Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.869
Filter
1.
Heliyon ; 10(14): e34203, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39104492

ABSTRACT

Objective: The present study aimed to explore the function of human bone marrow mesenchymal stem cells (hBMMSCs)-derived exosomal long noncoding RNA histocompatibility leukocyte antigen complex P5 (HCP5) in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) to improve chronic periodontitis (CP). Methods: Exosomes were extracted from hBMMSCs. Alizarin red S staining was used to detect mineralised nodules. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure HCP5 and miR-24-3p expression. The mRNA and protein levels of alkaline phosphatase (ALP), osteocalcin, osterix, runt-related transcription factor 2, bone morphogenetic protein 2, osteopontin, fibronectin, collagen 1, heme oxygenase 1 (HO1), P38, and ETS transcription factor ELK1 (ELK1) were detected using RT-qPCR and Western blot. Enzyme-linked immunosorbent assay (ELISA) kits were used to determine the HO1 and carbon monoxide concentrations. Heme, biliverdin, and Fe2+ levels were determined using detection kits. Micro-computed tomography, hematoxylin and eosin staining, ALP staining, tartrate-resistant acid phosphatase staining, ELISA, and RT-qPCR were conducted to evaluate the effect of HCP5 on CP mice. Dual luciferase, RNA immunoprecipitation, and RNA pulldown experiments were performed to identify the interactions among HCP5, miR-24-3p, and HO1. Results: The osteogenic ability of hPDLSCs significantly increased when co-cultured with hBMMSCs or hBMMSCs exosomes. Overexpression of HCP5 and HO1 in hBMMSCs exosomes promoted the osteogenic differentiation of hPDLSCs, and knockdown of HCP5 repressed the osteogenic differentiation of hPDLSCs. HCP5 knockdown enhanced the inflammatory response and repressed osteogenesis in CP mice. MiR-24-3p overexpression diminished the stimulatory effect of HCP5 on the osteogenic ability of hPDLSCs. Mechanistically, HCP5 acted as a sponge for miR-24-3p and regulated HO1 expression, and HO1 activated the P38/ELK1 pathway. Conclusion: HBMMSCs-derived exosomal HCP5 promotes the osteogenic differentiation of hPDLSCs and alleviates CP by regulating the miR-24-3p/HO1/P38/ELK1 signalling pathway.

2.
Mol Med Rep ; 30(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39129299

ABSTRACT

Tanshinone IIA (Tan IIA) may have therapeutic effects on avascular necrosis of the femoral head (ANFH) by targeting bone marrow mesenchymal stem cells (BMSCs). The effect and underlying mechanism of Tan IIA on adipogenesis and osteogenesis ability of BMSCs remain to be elucidated. In the present study BMSCs were treated with osteogenic or adipogenic differentiation medium with or without Tan IIA under hypoxic environment. Osteogenic differentiation potential was evaluated by alkaline phosphatase (ALP) measurement, alizarin red staining and reverse transcription­quantitative (RT­q) PCR of osteogenic marker genes. Adipogenic differentiation potential was evaluated with oil red staining and RT­qPCR of adipogenic marker genes. Detailed mechanism was explored by RNA­seq and small molecular treatment during osteogenesis and adipogenesis of BMSCs. ALP level, mineralized nodules and expression level of osteogenic marker genes significantly increased following Tan IIA treatment during osteogenic differentiation of BMSCs. Lipid droplet and expression levels of adipogenic marker genes significantly decreased following Tan IIA treatment during adipogenic differentiation of BMSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of RNA­seq data indicated increased Akt and TGFß signaling following Tan IIA treatment. Further western blot assay confirmed that Tan IIA significantly activated Akt/cAMP response element­binding protein signaling and TGFß/Smad3 signaling. Application of Akti1/2 (an Akt inhibitor) significantly decreased the promotion effect of osteogenesis induced by Tan IIA, while the addition of SB431542 significantly reduced inhibition effect of adipogenesis caused by Tan IIA. Tan IIA could promote osteogenic differentiation potential of BMSCs by activating AKT signaling and suppress adipogenic differentiation potential of BMSCs by activating TGFß signaling.


Subject(s)
Abietanes , Adipogenesis , Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Proto-Oncogene Proteins c-akt , Signal Transduction , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Abietanes/pharmacology , Adipogenesis/drug effects , Cell Differentiation/drug effects , Signal Transduction/drug effects , Animals , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta/metabolism , Cells, Cultured , Smad3 Protein/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/drug effects , Bone Marrow Cells/cytology
3.
DNA Cell Biol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133103

ABSTRACT

We aim to explore the potential mechanism of bone marrow mesenchymal stem cells-derived extracellular vesicles (BMSCs-Exo) in improving spinal cord injury (SCI). Thirty male 12-week specific pathogen-free (SPF) Sprague-Dawley (SD) rats were used to construct SCI model in vivo. Ten male 12-week SPF SD rats were used to extract BMSCs. The Basso, Beattie, Bresnahan (BBB) score was used to evaluate the motor function of rats. Real-time fluorescence quantitative PCR (RT-PCR), western blot (WB), and double luciferase assay were used to explore the regulation between rno-miR-208a-3p and Cdkn1a (p21) in BMSCs. Primary spinal cord neurons were treated with lipopolysaccharide (100 ng/mL) for 30 min to mimic SCI in vitro. Compared with the model group (14 scores), BMSCs-Exo increased BBB score (19 scores) in SCI rats. Compared with the sham group, Cdkn1a was upregulated, whereas rno-miR-208a-3p was downregulated in the model group. However, compared with the model group, Cdkn1a was downregulated, whereas rno-miR-208a-3p was upregulated in the BMSCs-Exo group. In addition, rno-miR-208a-3p inhibited the expression of Cdkn1a via direct binding way. BMSCs-Exo-rno-miR-208a-3p promoted the proliferation of primary spinal neurons via inhibiting apoptosis in vitro. Moreover, BMSCs-Exo-rno-miR-208a-3p promoted cyclin D1, CDK6, and Bcl-2 and inhibited Bax expression in a cell model of SCI. In conclusion, BMSCs-Exo-carried rno-miR-208a-3p significantly protects rats from SCI via regulating the Cdkn1a pathway.

4.
Biomed Pharmacother ; 178: 117271, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121589

ABSTRACT

Osteoblast-mediated bone formation and osteoclast-mediated bone resorption are critical processes in bone metabolism. Annexin A, a calcium-phospholipid binding protein, regulates the proliferation and differentiation of bone cells, including bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts, and has gradually become a marker gene for the diagnosis of osteoporosis. As calcium channel proteins, the annexin A family members are closely associated with mechanical stress, which can target annexins A1, A5, and A6 to promote bone cell differentiation. Despite the significant clinical potential of annexin A family members in bone metabolism, few studies have reported on these mechanisms. Therefore, based on a review of relevant literature, this article elaborates on the specific functions and possible mechanisms of annexin A family members in bone metabolism to provide new ideas for their application in the prevention and treatment of bone diseases, such as osteoporosis.

5.
Aging Cell ; : e14293, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123275

ABSTRACT

The senescence of bone marrow mesenchymal stem cells (BMSCs) contributes to the development of degenerative skeletal conditions. To date, the molecular mechanism resulting in BMSC senescence has not been fully understood. In this study, we identified a small non-coding RNA, miR-203-3p, the expression of which was elevated in BMSCs from aged mice. On the other hand, overexpression of miR-203-3p in BMSCs from young mice reduced cell growth and enhanced their senescence. Mechanistically, PDZ-linked kinase (PBK) is predicted to be the target of miR-203-3p. The binding of miR-203-3p to Pbk mRNA could decrease its expression, which in turn inhibited the ubiquitination-mediated degradation of p53. Furthermore, the intravitreal injection of miR-203-3p-inhibitor into the bone marrow cavity of aged mice attenuated BMSC senescence and osteoporosis in aged mice. Collectively, these findings suggest that targeting miR-203-3p to delay BMSC senescence could be a potential therapeutic strategy to alleviate age-related osteoporosis.

6.
Hum Cell ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141224

ABSTRACT

Osteoarthritis (OA), degenerative joint disease, is the most prevalent form of arthritis worldwide. Besides its substantial burden on society, the high OA morbidity greatly diminishes patients' quality of life. According to recent research, patients-derived serum extracellular vesicles (EVs) are critically involved in sustaining the corresponding disease progression. However, limited research has fully explored the specific functions and molecular mechanisms of OA serum-derived EVs in disease progression. Consequently, we aimed to investigate the underlying mechanism of OA rats-derived serum EVs in regulating OA progression. Before constructing the exosome-cell co-culture system, EVs were extracted from OA and control rat serum and co-cultured with bone marrow mesenchymal stem cells (BM-MSCs). Western blotting (WB), RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) results revealed that OA rat serum-derived EVs upregulated cell pyroptosis-related markers, including nod-Like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin D (GSDMD), and cleaved caspase-1. The OA rat-EVs also induced the release of LDH and inflammatory cytokines, including interleukin (IL)-1ß, IL-18, IL-6, and TNF-α. Additional experiments revealed that OA rat-EVs delivered miR-133a-3p to BM-MSCs and upregulated miR-133a-3p to degrade sirtuin 1 (SIRT1), and activating the downstream NF-κB signaling pathway. Furthermore, the rescuing experiments confirmed that silencing SIRT1 abrogated the miR-133a-3p-induced protective effects in OA-EVs-treated BM-MSCs. In conclusion, OA rats-derived miR-133a-3p-containing EVs modulated the downstream SIRT1/NF-κB pathway-mediated pyroptotic cell death and inflammation in OA. In other words, this study confirmed the role and underlying mechanisms by which OA-associated serum EVs regulate pyroptosis and inflammation response in OA development.

7.
Bone ; 188: 117224, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117162

ABSTRACT

Postmenopausal osteoporosis (PMOP) is a metabolic disorder characterized by the loss of bone density, which increases the risk of developing complications such as fractures. A pivotal factor contributing to the onset of PMOP is the diminished osteogenic differentiation capacity of bone marrow mesenchymal stem cells (BMSCs). MicroRNAs (miRNAs) play a substantial role in this process; however, their specific impact on regulating BMSCs osteogenesis remains unclear. Studies have evidenced a reduced expression of miR-18a-5p in PMOP, and concomitantly, our observations indicate an augmented expression of miR-18a-5p during the osteogenic differentiation of BMSCs. This investigation seeks to elucidate the regulatory influence of miR-18a-5p on BMSC osteogenic differentiation and the underlying mechanisms. In vitro experiments demonstrated that the overexpression of miR-18a-5p facilitated the osteogenic differentiation of BMSCs, while the downregulation of miR-18a-5p yielded converse outcomes. Mechanistically, We employed bioinformatics techniques to screen out the target gene Notch2 of miR-18a-5p. Subsequently, dual-luciferase reporter gene assays and rescue experiments substantiated that miR-18a-5p promotes BMSC osteogenic differentiation by suppressing Notch2. Finally, miR-18a-5p was overexpressed via adenovirus injection into the femoral bone marrow cavity, with results demonstrating its capability to enhance osteogenic differentiation and alleviate PMOP symptoms. Our findings disclose that miR-18a-5p fosters osteogenic differentiation of BMSC by inhibiting Notch2, thereby offering novel targets and strategies for PMOP treatment.

8.
PeerJ ; 12: e17664, 2024.
Article in English | MEDLINE | ID: mdl-38974415

ABSTRACT

Objective: To study the mechanism by which conditioned medium of bone marrow mesenchymal stem cells (BMSCs-CM) facilitates the transition of pro-inflammatory polarized microglia to an anti-inflammatory phenotype. Methods: BV2 cells, a mouse microglia cell line, were transformed into a pro-inflammatory phenotype using lipopolysaccharide. The expression of phenotypic genes in BV2 cells was detected using real-time quantitative PCR (RT-qPCR). Enzyme-linked immunosorbent assay was used to measure inflammatory cytokine levels in BV2 cells co-cultured with BMSCs-CM. The expressions of mitophagy-associated proteins were determined using western blot. The mitochondrial membrane potential and ATP levels in BV2 cells were measured using JC-1 staining and an ATP assay kit, respectively. Additionally, we examined the proliferation, apoptosis, and migration of C8-D1A cells, a mouse astrocyte cell line, co-cultured with BV2 cells. Results: After co- culture with BMSCs -CM, the mRNA expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase significantly decreased in pro-inflammatory BV2 cells, whereas the expression of CD206 and arginase-1 significantly increased. Moreover, TNF-α and interleukin-6 levels significantly decreased, whereas transforming growth factor-ß and interleukin-10 levels significantly increased. Furthermore, co-culture with BMSCs-CM increased mitophagy-associated protein expression, ATP levels, mitochondrial and lysosomal co-localization in these cells and decreased reactive oxygen species levels. Importantly, BMSCs-CM reversed the decrease in the proliferation and migration of C8-D1A cells co-cultured with pro-inflammatory BV2 cells and inhibited the apoptosis of C8-D1A cells. Conclusion: BMSCs-CM may promote the transition of polarized microglia from a pro-inflammatory to an anti-inflammatory phenotype by regulating mitophagy and influences the functional state of astrocytes.


Subject(s)
Autophagy , Coculture Techniques , Mesenchymal Stem Cells , Microglia , Mitochondria , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Microglia/metabolism , Mice , Culture Media, Conditioned/pharmacology , Mitochondria/metabolism , Phenotype , Cell Line , Mitophagy , Cell Proliferation , Cytokines/metabolism , Apoptosis , Lipopolysaccharides/pharmacology
9.
Adv Sci (Weinh) ; : e2404275, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973294

ABSTRACT

Intervertebral disc degeneration (IVDD) is a chronic degenerative disease involving the aging and loss of proliferative capacity of nucleus pulposus cells (NPCs), processes heavily dependent on mitochondrial dynamics and autophagic flux. This study finds that the absence of BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) is associated with senescence-related NPC degeneration, disrupting mitochondrial quality control. Bone marrow mesenchymal stem cells (BMSCs) have multidirectional differentiation potential and produce extracellular vesicles containing cellular activators. Therefore, in this study, BMSCs are induced under hypoxic stimulation to deliver BNIP3-rich extracellular vesicles to NPCs, thereby alleviating aging-associated mitochondrial autophagic flux, promoting damaged mitochondrial clearance, and restoring mitochondrial quality control. Mechanistically, BNIP3 is shown to interact with the membrane-bound protein annexin A2 (ANXA2), enabling the liberation of the transcription factor EB (TFEB) from the ANXA2-TFEB complex, promoting TFEB nuclear translocation, and regulating autophagy and lysosomal gene activation. Furthermore, a rat model of IVDD is established and verified the in vivo efficacy of the exosomes in repairing disc injuries, delaying NPC aging, and promoting extracellular matrix (ECM) synthesis. In summary, hypoxia-induced BMSC exosomes deliver BNIP3-rich vesicles to alleviate disc degeneration by activating the mitochondrial BNIP3/ANXA2/TFEB axis, providing a new target for IVDD treatment.

10.
Stem Cells ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982795

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat pulmonary fibrosis (PF). This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS: C57BL/6 male mice, alveolar epithelial cell-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were utilized in this study. RESULTS: First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were employed to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were utilized to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS: Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.

11.
APMIS ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030955

ABSTRACT

Multiple sclerosis is a demyelinating neurodegenerative disease, and its animal model, experimental autoimmune encephalomyelitis (EAE), exhibits immunological and clinical similarities. The study aimed to examine mechanisms underlying therapeutic effects of mesenchymal stem cell administration in EAE. C57BL/6 mice were separated into control and treatment groups (T1, T2, and T3); EAE was induced in all animals. Clinical examinations were conducted daily, and on 25th day, animals were sacrificed, and spinal cord was stained for histological analysis. Additionally, spleen cell proliferation assay, assessments of cytokine, and gene expression in both spinal cord and spleen cells were performed. The results indicated a significant reduction in clinical symptoms among treatment groups compared to control group. Histological analyses revealed decreased infiltration of lymphocytes into the spinal cord and reduced demyelinated areas in treatment groups compared to control group. Cytokine production of IL-10, TGF-ß, and IL-4 were significantly enhanced and IFN-γ and TNF-α in treatment groups were decreased relative to control group. Also, gene expression of CTLA-4, PD-1, IL-27, and IL-33 indicated a significant increase in treatment groups. The administration of MSCs significantly improved clinical symptoms, attenuated inflammation, and reduced spinal cord demyelination in EAE, suggesting a potential protective effect on disease progression.

12.
J Orthop Surg Res ; 19(1): 386, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951811

ABSTRACT

BACKGROUND: Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS: We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS: Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION: Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Signal Transduction , Toxoplasma , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Humans , Animals , Signal Transduction/physiology , Cell Differentiation/physiology , Male , Toxoplasma/physiology , Rats , Smad Proteins/metabolism , Protozoan Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Cells, Cultured
13.
Heliyon ; 10(12): e32952, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994119

ABSTRACT

Sensorineural hearing loss (SNHL) is a prevalent condition in otolaryngology. A key obstacle is finding effective strategies for regenerating damaged cochlear hair cells in adult animals. A practical and reliable approach has been developed to create a superior cell source for stem cell transplantation in the inner ear to treat SNHL. Atoh1 is involved in the differentiation of neurons, intestinal secretory cells, and mechanoreceptors including auditory hair cells, and thus plays an important role in neurogenesis. Lentivirus-mediated transfection of bone marrow mesenchymal stem cells (BMSCs) was utilized to achieve stable expression of the essential transcription factor Atoh1, which is crucial for developing auditory hair cells without compromising cell survival. By manipulating the induction conditions through altering the cell growth environment using anti-adherent culture, the synergistic impact of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) was effectively applied to significantly improve the differentiation efficiency of bone marrow-derived mesenchymal stem cells (BMSC) into neural stem cells (NSCs) following Atoh1 transfection, thereby reducing the induction time. The study indicated that the newly proposed transdifferentiation method effectively transformed BMSCs into NSCs in a controlled environment, presenting a potential approach for stem cell transplantation to promote hair cell regeneration.

14.
J Orthop Translat ; 47: 87-96, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007033

ABSTRACT

Background: Bone marrow mesenchymal stem cells (BMSCs) have immense potential in applications for the enhancement of tendon-bone (T-B) healing. Recently, it has been well-reported that skeletal stem cells (SSCs) could induce bone and cartilage regeneration. Therefore, SSCs represent a promising choice for cell-based therapies to improve T-B healing. In this study, we aimed to compare the therapeutic potential of SSCs and BMSCs for tendon-bone healing. Methods: SSCs and BMSCs were isolated by flow cytometry, and their proliferation ability was measured by CCK-8 assay. The osteogenic, chondrogenic, and adipogenic gene expression in cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair, and the mice were then randomly allocated to 4 groups: control group (tendon-bone interface without any treatment), hydrogel group (administration of blank hydrogel into the tendon-bone interface), hydrogel + BMSCs group (administration of hydrogel with BMSCs into the tendon-bone interface), and hydrogel + SSCs group (administration of hydrogel with SSCs into the tendon-bone interface). Histological staining, Micro-computed tomography (Micro-CT) scanning, biomechanical testing, and qRT-PCR were performed to assay T-B healing at 4 and 8 weeks after surgery. Results: SSCs showed more cell proportion, exhibited stronger multiplication capacity, and expressed higher osteogenic and chondrogenic markers and lower adipogenic markers than BMSCs. In vivo assay, the SSCs group showed a better-maturated interface which was characterized by richer chondrocytes and more proteoglycan deposition, as well as more newly formed bone at the healing site and increased mechanical properties when compared to other there groups. qRT-PCR analysis revealed that the healing interface in the SSCs group expressed more transcription factors essential for osteogenesis and chondrogenesis than the interfaces in the other groups. Conclusions: Overall, the results demonstrated the superior therapeutic potential of SSCs over BMSCs in tendon-bone healing. The translational potential of this article: This current study provides valuable insights that SSCs may be a more effective cell therapy for enhancing T-B healing compared to BMSCs.

15.
J Lasers Med Sci ; 15: e8, 2024.
Article in English | MEDLINE | ID: mdl-39050999

ABSTRACT

Introduction: The purpose of this study is to achieve a significant increase in the proliferative activity of mesenchymal stem cells (MSCs) of the bone marrow (BM) at early passages after laser exposure to a suspension of these cells and to estimate the effect of light and heat components of laser radiation on the proliferation of BM MSCs. Methods: The studies were performed on rats BM MSCs. MSC suspension was placed into the wells and heated by using laser radiation (980 nm wavelength) or a water bath at 70 °C providing similar temperature dynamics. The studies were carried out in 3 comparison groups: (1) control suspension of MSCs, which was not subjected to heating in a water bath or laser exposure; (2) MSC suspension, which was heated for in a water bath; and (3) suspension of MSCs, which was subjected to laser exposure. The exposure times for the 2nd and 3rd experimental groups were 10- 50 seconds. Results: Under optimal parameters of laser action on the suspension of BM MSCs, a six-fold increase in the number of BM MSCs colonies was registered compared to the control. The role of the light and heat components of laser exposure to MSCs was determined by comparable heating of a suspension of BM MSCs in a water bath, at which only a twofold increase in the number of colonies was maximally obtained. Conclusion: The increase in the MSC proliferation activity occurs due to their Thermo-Photobiomodulation. The result obtained is important for practical use in cell transplantation in the treatment of traumatic injuries of bone, cartilage, and tendon tissues when a rapid and multiple increase in the initial number of autologous BM MSCs is required.

16.
Adv Biol (Weinh) ; : e2400341, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051421

ABSTRACT

Osteoporosis development is linked to abnormal bone marrow mesenchymal stem cells (BMSCs) differentiation. N6-methyladenosine (m6A), a prevalent mRNA modification, is known to influence BMSCs' osteogenic capacity. Qianggu decoction (QGD), a traditional Chinese medicine for osteoporosis, has unknown effects on BMSCs differentiation. This study investigates QGD's impact on BMSCs and its potential to ameliorate osteoporosis through m6A regulation. Using Sprague-Dawley (SD) rats with ovariectomy-induced osteoporosis, it is evaluated QGD's antiosteoporotic effects through micro-CT, histology, Western blotting, and osteoblastogenesis markers. QGD is found to enhance bone tissue growth and upregulate osteogenic markers Runx2, OPN, and OCN. It also promoted BMSCs osteogenic differentiation, as shown by increased calcium nodules and ALP activity. QGD treatment significantly increased m6A RNA levels and Mettl3 expression in BMSCs. Silencing Mettl3 with siRNA negated QGD's osteogenic effects. Collectively, QGD may improve BMSCs differentiation and mitigate osteoporosis, potentially through Mettl3-mediated m6A modification.

17.
Open Life Sci ; 19(1): 20220859, 2024.
Article in English | MEDLINE | ID: mdl-39005738

ABSTRACT

This work investigated the high-throughput classification performance of microscopic images of mesenchymal stem cells (MSCs) using a hyperspectral imaging-based separable convolutional neural network (CNN) (H-SCNN) model. Human bone marrow mesenchymal stem cells (hBMSCs) were cultured, and microscopic images were acquired using a fully automated microscope. Flow cytometry (FCT) was employed for functional classification. Subsequently, the H-SCNN model was established. The hyperspectral microscopic (HSM) images were created, and the spatial-spectral combined distance (SSCD) was employed to derive the spatial-spectral neighbors (SSNs) for each pixel in the training set to determine the optimal parameters. Then, a separable CNN (SCNN) was adopted instead of the classic convolutional layer. Additionally, cultured cells were seeded into 96-well plates, and high-functioning hBMSCs were screened using both manual visual inspection (MV group) and the H-SCNN model (H-SCNN group), with each group consisting of 96 samples. FCT served as the benchmark to compare the area under the curve (AUC), F1 score, accuracy (Acc), sensitivity (Sen), specificity (Spe), positive predictive value (PPV), and negative predictive value (NPV) between the manual and model groups. The best classification Acc was 0.862 when using window size of 9 and 12 SSNs. The classification Acc of the SCNN model, ResNet model, and VGGNet model gradually increased with the increase in sample size, reaching 89.56 ± 3.09, 80.61 ± 2.83, and 80.06 ± 3.01%, respectively at the sample size of 100. The corresponding training time for the SCNN model was significantly shorter at 21.32 ± 1.09 min compared to ResNet (36.09 ± 3.11 min) and VGGNet models (34.73 ± 3.72 min) (P < 0.05). Furthermore, the classification AUC, F1 score, Acc, Sen, Spe, PPV, and NPV were all higher in the H-SCNN group, with significantly less time required (P < 0.05). Microscopic images based on the H-SCNN model proved to be effective for the classification assessment of hBMSCs, demonstrating excellent performance in classification Acc and efficiency, enabling its potential to be a powerful tool in future MSCs research.

18.
Mol Biol Rep ; 51(1): 838, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042226

ABSTRACT

BACKGROUND: Bioglass materials have gained significant attention in the field of tissue engineering due to their osteoinductive and biocompatible properties that promote bone cell differentiation. In this study, a novel composite scaffold was developed using a sol-gel technique to combine bioglass (BG) 58 S with a poly L-lactic acid (PLLA). METHODS AND RESULTS: The physiochemical properties, morphology, and osteoinductive potential of the scaffolds were investigated by X-ray diffraction analysis, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results showed that the SiO2-CaO-P2O5 system was successfully synthesized by the sol-gel method. The PLLA scaffolds containing BG was found to be osteoinductive and promoted mineralization, as demonstrated by calcium deposition assay, upregulation of alkaline phosphatase enzyme activity, and Alizarin red staining data. CONCLUSIONS: These in vitro studies suggest that composite scaffolds incorporating hBMSCs are a promising substitute material to be implemented in bone tissue engineering. The PLLA/BG scaffolds promote osteogenesis and support the differentiation of bone cells, such as osteoblasts, due to their osteoinductive properties.


Subject(s)
Biocompatible Materials , Cell Differentiation , Ceramics , Osteogenesis , Polyesters , Tissue Engineering , Tissue Scaffolds , Polyesters/chemistry , Tissue Scaffolds/chemistry , Ceramics/chemistry , Ceramics/pharmacology , Tissue Engineering/methods , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Osteogenesis/drug effects , Humans , Cell Differentiation/drug effects , Bone Regeneration/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Spectroscopy, Fourier Transform Infrared , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , X-Ray Diffraction , Bone and Bones/drug effects , Bone and Bones/metabolism , Alkaline Phosphatase/metabolism , Microscopy, Electron, Scanning
19.
J Ethnopharmacol ; 335: 118599, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39043352

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlin Baizhu Decoction (SLBZD), which comes from 'Taiping Huimin Heji Ju Fang', belongs to a classical prescription for treating spleen deficiency and dampness obstruction (SQDDS)-type ulcerative colitis (UC) in traditional Chinese medicine. However, the mechanism of SLBZD in treating UC with SQDDS remains unclear. AIM OF THE STUDY: This study aims to investigate the mechanism of SLBZD against SQDDS-type UC of based on the "gut microbiota and metabolism - bone marrow" axis to induce endogenous bone marrow mesenchymal stem cells (BMSCs) homing. MATERIALS AND METHODS: Ultra-performance liquid chromatography-mass spectrometry was used to analysis of SLBZD qualitatively. The efficacy of SLBZD in SQDDS-type UC was evaluated based on the following indicators: the body weight, colon length, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, and intestinal permeability proteins (occluding and ZO-1). 16S rRNA gene sequencing and non-target metabolomics were performed to identify gut microbiota changes and its metabolites in feces, respectively. BMSCs in each group was collected, cultured, and analyzed. Optimal passaged BMSCs were injected by tail vein into UC rats of SQDDS types. BMSCs homing to the colonic mucosal tissue was observed by immunofluorescent. Finally, the repairing effect of BMSCs homing to the colonic mucosal tissue after SLBZD treatment was analyzed by transmission electron microscopy, qRT-PCR, and immunohistochemistry. RESULTS: SLBZD effectively improved the colonic length and the body weight, reduced DAI and H&E scores, and increased the expression of the intestinal permeability proteins, including occluding and ZO-1, to treat SQDDS-type UC. After SLBZD treatment, the α-diversity and ß-diversity of the gut microbiota were improved. The differential microbiota was screened as Aeromonadaceae, Lactobacillaceae, and Clostridiaceae at the family level, and Aeromonas, Lactobacillus, Clostridium_sensu_stricto_1 at the genus level. Meanwhile, the main metabolic pathway was the galactose metabolism pathway. SLBZD treatment timely corrected the aberrant levels of ß-galactose in peripheral blood and bone marrow, senescence-associate-ß-galactosidase in BMSCs, and galactose kinase-2, galactose mutase, and galactosidase beta-1 in peripheral blood to further elevate the expression levels of senescence-associated (SA) proteins (p16, p53, p21, and p27) in BMSCs. The Spearman's correlation analysis demonstrated the relationship between microbiota and metabolism, and the relationship between the galactose metabolism pathway and SA proteins. After BMSCs in each group injection via the tail vein, the pharmacodynamic effects were consistent with those of SLBZD in SQDDS-type UC rats. Furthermore, BMSCs have been homing to colonic mucosal tissue. BMSCs from the SLBZD treatment group had stronger restorative effects on intestinal permeability function due to increasing protein and mRNA expressions of occludin and ZO-1, and decreasing the proteins and mRNA expressions of SDF-1 and CXCR4 in colon. CONCLUSIONS: SLBZD alleviated the damaged structure of gut microbiota and regulated their metabolism, specifically the galactose metabolism, to treat UC of SDDOS types. SLBZD treatment promotes endogenous BMSCs homing to colonic mucosal tissue to repaire the intestinal permeability. The current exploration revealed an underlying mechanism wherein SLBZD activates endogenous BMSCs by targeting 'the gut microbiota and its metabolism-bone marrow' axis and repairs colonic mucosal damage to treat SDDOS-type UC.

20.
Stem Cell Res Ther ; 15(1): 177, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886785

ABSTRACT

BACKGROUND: Cartilage is a kind of avascular tissue, and it is difficult to repair itself when it is damaged. In this study, we investigated the regulation of chondrogenic differentiation and vascular formation in human jaw bone marrow mesenchymal stem cells (h-JBMMSCs) by the long-chain noncoding RNA small nucleolar RNA host gene 1 (SNHG1) during cartilage tissue regeneration. METHODS: JBMMSCs were isolated from the jaws via the adherent method. The effects of lncRNA SNHG1 on the chondrogenic differentiation of JBMMSCs in vitro were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), Pellet experiment, Alcian blue staining, Masson's trichrome staining, and modified Sirius red staining. RT-qPCR, matrix gel tube formation, and coculture experiments were used to determine the effect of lncRNA SNHG1 on the angiogenesis in JBMMSCs in vitro. A model of knee cartilage defects in New Zealand rabbits and a model of subcutaneous matrix rubber suppositories in nude mice were constructed for in vivo experiments. Changes in mitochondrial function were detected via RT-qPCR, dihydroethidium (DHE) staining, MitoSOX staining, tetramethyl rhodamine methyl ester (TMRM) staining, and adenosine triphosphate (ATP) detection. Western blotting was used to detect the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). RESULTS: Alcian blue staining, Masson's trichrome staining, and modified Sirius Red staining showed that lncRNA SNHG1 promoted chondrogenic differentiation. The lncRNA SNHG1 promoted angiogenesis in vitro and the formation of microvessels in vivo. The lncRNA SNHG1 promoted the repair and regeneration of rabbit knee cartilage tissue. Western blot and alcian blue staining showed that the JAK inhibitor reduced the increase of STAT3 phosphorylation level and staining deepening caused by SNHG1. Mitochondrial correlation analysis revealed that the lncRNA SNHG1 led to a decrease in reactive oxygen species (ROS) levels, an increase in mitochondrial membrane potential and an increase in ATP levels. Alcian blue staining showed that the ROS inhibitor significantly alleviated the decrease in blue fluorescence caused by SNHG1 knockdown. CONCLUSIONS: The lncRNA SNHG1 promotes chondrogenic differentiation and angiogenesis of JBMMSCs. The lncRNA SNHG1 regulates the phosphorylation of STAT3, reduces the level of ROS, regulates mitochondrial energy metabolism, and ultimately promotes cartilage regeneration.


Subject(s)
Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , Mitochondria , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Animals , Rabbits , Mitochondria/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Chondrogenesis/genetics , Mice , Mice, Nude , Regeneration , Neovascularization, Physiologic , Cartilage/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Angiogenesis
SELECTION OF CITATIONS
SEARCH DETAIL