Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 812
Filter
1.
Methods Mol Biol ; 2841: 1-17, 2024.
Article in English | MEDLINE | ID: mdl-39115761

ABSTRACT

Protein secretion mediated by the secretory transport pathway is a sophisticated and highly regulated cellular process in eukaryotic cells. In the conventional secretory transport pathway, newly synthesized proteins pass through several endomembrane compartments to reach their destinations. This transport occurs via small, membrane-enclosed vesicles. To ensure the fidelity of trafficking, eukaryotic cells employ elaborate molecular machinery to accurately sort newly synthesized proteins into specific transport vesicles and precisely deliver them to respective acceptor compartments. Leaderless cargo proteins, lacking a signal peptide, follow an unconventional secretory pathway. This review encompasses the molecular machinery regulating both conventional and unconventional protein secretion in yeast and animal cells.


Subject(s)
Protein Transport , Secretory Pathway , Animals , Saccharomyces cerevisiae/metabolism , Humans , Yeasts/metabolism , Proteins/metabolism
2.
Autophagy ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162855

ABSTRACT

Selective macroautophagy/autophagy in metazoans involves the conserved receptors NBR1 and SQSTM1/p62. Both autophagy receptors manage ubiquitinated cargo recognition, while SQSTM1 has an additional, distinct role of facilitating liquid-liquid phase separation (LLPS) during autophagy. Given that plants lack SQSTM1, it is postulated that plant NBR1 May combine activities of both metazoan NBR1 and SQSTM1. However, the precise mechanism by which plant NBR1 recognizes non-ubiquitinated substrates and its ability to undergo LLPS during selective autophagy remain elusive. Here, we implicate both the ZZ-type zinc finger motif and the four-tryptophan domain of Arabidopsis NBR1 (AtNBR1) in the recognition of non-ubiquitinated cargo proteins. Additionally, we reveal that AtNBR1 indeed undergoes LLPS prior to ATG8-mediated autophagosome formation, crucial for heat stress resistance in Arabidopsis. Our findings unveil the dual roles of AtNBR1 in both cargo recognition and LLPS during plant autophagy and advance our understanding of NBR1-mediated autophagy in plants compared to metazoans.

3.
ACS Biomater Sci Eng ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150495

ABSTRACT

Osteosarcoma (OS) is a rare malignant tumor that affects soft tissue and has high rates of lung metastasis and mortality. The primary treatments for OS include preoperative chemotherapy, surgical resection of the lesion, and postoperative chemotherapy. However, OS chemotherapy presents critical challenges related to treatment toxicity and multiple drug resistance. To address these challenges, nanotechnology has developed nanosystems that release drugs directly to OS cells, reducing the drug's toxicity. Extracellular vesicles (EVs) are nanosized lipid-bilayer bound vesicles that act as cell-derived vehicles and drug delivery systems for several cancers. This study aims to utilize EVs for OS management by co-delivering Hdac1 siRNA and zoledronic acid (zol). The EVs' surface is modified with folic acid (FA) and their targeting ability is compared to that of native EVs. The results showed that the EVs' targeting ability depends on the parent cell source, and FA conjugation further enhanced it. Furthermore, EVs were used as the carrier for co-loading drug (zol) and small RNA (Hdac-1). This approach of using surface engineered EVs as carriers for cargo loading and delivery can be a promising strategy for osteosarcoma management.

4.
ACS Nano ; 18(32): 21024-21037, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39087909

ABSTRACT

Virus-like particles (VLPs) have untapped potential for packaging and delivery of macromolecular cargo. To be a broadly useful platform, there needs to be a strategy for attaching macromolecules to the inside or the outside of the VLP with minimal modification of the platform or cargo. Here, we repurpose antiviral compounds that bind to hepatitis B virus (HBV) capsids to create a chemical tag to noncovalently attach cargo to the VLP. Our tag consists of a capsid assembly modulator, HAP13, connected to a linker terminating in maleimide. Our cargo is a green fluorescent protein (GFP) with a single addressable cysteine, a feature that can be engineered in many proteins. The HAP-GFP construct maintained HAP's intrinsic ability to bind HBV capsids and accelerate assembly. We investigated the capacity of HAP-GFP to coassemble with HBV capsid protein and bind to preassembled capsids. HAP-GFP binding was concentration-dependent, sensitive to capsid stability, and dependent on linker length. Long linkers had the greatest activity to bind capsids, while short linkers impeded assembly and damaged intact capsids. In coassembly reactions, >20 HAP-GFP molecules were presented on the outside and inside of the capsid, concentrating the cargo by more than 100-fold compared to bulk solution. We also tested an HAP-GFP with a cleavable linker so that external GFP molecules could be removed, resulting in exclusive internal packaging. These results demonstrate a generalizable strategy for attaching cargo to a VLP, supporting development of HBV as a modular VLP platform.


Subject(s)
Capsid , Green Fluorescent Proteins , Hepatitis B virus , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Capsid/chemistry , Capsid/metabolism , Virus Assembly , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Virion/metabolism , Virion/chemistry , Surface Properties
5.
BMC Genomics ; 25(1): 734, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080539

ABSTRACT

Dairy industries apply selected lactococcal strains and mixed cultures to produce diverse fermented products with distinctive flavor and texture properties. Innovation of the starter culture functionality in cheese applications embraces natural biodiversity of the Lactococcus species to identify novel strains with alternative flavor or texture forming capacities and/or increased processing robustness and phage resistance. Mobile genetic elements (MGE), like integrative conjugative elements (ICEs) play an important role in shaping the biodiversity of bacteria. Besides the genes involved in the conjugation of ICEs from donor to recipient strains, these elements also harbor cargo genes that encode a wide range of functions. The definition of such cargo genes can only be achieved by accurate identification of the ICE boundaries (delimiting). Here, we delimited 25 ICEs in lactococcal genome sequences with low contig numbers using insertion-sites flanking single-copy core-genome genes as markers for each of the distinct ICE-integrases we identified previously within the conserved ICE-core genes. For ICEs in strains for which genome information with large numbers of contigs is available, we exemplify that CRISPR-Cas9 driven ICE-curing, followed by resequencing, allows accurate delimitation and cargo definition of ICEs. Finally, we compare and contrast the cargo gene repertoire of the 26 delimited lactococcal ICEs, identifying high plasticity among the cargo of lactococccal ICEs and a range of encoded functions that is of apparent industrial interest, including restriction modification, abortive infection, and stress adaptation genes.


Subject(s)
Genome, Bacterial , Lactococcus/genetics , Interspersed Repetitive Sequences/genetics , CRISPR-Cas Systems , Conjugation, Genetic
6.
Sci Total Environ ; 948: 174991, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39053543

ABSTRACT

Pollution caused by ship emissions will considerably impact coastal areas. A test system that matched the actual conditions of a ship was designed based on a portable emission measurement system (PEMS), and the emission characteristic of gaseous and particle emissions and the particle size distribution of the ship's main engine were investigated under real-world operating conditions. The results showed that the emission concentrations of the main pollutants fluctuated greatly under the departure, anchoring, and docking conditions, and the peaks of CO, CO2, and NOx emissions appeared under these transient conditions. The emission concentrations of CO2, hydrocarbons, particle number (PN), and particulate mass increased with the increase in speed. The PN-based particle size distribution of the engine presented a unimodal distribution under daily operating conditions. The maximum emission factor of NOx based on the engine power was 29.53 g/kWh at the engine speed of 66 r/min. The results of the study may contribute to supplementing the emission factors of this type of ship, and provide data support for monitoring and assessment of the marine environment.

7.
Cancers (Basel) ; 16(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39061191

ABSTRACT

This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.

8.
Adv Protein Chem Struct Biol ; 141: 255-297, 2024.
Article in English | MEDLINE | ID: mdl-38960477

ABSTRACT

Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.


Subject(s)
Glioma , Gliosis , Membrane Proteins , Humans , Membrane Proteins/metabolism , Glioma/metabolism , Glioma/pathology , Gliosis/metabolism , Gliosis/pathology , Animals , Receptors, Peptide
9.
Front Immunol ; 15: 1417758, 2024.
Article in English | MEDLINE | ID: mdl-38983854

ABSTRACT

Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.


Subject(s)
Exosomes , Neoplasms , Exosomes/metabolism , Humans , Neoplasms/diagnosis , Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism
10.
Plant Cell ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963880

ABSTRACT

Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the ER exit sites (ERESs) and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12 and Sec24, and participates in coat protein II (COPII) vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/ phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER, and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.

11.
J Extracell Vesicles ; 13(7): e12464, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961538

ABSTRACT

MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.


Subject(s)
Bystander Effect , Dependovirus , Extracellular Vesicles , Genetic Therapy , RNA, Messenger , Humans , Genetic Therapy/methods , Dependovirus/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Extracellular Vesicles/metabolism , Mucopolysaccharidosis III/therapy , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/genetics , Genetic Vectors , Acetyltransferases/metabolism , Acetyltransferases/genetics
12.
Cancers (Basel) ; 16(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39001524

ABSTRACT

Early cancer detection and accurate monitoring are crucial to ensure increased patient survival. Recent research has focused on developing non-invasive biomarkers to diagnose cancer early and monitor disease progression at low cost and risk. Extracellular vesicles (EVs), nanosized particles secreted into extracellular spaces by most cell types, are gaining immense popularity as novel biomarker candidates for liquid cancer biopsy, as they can transport bioactive cargo to distant sites and facilitate intercellular communications. A literature search was conducted to discuss the current approaches for EV isolation and the advances in using EV-associated proteins, miRNA, mRNA, DNA, and lipids as liquid biopsies. We discussed the advantages and challenges of using these vesicles in clinical applications. Moreover, recent advancements in machine learning as a novel tool for tumor marker discovery are also highlighted.

13.
Dev Cell ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991587

ABSTRACT

TANGO1, TANGO1-Short, and cTAGE5 form stable complexes at the endoplasmic reticulum exit sites (ERES) to preferably export bulky cargoes. Their C-terminal proline-rich domain (PRD) binds Sec23A and affects COPII assembly. The PRD in TANGO1-Short was replaced with light-responsive domains to control its binding to Sec23A in U2OS cells (human osteosarcoma). TANGO1-ShortΔPRD was dispersed in the ER membrane but relocated rapidly, reversibly, to pre-existing ERES by binding to Sec23A upon light activation. Prolonged binding between the two, concentrated ERES in the juxtanuclear region, blocked cargo export and relocated ERGIC53 into the ER, minimally impacting the Golgi complex organization. Bulky collagen VII and endogenous collagen I were collected at less than 47% of the stalled ERES, whereas small cargo molecules were retained uniformly at almost all the ERES. We suggest that ERES are segregated to handle cargoes based on their size, permitting cells to traffic them simultaneously for optimal secretion.

14.
Article in Russian | MEDLINE | ID: mdl-39003538

ABSTRACT

The current geopolitical situation raised pointed question of developing new supply chains and looking for rolling stock to develop newly formed cargo flows, including medicinal preparations transportation. Considering necessity in timely and safe supply of medicines, it is necessary to develop set of measures permitting to implement export of this production of national industry to ensure ultimate independence from unfriendly states. The article considers main indicators of import and export operations of medicinal preparations and measures taken by the state to support industry in current conditions, requirements for international transportation of this category of goods. The measures increasing exports within the framework of the Pharmaceutical Industry Development Strategy until 2030, such as expansion of fleet of autonomous refrigerated containers, use of consolidation warehouses in Turkey and Kazakhstan to ensure decreasing of cost of multi-modal transportation of medicinal preparations, as well as validation of rolling stock in accordance with GDP requirements.


Subject(s)
Drug Industry , Humans , Pharmaceutical Preparations/supply & distribution , Kazakhstan , Transportation , Commerce , Turkey , Russia
15.
Cell ; 187(16): 4272-4288.e20, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013469

ABSTRACT

Vesicle trafficking is a fundamental process that allows for the sorting and transport of specific proteins (i.e., "cargoes") to different compartments of eukaryotic cells. Cargo recognition primarily occurs through coats and the associated proteins at the donor membrane. However, it remains unclear whether cargoes can also be selected at other stages of vesicle trafficking to further enhance the fidelity of the process. The WDR11-FAM91A1 complex functions downstream of the clathrin-associated AP-1 complex to facilitate protein transport from endosomes to the TGN. Here, we report the cryo-EM structure of human WDR11-FAM91A1 complex. WDR11 directly and specifically recognizes a subset of acidic clusters, which we term super acidic clusters (SACs). WDR11 complex assembly and its binding to SAC-containing proteins are indispensable for the trafficking of SAC-containing proteins and proper neuronal development in zebrafish. Our studies thus uncover that cargo proteins could be recognized in a sequence-specific manner downstream of a protein coat.


Subject(s)
Cryoelectron Microscopy , Protein Transport , Zebrafish , Humans , Animals , Endosomes/metabolism , HEK293 Cells , HeLa Cells , Zebrafish Proteins/metabolism , Zebrafish Proteins/chemistry , Protein Binding
16.
Nano Lett ; 24(30): 9129-9136, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38916205

ABSTRACT

Mechanical stress significantly affects the physiological functions of cells, including tissue homeostasis, cytoskeletal alterations, and intracellular transport. As a major cytoskeletal component, microtubules respond to mechanical stimulation by altering their alignment and polymerization dynamics. Previously, we reported that microtubules may modulate cargo transport by one of the microtubule-associated motor proteins, dynein, under compressive mechanical stress. Despite the critical role of tensile stress in many biological functions, how tensile stress on microtubules regulates cargo transport is yet to be unveiled. The present study demonstrates that the low-level tensile stress-induced microtubule deformation facilitates dynein-driven transport. We validate our experimental findings using all-atom molecular dynamics simulation. Our study may provide important implications for developing new therapies for diseases that involve impaired intracellular transport.


Subject(s)
Dyneins , Microtubules , Molecular Dynamics Simulation , Stress, Mechanical , Microtubules/metabolism , Microtubules/chemistry , Dyneins/metabolism , Dyneins/chemistry , Tensile Strength , Biological Transport
17.
Int J Biol Sci ; 20(8): 2881-2903, 2024.
Article in English | MEDLINE | ID: mdl-38904019

ABSTRACT

The mechanism that maintains ER-to-Golgi vesicles formation and transport is complicated. As one of the adapters, Ninein-like protein (Nlp) participated in assembly and transporting of partial ER-to-Golgi vesicles that contained specific proteins, such as ß-Catenin and STING. Nlp acted as a platform to sustain the specificity and continuity of cargoes during COPII and COPI-coated vesicle transition and transportation through binding directly with SEC31A as well as Rab1B. Thus, we proposed an integrated transport model that particular adapter participated in specific cargo selection or transportation through cooperating with different membrane associated proteins to ensure the continuity of cargo trafficking. Deficiency of Nlp led to vesicle budding failure and accumulation of unprocessed proteins in ER, which further caused ER stress as well as Golgi fragmentation, and PERK-eIF2α pathway of UPR was activated to reduce the synthesis of universal proteins. In contrast, upregulation of Nlp resulted in Golgi fragmentation, which enhanced the cargo transport efficiency between ER and Golgi. Moreover, Nlp deficient mice were prone to spontaneous B cell lymphoma, since the developments and functions of lymphocytes significantly depended on secretory proteins through ER-to-Golgi vesicle trafficking, including IL-13, IL-17 and IL-21. Thus, perturbations of Nlp altered ER-to-Golgi communication and cellular homeostasis, and might contribute to the pathogenesis of B cell lymphoma.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Animals , Humans , Mice , COP-Coated Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport
18.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189142, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914240

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) presents a significant therapeutic challenge as it is frequently diagnosed at advanced inoperable stages. Therefore, the development of a reliable screening tool for PDAC is crucial for effective prevention and treatment. Extracellular vesicles (EVs), characterized by their cup-shaped lipid bilayer structure and ubiquitous release from various cell types, offer notable advantages as an emerging liquid biopsy technique that is rapid, minimally invasive, easily sampled, and cost-effective. While EVs play a substantial role in cancer progression, EV proteins serve as direct mediators of diverse cellular behaviors and have immense potential as biomarkers for PDAC diagnosis and prognostication. This review provides an overview of EV proteins regarding PDAC diagnosis and prognostic implications as well as disease progression.

19.
Biol Open ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828842

ABSTRACT

Most hematological malignancies are associated with reduced expression of one or more components of the Endosomal Sorting Complex Required for Transport (ESCRT). However, the roles of ESCRT in stem cell and progenitor maintenance are not resolved. Parsing signaling pathways in relation to the canonical role of ESCRT poses a challenge. The Drosophila hematopoietic organ, the larval lymph gland, provides a path to dissect the roles of cellular trafficking pathways such as ESCRT in blood development and maintenance. Drosophila has 13 core ESCRT components. Knockdown of individual ESCRTs showed that only Vps28 and Vp36 were required in all lymph gland progenitors. Using the well-conserved ESCRT-II complex as an example of the range of phenotypes seen upon ESCRT depletion, we show that ESCRTs have cell-autonomous as well as non-autonomous roles in progenitor maintenance and differentiation. ESCRT depletion also sensitized posterior lobe progenitors to respond to immunogenic wasp infestation. We also identify key heterotypic roles for ESCRT in position-dependent control of Notch activation to suppress crystal cell differentiation. Our study shows that the cargo sorting machinery determines the identity of progenitors and their adaptability to the dynamic microenvironment. These mechanisms for control of cell fate may tailor developmental diversity in multiple contexts.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Animals , Endosomal Sorting Complexes Required for Transport/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Cell Lineage , Cell Differentiation/genetics , Drosophila , Signal Transduction , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Immunity
20.
J Nanobiotechnology ; 22(1): 360, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907233

ABSTRACT

Osteosarcoma (OS) derived small extracellular vesicles (OS-sEVs) have been shown to induce the formation of cancer-associated fibroblasts (CAFs), characterized by elevated pro-inflammatory factor expression and enhanced migratory and contractile abilities. These CAFs play a crucial role in priming lung metastasis by orchestrating the pre-metastatic niche (PMN) in the lung. Disrupting the communication between OS-sEVs and lung fibroblasts (LFs) emerges as a potent strategy to hinder OS pulmonary metastasis. Our previously established saponin-mediated cargo-elimination strategy effectively reduces the cancer-promoting ability of tumor-derived small extracellular vesicles (TsEVs) while preserving their inherent targeting capability. In this study, we observed that cargo-eliminated OS-sEVs (CE-sEVs) display minimal pro-tumoral and LFs activation potential, yet retain their ability to target LFs. The uptake of OS-sEVs by LFs can be concentration-dependently suppressed by CE-sEVs, preventing the conversion of LFs into CAFs and thus inhibiting PMN formation and pulmonary metastasis of OS. In summary, this study proposes a potential strategy to prevent LFs activation, PMN formation in the lung, and OS pulmonary metastasis through competitive inhibition of OS-sEVs' function by CE-sEVs.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , Osteosarcoma , Osteosarcoma/pathology , Osteosarcoma/metabolism , Extracellular Vesicles/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Animals , Humans , Mice , Cell Line, Tumor , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Mice, Inbred BALB C , Saponins/pharmacology , Mice, Nude , Cell Movement/drug effects , Lung/pathology
SELECTION OF CITATIONS
SEARCH DETAIL