Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Vet Med Sci ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39111845

ABSTRACT

In cattle, bovine respiratory syncytial virus (BRSV) is associated with secondary bacterial infections; however, the mechanisms of the interaction between BRSV and bacteria are unclear. Trueperella pyogenes (T. pyogenes) causes pneumonia in cattle and is involved in secondary infections following viral infections. In this study, we evaluated the effect of BRSV infection on the adhesion of T. pyogenes to BRSV-infected cells. BRSV infection significantly enhanced the adhesion of T. pyogenes to cells in a multiplicity of infection- and time-dependent manner. The BRSV-mediated change in the adhesion of T. pyogenes was widely observed in various cell types and bacterial strains. The results from the gentamicin protection assay showed that BRSV infection did not affect the intracellular invasion ability of T. pyogenes. Furthermore, adhesion assays conducted using BRSV G protein-expressing cells and anti-BRSV G antibodies revealed that the increased adhesion of T. pyogenes to cells was mediated by the G protein of BRSV. In addition, immunofluorescence assay revealed the colocalization of BRSV G protein and T. pyogenes. Thus, BRSV infection can potentially lead to bovine respiratory disease complex by promoting the adhesion of T. pyogenes to the infected cells.

2.
Microb Pathog ; 194: 106839, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103126

ABSTRACT

Histophilus somni is an important pathogen of the bovine respiratory disease complex, yet the mechanisms underlying its virulence remain poorly understood. It is known that H. somni can incorporate sialic acid into lipooligosaccharide (LOS), and sialylated H. somni is more resistant to phagocytosis and complement-mediated killing by serum compared to non-sialylated bacteria in vitro. However, the virulence of non-sialylated H. somni has not been evaluated in vivo using an animal model. In this study, we investigated the contribution of sialic acid to virulence by constructing an H. somni sialic acid uptake mutant (ΔnanP-ΔnanU) and comparing the parent and mutant strains in a mouse septicemia and mortality model. Intraperitoneal challenge of mice with wildtype H. somni (1 × 108 colony forming units/mouse, CFU) was lethal to all animals. Mice challenged with three different doses (1, 2, or 5 × 108 CFU/mouse) of an H. somni ΔnanP-ΔnanU sialic acid uptake mutant exhibited survival rates of 90 %, 60 %, and 0 % respectively. High-performance anion exchange chromatography analyses revealed that LOS prepared from both parent and the ΔnanP-ΔnanU mutant strains of H. somni were sialylated. These findings suggest the presence of de novo sialic acid synthesis pathway, although the genes associated with de novo sialic acid synthesis (neuB and neuC) were not identified by genomic analysis. The lower attenuation in mice is most likely attributed to the sialylated LOS of H. somni nanPU mutant.


Subject(s)
Disease Models, Animal , Lipopolysaccharides , N-Acetylneuraminic Acid , Pasteurellaceae , Sepsis , Animals , Mice , N-Acetylneuraminic Acid/metabolism , Pasteurellaceae/genetics , Pasteurellaceae/pathogenicity , Pasteurellaceae/metabolism , Virulence/genetics , Sepsis/microbiology , Sepsis/mortality , Lipopolysaccharides/metabolism , Lipopolysaccharides/genetics , Female , Mutation , Cattle , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Animals (Basel) ; 14(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791675

ABSTRACT

Bovine respiratory disease complex, a complex respiratory ailment in cattle, results from a combination of viral and bacterial factors, compounded by environmental stressors such as overcrowding, transportation, and adverse weather conditions. Its impact extends beyond mere health concerns, posing significant economic threats to the cattle industry. This study presents an extensive investigation into viral pathogens associated with BRDC in Serbian cattle, utilizing serum samples and nasal swabs. A cross-sectional study was conducted in 2024 across 65 randomly selected dairy farms in Serbia, excluding farms with vaccinated cattle. The farms were categorized by their livestock count: small (≤50 animals), medium (51-200 animals), and large (>200 animals). Serum samples from adult cattle older than 24 months were tested for antibodies against BVDV, BHV-1, BRSV, and BPIV3. Nasal swab samples from the animals with respiratory signs were tested using PCR for viral genome detection. The results showed seropositivity for all four viruses across all of the farms, with BPIV3 exhibiting universal seropositivity. Medium-sized and large farms demonstrated higher levels of seropositivity for BRSV and BHV-1 compared to small farms (p < 0.05). Our true seroprevalence estimates at the animal level were 84.29% for BRSV, 54.08% for BVDV, 90.61% for BHV-1, and 84.59% for BPIV3. A PCR analysis of the nasal swabs revealed positive detections for BRSV (20%), BHV-1 (1.7%), BVDV (8%), and BPIV3 (10.9%). Influenza D virus was not found in any of the samples. This study provides critical insights into the prevalence and circulation of viral pathogens associated with BRDC in Serbian cattle, emphasizing the importance of surveillance and control measures to mitigate the impact of respiratory diseases in cattle populations.

4.
Animals (Basel) ; 14(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338137

ABSTRACT

Bovine parainfluenza-3 virus (BPI3V) is an important respiratory pathogen in cattle, contributing to syndromes in the bovine respiratory disease complex (BRDC). Despite its significance, the understanding of its prevalence remains fragmented, especially within the larger framework of BRDC. This systematic review and meta-analysis aimed to determine the global prevalence of BPI3V in cattle using varied detection methods and to highlight associated risk factors. Of 2187 initially retrieved articles, 71 were selected for analysis, covering 32 countries. Depending on the detection method employed, the meta-analysis revealed significant variations in BPI3V prevalence. In the general cattle population, the highest prevalence was observed using the antibody detection method, with a proportion of 0.64. In contrast, in cattle with BRDC, a prevalence of 0.75 was observed. For the antigen detection method, a prevalence of 0.15 was observed, exclusively in cattle with BRDC. In nucleic acid detection, a prevalence of 0.05 or 0.10 was observed in the general and BRDC cattle populations, respectively. In virus isolation methods, a prevalence of 0.05 or 0.04 was observed in the general and BRDC cattle populations, respectively. These findings highlight the differences in the detection ability of different methods in identifying BPI3V. Other factors, such as country, study year, coinfections, farm size, the presence of respiratory signs, sex, and body weight, may also affect the prevalence. Most studies were anchored within broader BRDC investigations or aimed at detecting other diseases, indicating a potential under-representation of focused BPI3V research. BPI3V plays an important role in BRDC, with its prevalence varying significantly based on the detection methodology. To further understand its unique role within BRDC and pave the way for targeted interventions, there is an evident need for independent, dedicated research on BPI3V.

5.
Vet J ; 303: 106058, 2024 02.
Article in English | MEDLINE | ID: mdl-38103886

ABSTRACT

The welfare and economic impact of bovine respiratory disease complex (BRDC), and its associated antibiotic usage, are major challenges to cattle rearing and beef cattle finishing industries. Accurate pathogen diagnosis is important to undertake appropriate treatment and long-term management strategies, such as vaccine selection. Conventional diagnostic approaches have several limitations including high costs, long turnaround times and difficulty in test interpretation, which could delay treatment decisions and lead to unnecessary animal losses. We describe the validation of a multiplex-tandem (MT) reverse transcription-polymerase chain reaction (RT-PCR) for the detection of seven common pathogens associated with BRDC. This test has the potential to advance pathogen identification and to overcome many of the limitations of current testing methods. It requires a single sample and results are obtained quickly and not influenced by prior antimicrobial therapy or overgrowth of contaminating organisms. We demonstrated a test specificity of 100% and sensitivity ranging from 93.5% to 100% for these seven common pathogens. This test will be a useful addition to advance BRDC investigation and diagnosis.


Subject(s)
Bovine Respiratory Disease Complex , Cattle Diseases , Cattle , Animals , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Bovine Respiratory Disease Complex/diagnosis , Lung , Anti-Bacterial Agents , Scotland , Cattle Diseases/diagnosis
6.
Braz J Microbiol ; 54(4): 3275-3281, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917227

ABSTRACT

Bovine respiratory disease (BRD) is a multifactorial and predominantly multietiological disease that affects dairy cattle herds worldwide, being more frequent in young animals. The occurrence of BRD was investigated in lactating cows from two high-yielding dairy herds in southern Brazil. To determine the etiology of the clinical cases of acute respiratory disease, nasal swab samples were collected from cows with clinical signs of BRD and evaluated using PCR and RT-PCR for nucleic acid detection of the main BRD etiological agents, including Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, bovine respiratory syncytial virus, bovine coronavirus, bovine viral diarrhea virus, bovine alphaherpesvirus 1, and bovine parainfluenza virus 3. Only three microorganisms (M. bovis, H. somni, and P. multocida) were identified in both single and mixed infections. We concluded that 40.0% of the cows were infected with M. bovis and 75.0% with H. somni in herd A. Considering both single and mixed infections, the analyses performed in herd B showed that 87.5%, 25.0%, and 50.0% of the cows were infected with M. bovis, H. somni, and P. multocida, respectively. M. bovis and H. somni are considered fastidious bacteria and laboratory diagnosis is neglected. Subsequently, most clinical cases of mycoplasmosis and histophilosis in cattle remain undiagnosed. This study demonstrates the importance of M. bovis and H. somni infections in adult cows with BRD. These results highlight the importance of including these bacteria in the group of etiological agents responsible for the occurrence of BRD in cattle, especially in adult cows with unfavorable immunological conditions, such as recent calving and peak lactation.


Subject(s)
Bacterial Infections , Cattle Diseases , Coinfection , Pasteurella multocida , Animals , Female , Cattle , Coinfection/veterinary , Lactation , Cattle Diseases/microbiology , Bacterial Infections/veterinary , Bacteria , Pasteurella multocida/genetics
7.
J Vet Intern Med ; 37(6): 2610-2622, 2023.
Article in English | MEDLINE | ID: mdl-37731196

ABSTRACT

BACKGROUND: Nonbronchoscopic bronchoalveolar lavage (nBAL) is routinely performed in calves, and airway cytology has great potential in airway disease diagnostics. A good reference framework for nBAL cytology is lacking. OBJECTIVES: To distinguish different cytological profiles in nBAL from grouped housed calves using cluster analysis, and characterize these profiles on individual and herd levels. ANIMALS: Three hundred thirty-eight group-housed calves from 60 herds (mainly dairy and beef ). METHODS: Cross-sectional study. Differential counts of white blood cells were determined on nBAL fluid, followed by differentiation of cytological profiles by K-means-based cluster analysis. These profiles were characterized by reference values, decision tree analysis, and associations with clinical, ultrasonographic, bacteriological, and cytological features. RESULTS: A normal (55.9%), a neutrophilic (41.1%), and an eosinophilic profile (3.0%) were identified. The normal profile was characterized by reference values of 2.3% to 47.4% neutrophils, 35.1% to 95.1% macrophages, 0.4 to 22.9% lymphocytes, and 0.0% to 0.9% eosinophils. The neutrophilic profile was characterized by ≥44.5% neutrophils, <1.6% eosinophils, and <11.5% lymphocytes. This profile was associated with the isolation of Pasteurella multocida, the presence of neutrophils with toxic granulation, and the presence of phagocytosed bacteria in neutrophils. The eosinophilic profile was characterized by eosinophils ≥1.6% (neutrophilia present) or ≥2.4% (neutrophilia absent), and associated with the presence of mast cells. On herd level, the neutrophilic and eosinophilic profiles were present in 85.0% and 15.0% of the herds, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE: This study provides a first step in the development of cytological guidelines, aiding the assessment of airway health and inflammation in calves through nBAL fluid cytology.


Subject(s)
Cattle Diseases , Inflammation , Animals , Cattle , Bronchoalveolar Lavage Fluid , Cross-Sectional Studies , Bronchoalveolar Lavage/veterinary , Inflammation/diagnosis , Inflammation/veterinary , Cluster Analysis , Dimercaprol , Cattle Diseases/diagnosis
8.
J Vet Diagn Invest ; 35(5): 535-542, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37377189

ABSTRACT

Although bovine respiratory syncytial virus (BRSV) infection has been reported in cattle in Argentina, it has not been associated with pneumonia in Argentina. We report here 5 cases of bovine pneumonia associated with BRSV. Autopsies were performed on 35 beef cattle with gross and/or microscopic lesions of pneumonia from 3 commercial feedlots. Lung samples in 5 of 35 animals were BRSV-positive by reverse-transcription nested PCR. The lungs of 2 of these 5 animals were coinfected with Mannheimia haemolytica, and 1 with bovine viral diarrhea virus 1. Microscopically, the lungs of 3 of the 5 BRSV PCR-positive animals had fibrinosuppurative bronchopneumonia, with or without pleuritis; 2 of the 5 had interstitial pneumonia. We conclude that BRSV is part of the bovine respiratory disease complex in Argentina.


Subject(s)
Bovine Respiratory Disease Complex , Cattle Diseases , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Bovine , Cattle , Animals , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/veterinary , Respiratory Syncytial Virus Infections/pathology , Argentina/epidemiology , Cattle Diseases/pathology , Lung/pathology
9.
J Med Microbiol ; 72(6)2023 Jun.
Article in English | MEDLINE | ID: mdl-37345698

ABSTRACT

Introduction. With expanding demand for diagnostics, newer methodologies are needed for faster, user-friendly and multiplexed pathogen detection. Metagenome-based diagnostics offer potential solutions to address these needs as sequencing technologies have become affordable. However, the diagnostic utility of sequencing technologies is currently limited since analysis of the large amounts of data generated, are either computationally expensive or carry lower sensitivity and specificity for pathogen detection.Hypothesis/Gap Statement. There is a need for novel, user friendly, and computationally inexpensive platforms for metagenome sequence analysis for diagnostic applications.Methods. In this study, we report the use of MiFi® (Microbe Finder), a computationally inexpensive algorithm with a user-friendly online interface, for accurate, rapid and multiplexed pathogen detection from metagenome sequence data. Detection is accomplished based on identification of signature genomic sequence segments of the target pathogen in metagenome sequence data. In this study we used bovine respiratory disease (BRD) complex as a model.Results and Conclusions. Using MiFi®, multiple target bacteria and a DNA virus were successfully detected in a multiplex format from metagenome sequences acquired from bovine lung tissue. Overall, 51 clinical samples were assessed and MiFi® showed 100 % analytical specificity and varying levels of analytical sensitivity (62.5 %-100 %) when compared with other traditional pathogen detection techniques, such as PCR. Consistent detection of bacteria was possible from lung samples artificially spiked with 109-104 c.f.u. of Mannheimia haemolytica.


Subject(s)
Metagenome , Metagenomics , Animals , Cattle , Genomics , Algorithms , Polymerase Chain Reaction
10.
J Dairy Sci ; 106(1): 589-606, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36333140

ABSTRACT

Bovine respiratory disease complex (BRDC) involves multiple pathogens, shows diverse lung lesions, and is a major concern in calves. Pathogens from 160 lung samples of dead cattle from 81 cattle farms in Northeast China from 2016 to 2021 were collected to characterize the molecular epidemiology and risk factors of BRDC and to assess the major pathogens involved in bovine suppurative or caseous necrotizing pneumonia. The BRDC was diagnosed by autopsy, pathogen isolation, PCR, or reverse transcription-PCR detection, and gene sequencing. More than 18 species of pathogens, including 491 strains of respiratory pathogens, were detected. The positivity rate of bacteria in the 160 lung samples was 31.77%, including Trueperella pyogenes (9.37%), Pasteurella multocida (8.35%), Histophilus somni (4.48%), Mannheimia haemolytica (2.44%), and other bacteria (7.13%). The positivity rate of Mycoplasma spp. was 38.9%, including M. bovis (7.74%), M. dispar (11.61%), M. bovirhinis (7.94%), M. alkalescens (6.11%), M. arginini (0.81%), and undetermined species (4.68%). Six species of viruses were detected with a positivity rate of 29.33%, including bovine herpesvirus-1 (BoHV-1; 13.25%), bovine respiratory syncytial virus (BRSV; 5.50%), bovine viral diarrhea virus (BVDV; 4.89%), bovine parainfluenza virus type-3 (BPIV-3; 4.28%), bovine parainfluenza virus type-5 (1.22%), and bovine coronavirus (2.24%). Mixed infections among bacteria (73.75%), viruses (50%), and M. bovis (23.75%) were the major features of BRDC in these cattle herds. The risk analysis for multi-pathogen co-infection indicated that BoHV-1 and H. somni; BVDV and M. bovis, P. multocida, T. pyogenes, or Mann. haemolytica; BPIV-3 and M. bovis; BRSV and M. bovis, P. multocida, or T. pyogenes; P. multocida and T. pyogenes; and M. bovis and T. pyogenes or H. somni showed co-infection trends. A survey on molecular epidemiology indicated that the occurrence rate of currently prevalent pathogens in BRDC was 46.15% (6/13) for BoHV-1.2b and 53.85% (7/13) for BoHV-1.2c, 53.3% (8/15) for BVDV-1b and 46.7% (7/15) for BVDV-1d, 29.41% (5/17) for BPIV-3a and 70.59% (12/17) for BPIV-3c, 100% (2/2) for BRSV gene subgroup IX, 91.67% (33/36) for P. multocida serotype A, and 8.33% (3/36) for P. multocida serotype D. Our research discovered new subgenotypes for BoHV-1.2c, BRSV gene subgroup IX, and P. multocida serotype D in China's cattle herds. In the BRDC cases, bovine suppurative or caseous necrotizing pneumonia was highly related to BVDV [odds ratio (OR) = 4.18; 95% confidence interval (95% CI): 1.6-10.7], M. bovis (OR = 2.35; 95% CI: 1.1-4.9), H. somni (OR = 8.2; 95% CI: 2.6-25.5), and T. pyogenes (OR = 13.92; 95% CI: 5.8-33.3). The risk factor analysis found that dairy calves <3 mo and beef calves >3 mo (OR = 5.39; 95% CI: 2.7-10.7) were more susceptible to BRDC. Beef cattle were more susceptible to bovine suppurative or caseous necrotizing pneumonia than dairy cattle (OR = 2.32; 95% CI: 1.2-4.4). These epidemiological data and the new pathogen subgenotypes will be helpful in formulating strategies of control and prevention, developing new vaccines, improving clinical differential diagnosis by necropsy, predicting the most likely pathogen, and justifying antimicrobial use.


Subject(s)
Bovine Respiratory Disease Complex , Cattle Diseases , Coinfection , Paramyxoviridae Infections , Pasteurella multocida , Pneumonia, Necrotizing , Cattle , Animals , Coinfection/veterinary , Pneumonia, Necrotizing/veterinary , Cattle Diseases/diagnosis , Bacteria , Lung , Risk Factors , Paramyxoviridae Infections/veterinary
11.
J Vet Diagn Invest ; 34(4): 577-586, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35321598

ABSTRACT

Bovine respiratory disease complex (BRDC) is a common, serious problem in feedlot cattle worldwide. Early diagnosis and outcome prediction are critical for making decisions to prevent economic loss and to limit antimicrobial use. Diagnosing BRDC is commonly based on visual signs and behavioral changes; both assessments are considered to have low diagnostic accuracy. Biomarkers are important for supporting the diagnosis of BRDC, determining the necessity and potential outcomes of treatment, and assisting in research in which differentiating diseased animals is required. There are few reviews summarizing the biomarkers available and utilized. We systematically evaluated the detection and prognostic potential of biomarkers from the literature published between January 1990 and December 2020. We performed a descriptive analysis of 5 biomarker categories: acute-phase proteins, stress-related hormones, other blood biomarkers, omics biomarkers, and non-blood biomarkers. The retrieved articles consisted of studies or trials that assessed the detection value and treatment and/or outcome prediction efficacy of biomarkers for BRDC in feedlot cattle; 23 manuscripts for review and analysis satisfied the selection criteria. Based on our review, we cannot recommend a specific biomarker as the sole method for the early detection or outcome prediction for BRDC, given that the application and efficacy of biomarkers varies in different situations. Our systematic review may serve as a reference for clinical and research investigations of early detection and outcome prediction of BRDC.


Subject(s)
Bovine Respiratory Disease Complex , Cattle Diseases , Animals , Anti-Bacterial Agents/therapeutic use , Biomarkers , Bovine Respiratory Disease Complex/diagnosis , Bovine Respiratory Disease Complex/drug therapy , Cattle , Cattle Diseases/diagnosis , Early Diagnosis , Prognosis
12.
Vet Clin North Am Food Anim Pract ; 38(1): 93-105, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35219488

ABSTRACT

Raising young dairy calves presents many challenges for producers and veterinarians including losses attributable to BRD. This article will discuss several key concepts for practitioners to consider when applying evidence-based medicine for the control and treatment of BRD in young dairy calves. The authors review BRD complex, provide considerations for diagnostic approaches, and discuss research associated with the control and treatment of BRD.


Subject(s)
Bovine Respiratory Disease Complex , Respiratory Tract Diseases , Animals , Bovine Respiratory Disease Complex/diagnosis , Bovine Respiratory Disease Complex/therapy , Cattle , Dairying , Respiratory Tract Diseases/veterinary
13.
Front Vet Sci ; 8: 782872, 2021.
Article in English | MEDLINE | ID: mdl-34869750

ABSTRACT

Bovine respiratory disease complex (BRDC) is a costly economic and health burden for the dairy and feedlot cattle industries. BRDC is a multifactorial disease, often involving viral and bacterial pathogens, which makes it difficult to effectively treat or vaccinate against. Mannheimia haemolytica (MH) are common commensal bacteria found in the nasopharynx of healthy cattle; however, following environmental and immunological stressors, these bacteria can rapidly proliferate and spread to the lower respiratory tract, giving rise to pneumonic disease. Severe MH infections are often characterized by leukocyte infiltration and dysregulated inflammatory responses in the lungs. IL-17A is thought to play a key role in this inflammatory response by inducing neutrophilia, activating innate and adaptive immune cells, and further exacerbating lung congestion. Herein, we used a small molecule inhibitor, ursolic acid (UA), to suppress IL-17A production and to determine the downstream impact on the immune response and disease severity following MH infection in calves. We hypothesized that altering IL-17A signaling during MH infections may have therapeutic effects by reducing immune-mediated lung inflammation and improving disease outcome. Two independent studies were performed (Study 1 = 32 animals and Study 2 = 16 animals) using 4-week-old male Holstein calves, which were divided into 4 treatment group including: (1) non-treated and non-challenged, (2) non-treated and MH-challenged, (3) UA-treated and non-challenged, and (4) UA-treated and MH-challenged. Based on the combined studies, we observed a tendency (p = 0.0605) toward reduced bacterial burdens in the lungs of UA-treated animals, but did not note a significant difference in gross (p = 0.3343) or microscopic (p = 0.1917) pathology scores in the lungs. UA treatment altered the inflammatory environment in the lung tissues following MH infection, reducing the expression of IL-17A (p = 0.0870), inflammatory IL-6 (p = 0.0209), and STAT3 (p = 0.0205) compared to controls. This reduction in IL-17A signaling also appeared to alter the downstream expression of genes associated with innate defenses (BAC5, DEFB1, and MUC5AC) and lung remodeling (MMP9 and TIMP-1). Taken together, these results support our hypothesis that IL-17A signaling may contribute to lung immunopathology following MH infections, and further understanding of this inflammatory pathway could expand therapeutic intervention strategies for managing BRDC.

14.
Transl Anim Sci ; 5(4): txab200, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34738076

ABSTRACT

Blood leukocyte differentials can be useful for understanding changes associated with bovine respiratory disease (BRD) progression. By improving turnaround time, point-of-care leukocyte differential assays (PCLD) may provide logistical advantages to laboratory-based assays. Our objective was to assess BRD progression in steers challenged with bovine herpesvirus 1 and Mannheimia haemolytica using point-of-care and laboratory-based blood leukocyte differentials. Thirty Holstein steers (average body weight of 211 kg + 2.4 kg) were inoculated intranasally on day 0 with bovine herpesvirus 1 and intrabronchially on day 6 with Mannheimia haemolytica. Blood leukocytes differentials were measured using both assays from study days 0 to 13. Linear mixed models were fitted to evaluate the associations between: (1) the type of assay (laboratory-based or PCLD) with respect to leukocyte, lymphocyte, and neutrophil concentrations; (2) study day with cell concentrations; and (3) cell concentrations with lung consolidation measured at necropsy. Point-of-care leukocyte, lymphocyte, and neutrophil concentrations were significantly associated (P < 0.05) with the respective cell concentrations obtained from the laboratory-based leukocyte differential. Cell concentrations reported by both assays differed significantly (P < 0.05) over time, indicating shifts from healthy to viral and bacterial disease states. Lymphocyte concentrations, lymphocyte/neutrophil ratios obtained from both assays, and band neutrophil concentrations from the laboratory-based assay were significantly associated (P < 0.05) with lung consolidation, enhancing assessments of disease severity. The PCLD may be a useful alternative to assess BRD progression when laboratory-based leukocyte differentials are impractical.

15.
Viruses ; 13(11)2021 10 27.
Article in English | MEDLINE | ID: mdl-34834971

ABSTRACT

Influenza D virus (IDV) may cause the bovine respiratory disease complex, which is the most common and costly disease affecting the cattle industry. Previously, we revealed that eight segments could be actively packaged in its single virion, suggesting that IDV with the seven-segmented genome shows an agnostic genome packaging mechanism. Herein, we engineered an eight-segmented recombinant IDV in which the NS1 or NS2 genes were separated from NS segment into independent segments (NS1 or NS2 segments, respectively), leading to monocistronic translation of each NS protein. We constructed two plasmids: one for the viral RNA (vRNA)-synthesis of the NS1 segment with a silent mutation at the splicing acceptor site, which controls NS2 transcription in the NS segment; and another for the RNA synthesis of the NS2 segment, with deletion of the intron in the NS segment. These plasmids and six other vRNA-synthesis plasmids were used to fabricate an infectious eight-segmented IDV via reverse genetics. This system enables analysis of the functions of NS1 or NS2. We tested the requirement of the N-terminal overlapping region (NOR) in these proteins for viral infectivity. We rescued a virus with NOR-deleted NS2 protein, which displayed a growth rate equivalent to that of the eight-segmented virus with intact NS2. Thus, the NOR may not influence viral growth. In contrast, a virus with NOR-deleted NS1 protein could not be rescued. These results indicate that the eight-segmented rescue system of IDV may provide an alternative method to analyze viral proteins at the molecular level.


Subject(s)
Cattle Diseases/virology , Genome, Viral , Thogotovirus/genetics , Animals , Cattle , Genes, Viral , HEK293 Cells , Humans , Mice , RNA Splice Sites , RNA, Viral , Viral Nonstructural Proteins/genetics , Virion/metabolism , Virus Replication
16.
Microorganisms ; 9(10)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34683483

ABSTRACT

Enrofloxacin is a fluoroquinolone drug used to prevent and control bovine respiratory disease (BRD) complex in multiple or single doses, ranging from 7.5 to 12.5 mg/kg body weight. Here, we examined the effects of high and low doses of a single subcutaneously injected enrofloxacin on gut microbiota and resistome in calves. Thirty-five calves sourced for this study were divided into five groups: control (n = 7), two low dose groups (n = 14, 7.5 mg/kg), and two high dose groups (n = 14, 12.5 mg/kg). One group in the low and high dose groups was challenged with Mannheimia haemolytica to induce BRD. Both alpha and beta diversities were significantly different between pre- and post-treatment microbial communities (q < 0.05). The high dose caused a shift in a larger number of genera than the low dose. Using metagenomic ProxiMeta Hi-C, 32 unique antimicrobial resistance genes (ARGs) conferring resistance to six antibiotic classes were detected with their reservoirs, and the high dose favored clonal expansion of ARG-carrying bacterial hosts. In conclusion, enrofloxacin treatment can alter fecal microbiota and resistome irrespective of its dose. Hi-C sequencing provides significant benefits for unlocking new insights into the ARG ecology of complex samples; however, limitations in sample size and sequencing depth suggest that further work is required to validate the findings.

17.
Front Vet Sci ; 8: 721284, 2021.
Article in English | MEDLINE | ID: mdl-34631852

ABSTRACT

Bovine rhinitis B virus (BRBV) is an emerging viral species in the genus Aphthovirus, family Picornaviridae. Studies suggested that BRBV was considered a potential etiological agent of bovine respiratory disease complex (BRDC). BRBV has been reported in the United States, Sweden, Canada, Japan, and Mexico. However, little information of BRBV was available in China. In this study, we performed viral metagenomic analysis in a calf with respiratory disease. The results showed high abundance (3.85) of BRBV nucleotide and 248 mapped reads in calf samples. Online BLASTn analysis showed that three contigs of those had the highest nucleotide similarity (95%) with one Swedish BRBV isolate (BRBV_SWE1, GenBank accession no. KY432299). To identify the genome characterization of the Chinese BRBV isolate (designated CHN1), six couples of overlapping RT-PCR primers were designed according to genome sequences of BRBV_SWE1. Through gene cloning and splicing, we obtained the genome information of CHN1, possessing 7,465 nucleotides (46.6% G+C). Although CHN1 had the highest nucleotide similarity (95.1%) with BRBV_SWE1, one 11-nucleotide (ACATTTGTTGT) deletion occurred in the 5' untranslated region compared to SWE1. Phylogenetic analysis showed that CHN1 clustered together with BRBV_SWE1, and far from other BRBV isolates. This study recorded the first discovery of BRBV infection in China. Further investigation should be made in order to evaluate the infection status and epidemiological significance of BRBV in China.

18.
Transl Anim Sci ; 5(2): txab081, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34222823

ABSTRACT

The study objective was to determine if cattle health and performance comparing a targeted bovine respiratory disease (BRD) control program based on individualized risk prediction generated by a novel technology (Whisper On Arrival) was superior to a negative control (no metaphylaxis) yet no different than a positive control (conventional BRD control; 100% application). Across four study sites, auction market-derived beef calves were randomly allocated to one of four BRD control treatment groups: 1) Negative control (Saline), 2) Positive control (Tildipirosin [TIL] to 100% of the group), 3) Whisper-high (±TIL based on conservative algorithm threshold), and 4) Whisper-low (±TIL based on aggressive algorithm threshold). Within either Whisper On Arrival group, only calves predicted to be above the algorithm threshold by the technology (determined a priori) were administered TIL leaving the remainder untreated. Cattle were followed to either a short-term timepoint (50 or 60 d; health outcomes, all sites; feed performance outcomes, two sites) or to closeout (two sites). Data were analyzed as a completely randomized block design separately at each site. Across all sites, BRD control antibiotic use was reduced by 11% to 43% between the two Whisper On Arrival treatment groups compared to the positive control. The positive control and both Whisper On Arrival groups reduced (P ≤ 0.05) BRD morbidity compared to negative controls at both the short-term timepoint at three of the four sites and at closeout at one of two sites. The positive control and both Whisper-managed groups had improved (P ≤ 0.05) average daily gain (ADG), dry-matter intake (DMI), and feed efficiency compared to negative controls at the short-term timepoint at one of two sites. At closeout, the positive control and both Whisper-managed groups improved (P ≤ 0.05) ADG (deads-in) compared to the negative control at one of the two sites. At one of two sites, the positive control and the Whisper-high group displayed an improvement (P ≤ 0.05) in hot carcass weight compared to the negative control. The Whisper On Arrival technology maintained the benefits of a conventional BRD control program yet reduced BRD control antibiotic use by 11% to 43%. This technology maintained the benefits of a conventional BRD control program while reducing antibiotic costs to the producer and supporting judicious antimicrobial use.

19.
Front Vet Sci ; 8: 611927, 2021.
Article in English | MEDLINE | ID: mdl-33816585

ABSTRACT

Fifty-six head of cattle, 28 animals with bovine respiratory disease complex (BRDC), and 28 healthy animals that were matched by treatment, sale barn of origin, day, and interactions among these variables, were identified from a population of 180 animals (60 each purchased at three sale barns located in Missouri, Tennessee, and Kentucky) enrolled in a study comparing animals receiving metaphylaxis to saline-treated controls. Cattle were transported to a feedlot in KS and assigned to treatment group. Blood samples were collected at Day 0 (at sale barn), Day 1, Day 9, and Day 28 (at KS feedlot), and transported to the US Meat Animal Research Center in Clay Center, NE where plasma was harvested and stored at -80°C until assayed for the cytokines IFN-γ, IL-1ß, IL-6, and TNF-α, and the acute stress protein haptoglobin (HPT). Our objectives were to determine if cytokine and haptoglobin profiles differed between control and metaphylaxis treatment groups over time, and if profiles differed between animals presenting with BRDC and those that remained healthy. There was no difference between the treated animals and their non-treated counterparts for any of the analytes measured. Sale barn of origin tended to affect TNF-α concentration. Differences for all analytes changed over days, and on specific days was associated with state of origin and treatment. The Treatment by Day by Case interaction was significant for HPT. The analyte most associated with BRDC was HPT on D9, possibly indicating that many of the cattle were not exposed to respiratory pathogens prior to entering the feedlot.

20.
Vaccines (Basel) ; 9(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916119

ABSTRACT

Bovine respiratory disease complex (BRDC) is a multifactorial disease of cattle which presents as bacterial and viral pneumonia. The causative agents of BRDC work in synergy to suppress the host immune response and increase the colonisation of the lower respiratory tracts by pathogenic bacteria. Environmental stress and/or viral infection predispose cattle to secondary bacterial infections via suppression of key innate and adaptive immune mechanisms. This allows bacteria to descend the respiratory tract unchallenged. BRDC is the costliest disease among feedlot cattle, and whilst vaccines exist for individual pathogens, there is still a lack of evidence for the efficacy of these vaccines and uncertainty surrounding the optimum timing of delivery. This review outlines the immunosuppressive actions of the individual pathogens involved in BRDC and highlights the key issues in the development of vaccinations against them.

SELECTION OF CITATIONS
SEARCH DETAIL