Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(2): e8514, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35154644

ABSTRACT

Sperm cells exhibit extraordinary phenotypic variation, both among taxa and within individual species, yet our understanding of the adaptive value of sperm trait variation across multiple contexts is incomplete. For species without the opportunity to choose mating partners, such as sessile broadcast spawning invertebrates, fertilization depends on gamete interactions, which in turn can be strongly influenced by local environmental conditions that alter the concentration of sperm and eggs. However, the way in which such environmental factors impact phenotypic selection on functional gamete traits remains unclear in most systems. Here, we analyze patterns of linear and nonlinear multivariate selection under experimentally altered local sperm densities (densities within the capture zone of eggs) on a range of functionally important sperm traits in the broadcast spawning marine mussel, Mytilus galloprovincialis. Specifically, we assay components of sperm motility and morphology across two fertilization environments that simulate either sperm limitation (when there are too few sperm to fertilize all available eggs), or sperm saturation (when there are many more sperm than required for fertilization, and the risk of polyspermy and embryonic failure is heightened). Our findings reveal that the strength, form, and targets of selection on sperm depend on the prevailing fertilization environment. In particular, our analyses revealed multiple significant axes of nonlinear selection on sperm motility traits under sperm limitation, but only significant negative directional selection on flagellum length under sperm saturation. These findings highlight the importance of local sperm densities in driving the adaptation of sperm phenotypes, particularly those related to sperm motility, in broadcast spawning invertebrates.

2.
Am Nat ; 197(4): 448-460, 2021 04.
Article in English | MEDLINE | ID: mdl-33755536

ABSTRACT

AbstractMultilevel selection on offspring size occurs when offspring fitness depends on both absolute size (hard selection) and size relative to neighbors (soft selection). We examined multilevel selection on egg size at two biological scales-within clutches and among clutches from different females-using an external fertilizing tube worm. We exposed clutches of eggs to two sperm environments (limiting and saturating) and measured their fertilization success. We then modeled environmental (sperm-dependent) differences in hard and soft selection on individual eggs as well as selection on clutch-level traits (means and variances). Hard and soft selection differed in strength and form depending on sperm availability-hard selection was consistently stabilizing; soft selection was directional and favored eggs relatively larger (sperm limitation) or smaller (sperm saturation) than the clutch mean. At the clutch level, selection on mean egg size was largely concave, while selection on within-clutch variance was weak but generally negative-although some correlational selection occurred between these two traits. Importantly, we found that the optimal clutch mean egg size differed for mothers and offspring, suggesting some antagonism between the levels of selection. We thus identify several pathways that may maintain offspring size variation: environmentally (sperm-) dependent soft selection, antagonistic multilevel selection, and correlational selection on clutch means and variances. Multilevel approaches are powerful but seldom-used tools for studies of offspring size, and we encourage their future use.


Subject(s)
Fertilization , Models, Genetic , Ovum , Polychaeta/genetics , Selection, Genetic , Animals , Clutch Size , Female , Male
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1813): 20200069, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33070722

ABSTRACT

Broadcast spawning invertebrates offer highly tractable models for evaluating sperm competition, gamete-level mate choice and sexual conflict. By displaying the ancestral mating strategy of external fertilization, where sexual selection is constrained to act after gamete release, broadcast spawners also offer potential evolutionary insights into the cascade of events that led to sexual reproduction in more 'derived' groups (including humans). Moreover, the dynamic reproductive conditions faced by these animals mean that the strength and direction of sexual selection on both males and females can vary considerably. These attributes make broadcast spawning invertebrate systems uniquely suited to testing, extending, and sometimes challenging classic and contemporary ideas in sperm competition, many of which were first captured in Parker's seminal papers on the topic. Here, we provide a synthesis outlining progress in these fields, and highlight the burgeoning potential for broadcast spawners to provide both evolutionary and mechanistic understanding into gamete-level sexual selection more broadly across the animal kingdom. This article is part of the theme issue 'Fifty years of sperm competition'.


Subject(s)
Fertilization , Germ Cells/physiology , Invertebrates/physiology , Sexual Selection , Animals
4.
Environ Toxicol Chem ; 38(2): 368-374, 2019 02.
Article in English | MEDLINE | ID: mdl-30362595

ABSTRACT

The temporal expansion of harmful algal blooms, primarily associated with cyanobacteria, may impact aquatic organisms at vulnerable life-history stages. Broadcast spawning species release gametes into the water column for external fertilization, directly exposing sperm to potential aquatic stressors. To determine if cyanobacteria can disrupt reproduction in freshwater broadcast spawners, we evaluated sublethal effects of cyanobacteria exposure on quagga mussel (Dreissena rostriformis bugensis) sperm. In laboratory studies, sperm were collected after inducing mussels to spawn using serotonin and exposed to 11 cultures of cyanobacteria including Anabaena flos-aquae, Aphanizomenon flos-aquae, Dolichospermum lemmermannii, Gloeotrichia echinulata, 5 cultures of Microcystis aeruginosa, M. wesenbergii, and Planktothrix suspensa. Sperm motility, using endpoints of cumulative distance traveled and mean velocity, was calculated for a minimum of 10 individual sperm using a novel optical biotracking assay method. The distance and velocity at which sperm traveled decreased when exposed to Aphanizomenon flos-aquae and 2 M. aeruginosa cultures. Our findings indicate that cyanobacteria impede the motility of quagga mussel sperm, which can potentially result in reproductive impairments to mussels and potentially other broadcast spawning species. Environ Toxicol Chem 2019;38:368-374. © 2018 SETAC.


Subject(s)
Cyanobacteria/growth & development , Dreissena/physiology , Introduced Species , Sperm Motility/physiology , Animals , Cyanobacteria/metabolism , Eutrophication , Fresh Water/chemistry , Male , Reproduction/physiology , Species Specificity , Spermatozoa/physiology , Water Microbiology
5.
Mol Ecol ; 27(7): 1521-1523, 2018 04.
Article in English | MEDLINE | ID: mdl-29696711

ABSTRACT

Understanding adaptation has become one of the major biological questions especially in the light of rapid environmental changes induced by climate change. Ocean temperatures are rising which triggers massive changes in water chemistry and thereby alters the living environment of all marine organisms. Studying adaptation, however, can be tricky because spatial genetic patterns might also occur due to random effects, for example, genetic drift. Genetic drift is reduced in very large and well-connected populations, such as in broadcast marine spawning organisms. Here, spatial genetic divergence is likely to be produced by selection. In this issue of Molecular Ecology, Sandoval-Castillo et al. (2018) investigated patterns of spatial genetic divergence and their association with environmental factors in the greenlip abalone (Haliotis laevigata). This commercially important species of mollusc is a broadcast spawner with large population sizes, rendering genetic drift an unlikely factor in the genetic divergence of wild populations. Sandoval-Castillo et al. (2018) used a ddRAD genomic approach to test for genetic divergence between sampled populations while also measuring different environmental factors, for example, water temperature and oxygen content. The majority of identified SNPs was putatively neutral and showed only low levels of genetic divergence between field sites. However, 323 candidate adaptive markers were identified that clearly separated the individuals into five different clusters. These genetic clusters correlated with environmental clusters mainly determined by water temperature and (correlated) oxygen concentration. Gene annotation of the candidate SNPs revealed a large proportion of loci being involved in biological processes influenced by oxygen availability. The study by Sandoval-Castillo et al. (2018) in this issue of Molecular Ecology exemplifies the benefits of combining genomic studies with ecological data. It is a great starting point for more detailed (gene function, physiology) as well as broader (biodiversity) investigations that might help us to better understand adaptation and predict ecosystems' resilience and resistance to environmental disturbances. In addition, this information can be applied to implement optimal conservation regime policies and sustainable harvesting strategies, hopefully protecting biodiversity as well as commercial interests in marine life.


Subject(s)
Genetics, Population , Genomics , Adaptation, Physiological , Animals , Gastropoda , Oxygen
6.
R Soc Open Sci ; 3(8): 160253, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27853600

ABSTRACT

The Coral Triangle is widely considered the most important centre of marine biodiversity in Asia while areas on its periphery such as the South China Sea, have received much less interest. Here, we demonstrate that a small population of the knobbly sea star Protoreaster nodosus in Singapore has similarly high levels of genetic diversity as comparable Indonesian populations from the Coral Triangle. The high genetic diversity of this population is remarkable because it is maintained despite decades of continued anthropogenic disturbance. We postulate that it is probably due to broadcast spawning which is likely to maintain high levels of population connectivity. To test this, we analysed 6140 genome-wide single nucleotide polymorphism (SNP) loci for Singapore's populations and demonstrate a pattern of near panmixia. We here document a second case of high genetic diversity and low genetic structure for a broadcast spawner in Singapore, which suggests that such species have high resilience against anthropogenic disturbances. The study demonstrates the feasibility and power of using genome-wide SNPs for connectivity studies of marine invertebrates without a sequenced genome.

7.
Mol Ecol ; 23(13): 3330-40, 2014 07.
Article in English | MEDLINE | ID: mdl-24863571

ABSTRACT

Shallow water anthozoans, the major builders of modern coral reefs, enhance their metabolic and calcification rates with algal symbionts. Controversy exists over whether these anthozoan-algae associations are flexible over the lifetimes of individual hosts, promoting acclimative plasticity, or are closely linked, such that hosts and symbionts co-evolve across generations. Given the diversity of algal symbionts and the morphological plasticity of many host species, cryptic variation within either partner could potentially confound studies of anthozoan-algal associations. Here, we used ribosomal, organelle and nuclear sequences, along with microsatellite variation, to study the relationship between lineages of a common Caribbean gorgonian and its algal symbionts. The gorgonian Eunicea flexuosa is a broadcast spawner, composed of two recently diverged, genetically distinct lineages largely segregated by depth. We sampled colonies of the two lineages across depth gradients at three Caribbean locations. We find that each host lineage is associated with a unique Symbiodinium B1/184 phylotype. This relationship between host and symbiont is maintained when host colonies are reciprocally transplanted, although cases of within phylotype switching were also observed. Even when the phylotypes of both partners are present at intermediate depths, the specificity between host and symbiont lineages remained absolute. Unrecognized cryptic diversity may mask host-symbiont specificity and change the inference of evolutionary processes in mutualistic associations. Symbiotic specificity thus likely contributes to the ecological divergence of the two partners, generating species diversity within coral reefs.


Subject(s)
Anthozoa/genetics , Dinoflagellida/genetics , Ecosystem , Genetic Variation , Symbiosis , Animals , Bayes Theorem , Caribbean Region , Cell Nucleus/genetics , Coral Reefs , DNA, Chloroplast/genetics , DNA, Ribosomal Spacer/genetics , Genotype , Microsatellite Repeats , Models, Genetic , Molecular Sequence Data , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL