhesive was used to bond unidirectional prepreg and fiber fabric in a single lap joint. The mechanical properties of the structural adhesive were investigated under room temperature dry state (RTD) and elevated temperature wet state (ETW, 71 â„ƒ/85% RH), and different adhesive layer thicknesses (0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm). The fracture surfaces of the bonded joints were examined using scanning electron microscopy (SEM), and finite element simulations were conducted to observe the failure modes and failure paths. Additionally, the specimens were immersed in water and hydraulic oil, and their tensile shear strength was tested to evaluate their liquid sensitivity. The experimental results indicated that with increasing adhesive layer thickness, the strength of the specimens decreased by 21% in the RTD and by 52% in the ETW. The strength differences between different environments were minimal for adhesive layer thicknesses of 1 mm and 1.5 mm. The shear strength of the specimens decreased after immersion in water and hydraulic oil, with reductions of 43.78% and 39.21%, compared to the room temperature dry respectively. SEM observations of the bonded joint sections revealed that the primary failure modes were adherend failure and adhesive layer failure. Finite element simulations indicated that fiber tearing and crack initiation occurred in stress concentration areas during loading, leading to structural failure.

8.
ACS Nano ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360450

ABSTRACT

On-surface molecular self-assembly presents an important approach to the development of low-dimensional functional nanostructures and nanomaterials. Traditional strategies primarily exploit hydrogen bonding or metal coordination, yet the potential of chalcogen bonding (ChB) for on-surface self-assemblies remains underexplored. Here, we explore fabricating molecular networks via tellurium (Te)-directed chalcogen-organic interactions. Employing carbonitrile molecules as molecular building blocks, we have achieved extended 2D networks exhibiting a 4-fold binding motif on Au(111), marking a notable difference from the conventional coordinative interaction involving transition metals. Our findings, supported by density functional theory (DFT) and scanning tunneling spectroscopy (STS), show that the Te-carbonitrile interaction exhibits lower stability compared to the metal-organic coordination, and the construction of the Te-directed molecular networks does not alter the electronic properties of the involved molecules. Introducing chalcogen-directed interactions may expand the spectrum of strategies in supramolecular assembly, contributing to the design of advanced molecular architectures for nanotechnological applications.

9.
Article in English | MEDLINE | ID: mdl-39361710

ABSTRACT

Li ion diffusion is fundamentally a thermally activated ion hopping process. Recently, soft lattice, anharmonic phonon, and paddlewheel mechanism have been proposed to potentially benefit the ion transport, while the understanding of vibrational couplings of mobile ions and anions is still very limited but essential. Herein, we accessed the ionic conductivity, stability, and especially, lattice dynamics in LiM(SeO3)2 (M = Al, Ga, In, Sc, Y, and La) with two different types of oxygen anions within a LiO4 polyhedron, namely, edge-shared and corner-shared with MO6 polyhedra, the prototype of which, LiGa(SeO3)2, has been theoretically reported before with the similar structural features to NASICON and later experimentally synthesized with the room temperature conductivity ∼0.11 mS cm-1. It is interesting to note that LiM(SeO3)2 with a higher Li phonon band center shows higher Li conductivity, which is in contradiction to the conventional understanding of the importance for soft lattice to superionic conductors. The anharmonic and harmonic phonon interactions as well as the couplings between the vibration of the edge-bonded or corner-bonded anion in Li polyanions and the Li ion diffusion have been studied in detail. With transition metal M changing from La, Y, In, Ga, Al, and Sc, anharmonic phonons increase with reduced activation energy for Li diffusion. The phonon modes dominated by the edge-bonded oxygen anions contribute more to the migration of the Li ion than those dominated by the corner-bonded oxygen anions because of the greater atomic interaction between the Li ion and the edge-bonded anions. Thus, rather than the overall lattice softness, attention shall be given to reduce the frequency of the critical phonons contributing to Li ion diffusion as well as to increase the anharmonicity, i.e., through asymmetric Li polyhedra, for the design of Li ion superionic conductors for all-solid-state batteries.

10.
Adv Sci (Weinh) ; : e2408948, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39364759

ABSTRACT

Conductive 2D nanosheets have evoked tremendous scientific efforts because of their high efficiency as hybridization matrices for improving diverse functionalities of nanostructured materials. To address the problems posed by previously reported conductive nanosheets like poorly-interacting graphene and cost-ineffective RuO2 nanosheets, economically feasible noble-metal-free conductive [MnxCo1-2xNix]O2 oxide nanosheets are synthesized with outstanding interfacial interaction capability. The surface-optimized [Mn1/4Co1/2Ni1/4]O2 nanosheets outperformed RuO2/graphene nanosheets as hybridization matrices in exploring high-performance visible-light-active (λ >420 nm) photocatalysts. The most efficient g-C3N4-[Mn1/4Co1/2Ni1/4]O2 nanohybrid exhibited unusually high photocatalytic activity (NH4 + formation rate: 1.2 mmol g-1 h-1), i.e., one of the highest N2 reduction efficiencies. The outstanding hybridization effect of the defective [Mn1/4Co1/2Ni1/4]O2 nanosheets is attributed to the optimization of surface bonding character and electronic structure, allowing for improved interfacial coordination bonding with g-C3N4 at the defect sites. Results from spectroscopic measurements and theoretical calculations reveal that hybridization helps optimize the bandgap energy, and improves charge separation, N2 adsorptivity, and surface reactivity. The universality of the [Mn1/4Co1/2Ni1/4]O2 nanosheet as versatile hybridization matrices is corroborated by the improvement in the electrocatalytic activity of hybridized Co-Fe-LDH as well as the photocatalytic hydrogen production ability of hybridized CdS.

11.
Angew Chem Int Ed Engl ; : e202416022, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39364811

ABSTRACT

Hydrogen bonds involving the oxygen atoms of intermediates that result from copper-mediated O2 activation play a key role for controlling the reactivity of Cux/O2 active sites in metalloenzymes and synthetic model complexes. However, structural insight into H-bonding in such transient species as well as thermodynamic information about proton transfer to or from the O2-derived ligands is scarce. Here we present a detailed study of the reversible interconversion of a µ1,2-peroxodicopper(II) complex ([1]+) and its µ1,1-hydroperoxo congener ([2]+) via (de)protonation, including the isolation and structural characterization of several H-bond donor (HBD) adducts of [1]+ and the determination of binding constants. For one of these adducts a temperature-dependent µ1,2-peroxo/µ1,1-hydroperoxo equilibrium associated with reversible H+-translocation is observed, its thermodynamics investigated experimentally and computationally, and effects of H-bonding on spectroscopic parameters of the CuII2(µ1,2-O2) species are revealed. DFT calculations allowed to fully map and correlate the trajectories of H+-transfer and µ1,2-peroxo→µ1,1-peroxo rearrangement. These findings enhance our understanding of two key intermediates in bioinspired Cu2/O2 chemistry.

12.
J Orofac Orthop ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365436

ABSTRACT

BACKGROUND: This research aimed to study whether bracket bonding using guided bonding devices (GBDs) is accurate enough for crowded dentitions in vitro. METHODS: Fifteen three-dimensionally (3D) printed resin model sets were included and divided into three groups: mild, moderate, and severe crowding. The resin models were scanned and virtually bonded with brackets. Corresponding GBDs were generated and 3D printed. Subsequently, the brackets were bonded to the resin models on a dental mannequin using the GBDs. The models with bonded brackets were scanned, and comparisons were made between the positions of the actually bonded and the planned ones to evaluate possible deviations. RESULTS: There was no immediate bonding failure in any group. The bonding duration tended to increase with crowding severity (P > 0.05). Almost all linear and angular deviations in all groups were below 0.5 mm and 2°, respectively, and no statistically significant difference was found among the different crowding degrees (P > 0.05). In all groups, the brackets tended to deviate lingually and had buccal crown torque. Brackets in the groups with mild and severe crowding showed a tendency for mesiobuccal rotation. CONCLUSION: GBDs provide high bracket bonding accuracy for dentitions with different crowding degrees and, thus, could hopefully be applied to uncrowded and crowded dentitions alike.

13.
Eur J Orthod ; 46(6)2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39364772

ABSTRACT

BACKGROUND: Few prospective investigations have compared direct and indirect techniques through comprehensive and detailed clinical evaluations, considering the impact of all factors. OBJECTIVES: This study aimed to compare and evaluate direct and indirect bonding methods at a single institution and to clarify the selection criteria for the bonding method. MATERIALS AND METHODS: This single-centre, quasi-randomized controlled clinical trial included 153 patients who required fixed orthodontic treatment. They were randomly divided into indirect and direct binding groups by the project lead (K.K.), who was blinded to all clinical data, and performed the allocation using medical record numbers. The chair time for bracket bonding, discomfort during bracket bonding, oral hygiene after bonding, number of bracket failures, number of intentional bracket reattachments, post-treatment occlusal index, and total treatment time were assessed. Outcomes were compared using a two-sample t-test or Mann-Whitney U test (P < .05). RESULTS: Fifty-eight patients were included in the indirect bonding group (20 male, 38 female; mean age: 20.63 ±â€…5.69 years) and 66 (14 male, 52 female; mean age: 23.17 ±â€…8.83 years) in the direct bonding group. Compared to the direct bonding group, the indirect bonding group had shorter chair time (P < .001), a shorter total treatment period (P < .01), and a better final occlusal relationship (P < .001). The number of bracket detachments was higher (P < .001) in the indirect bonding group, but the number of intentional reattachments was lower (P < .001). CONCLUSION: Indirect bonding may improve the efficiency of orthodontic treatment. HARMS: No harm was observed during the study. TRIAL REGISTRATION NUMBER: This trial was approved by the Ethics Review Committee of Okayama University (approval number: d10001), UMIN registration number 000022182.


Subject(s)
Dental Bonding , Orthodontic Brackets , Humans , Female , Male , Dental Bonding/methods , Young Adult , Adolescent , Adult , Prospective Studies , Oral Hygiene , Resin Cements/chemistry , Treatment Outcome
14.
Angew Chem Int Ed Engl ; : e202417902, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39383300

ABSTRACT

Single- and few-layer graphene-based thermal interface materials (TIMs) with extraordinary high-temperature resistance and ultra-high thermal conductivity are very essential to develop the next-generation integrated circuits. However, the function of the as-prepared graphene-based TIMs would undergo severe degradation when being transferred to chips, as the interface between the TIMs and chips possesses a very small interfacial thermal conductance. Here, a "2.5D" all-carbon interface containing rich covalent bonding, namely a sp2/sp3 hybrid interfaces is designed and realized by a plasma-assisted chemical vapor deposition with a function of ultra-rapid quenching. The interfacial thermal conductance of the 2.5D interface is excitingly very high, up to 110-117 MWm-2K-1 at graphene thickness of 12-25 nm, which is even more than 30% higher than various metal/diamond contacts, and orders of magnitude higher than the existing all-carbon contacts. Atomic-level simulation confirm the key role of the efficient heat conduction via covalent C-C bonds, and reveal that the covalent-based heat transport could contribute 85% to the total interfacial conduction at a hybridization degree of 22 at%. This study provides an efficient strategy to design and construct 2.5D all-carbon interfaces, which can be used to develop high performance all-carbon devices and circuits.

15.
Article in English | MEDLINE | ID: mdl-39383509

ABSTRACT

Keratin, as a promising bioresource, possesses significant potential for diverse biological applications due to its favorable biocompatibility, low toxicity, biodegradability, and cell adhesion ability. However, there are few studies on the cell-penetrating ability of keratin peptides (KEPs) for biomolecule delivery. Therefore, this study explored the cell-penetrating ability of KEPs with different molecular weights (Mw) on Caco2 cells using fluorescein-labeled insulin (FITC-INS) as the target intracellular biomolecule. The potential cell-penetrating mechanism was elaborated by combining cellular investigation with the physicochemical characterization of KEPs. The result shows that the KEPs <3 kDa (KEP1) exhibited the highest cell-penetrating ability at 2 mg/mL, allowing efficient delivery of FITC-INS into Caco2 cells without covalent bonding. The cellular uptake mechanism was energy-dependent, mainly involving macropinocytosis. The further fractionation of KEP1 reveals that the most effective components consisted of 8-19 amino acids, including specific hydrophobic peptides (e.g., RVVIEPSPVVV and IIIQPSPVVV), PPII amphipathic peptides (e.g., PPPVVVTFP and FIQPPPVVV), and Cys-rich peptides (e.g., LCAPTPCGPTPL and CLPCRPCGPTPL). Additionally, analysis of the secondary and tertiary structure and amino acid composition illustrated that KEP1 exhibited rich hydrophobic residues and disulfide bonds, which probably contributed to its cell-penetrating ability, as opposed to its small particle size and electrostatic interactions. This study reveals the cell-penetrating ability of KEPs, thus highlighting their potential as biomaterials for noncovalently delivering biomolecules.

16.
Small ; : e2406180, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385633

ABSTRACT

Metalloporphyrins modified carbon-based materials, owing to the excellent acid-base resistance, optimal electron transfer rates, and superior catalytic performance, have shown great potential in energy electrocatalysis. Recently, numerous efforts have concentrated on employing carbon-based substrates as platforms to anchor metalloporphyrins, thereby fabricating a diverse array of composite catalysts tailored for assorted electrocatalytic processes. However, the interplay through bonding regulation of metalloporphyrins with carbon materials and the resultant enhancement in catalyst performance remains inadequately elucidated. Gaining an in-depth comprehension of the synergistic interactions between metalloporphyrins and carbon-based materials within the realm of electrocatalysis is imperative for advancing the development of innovative composite catalysts. Herein, the review systematically classifies the binding modes (i.e., covalent grafting and non-covalent interactions) between carbon-based materials and metalloporphyrins, followed by a discussion on the structural characteristics and applications of metalloporphyrins supported on various carbon-based substrates, categorized according to their binding modes. Additionally, this review underscores the principal challenges and emerging opportunities for carbon-supported metalloporphyrin composite catalysts, offering both inspiration and methodological insights for researchers involved in the design and application of these advanced catalytic systems.

17.
Arch Gynecol Obstet ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367974

ABSTRACT

OBJECTIVE: To examine the impact of war conditions on maternal mental health postpartum outcomes, specifically depression and anxiety, as well as on maternal-infant bonding (MIB). STUDY DESIGN: A prospective cohort study was performed on women who gave birth in a tertiary medical center during (October-November 2023) and before (March-May 2020) the Israel-Hamas War. All participants completed validated self-reported questionnaires: The Edinburgh Postnatal Depression Scale (EPDS ≥ 10), State-Trait Anxiety Inventory (STAI > 39) and the Postpartum Bonding Questionnaire (PBQ ≥ 26). RESULTS: A total of 502 women were included in the study, with 230 delivering during the war and 272 delivered before. The rates of postpartum depression (PPD) were higher in women delivering during the war (26.6% vs. 12.4%, p < 0.001), while multivariable regression revealing a two-fold higher risk (adjusted OR 2.35, 95% CI 1.16-4.74, p = 0.017). The rate of postpartum anxiety (PPA) risk was also higher (34.3% vs 17.0%, p < 0.001), reaching a trend towards significance when accounting for other risk factors (adjusted OR 2.06, 95% CI 0.97-4.36, p = 0.058). Additionally, delivery during the war was associated with specific factors of impaired maternal-infant bonding (MIB), although it did not increase the overall impaired MIB (PBQ ≥ 26) (10.2 ± 14.1 vs 8.3 ± 6.9, p = 0.075). CONCLUSION: The study revealed an increased risk of PPD, a marginally risk for PPA, and some aspects of impaired MIB among women delivering during the war. Maternal mental illness in the postpartum period has negative impacts on the entire family. Therefore, comprehensive screening and adequate resources should be provided for women delivering in war-conflict zones.

18.
Biomater Adv ; 166: 214049, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39368439

ABSTRACT

Predicting how tooth and dental material bonds perform in the mouth requires a deep understanding of degrading factors. Yet, this understanding is incomplete, leading to significant uncertainties in designing and evaluating new dental adhesives. The durability of dental bonding interfaces in the oral microenvironment is compromised by bacterial acids, salivary enzymes, and masticatory fatigue. These factors degrade the bond between dental resins and tooth surfaces, making the strength of these bonds difficult to predict. Traditionally studied separately, a combined kinetic analysis of these interactions could enhance our understanding and improvement of dental adhesive durability. To address this issue, we developed and validated an original model to evaluate the bond strength of dental restorations using realistic environments that consider the different mechanical, chemical, and biological degradative challenges working simultaneously: bacteria, salivary esterases, and cyclic loading. We herein describe a comprehensive investigation on dissociating the factors that degrade the bond strength of dental restorations. Our results showed that cariogenic bacteria are the number one factor contributing to the degradation of the bonded interface, followed by cyclic loading and salivary esterases. When tested in combinatorial mode, negative and positive synergies towards the degradation of the interface were observed. Masticatory loads (i.e., cycling loading) enhanced the lactic acid bacterial production and the area occupied by the biofilm at the bonding interface, resulting in more damage at the interface and a reduction of 73 % in bond strength compared to no-degraded samples. Salivary enzymes also produced bond degradation caused by changes in the chemical composition of the resin/adhesive. However, the degradation rates are slowed compared to the bacteria and cyclic loading. These results demonstrate that our synergetic model could guide the design of new dental adhesives for biological applications without laborious trial-and-error experimentation.

19.
Beilstein J Org Chem ; 20: 2401-2407, 2024.
Article in English | MEDLINE | ID: mdl-39355855

ABSTRACT

Diaryliodonium(III) salts have been established as powerful halogen-bond donors in recent years. Herein, a new structural motif for this compound class was developed: iodoloisoxazolium salts, bearing a cyclic five-membered iodolium core fused with an isoxazole ring. A derivative of this class was synthesized and investigated in the solid state by X-ray crystallography. Finally, the potential as halogen-bonding activator was benchmarked in solution in the gold-catalyzed cyclization of a propargyl amide.

20.
Sci Rep ; 14(1): 23169, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369052

ABSTRACT

Traditionally, the surface charge number (SCN) of permanently charged soils/clay minerals is believed to be unaffected by environmental pH. However, recent studies have revealed the occurrence of polarization-induced covalent bonding between H+ and the surface O atoms of permanently charged clay minerals. This discovery challenges the traditional notions of "permanently charged soil" and "permanently charged clay mineral". The purpose of this study is to confirm that there are no true "permanently charged clay" or "permanently charged soil". In this study, the SCNs of two permanently charged clay minerals, two variably charged clay minerals, five permanently charged soils (temperate soils), and four variably charged soils (tropical or subtropical soils) were measured at different pH values using the universal determination method of SCN. The results showed that: (1) The SCNs of the permanently/variably charged soils and clay minerals decreased significantly with decreasing pH; (2) the SCN of montmorillonite decreased less with decreasing pH than the SCNs of variably charged minerals, whereas the SCN of illite decreased to nearly the same extent, indicating strong polarization-induced covalent bonding between H+ and the surface O atoms of illite; (3) the SCNs of permanently charged soils decreased to a similar extent as those of variably charged soils with decreasing pH. This study demonstrated that the concepts, "permanently charged clay mineral" or "permanently charged soil", are questionable because of the polarization-induced covalent bonding between H+ and the surface O atoms of clay minerals.

SELECTION OF CITATIONS
SEARCH DETAIL