Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Neuropharmacology ; 261: 110152, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245141

ABSTRACT

Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aß), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 µM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aß by -69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by -33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by -25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by -29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by -33, -86, and -78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aß (Vina Score -6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cholinergic Neurons , Minocycline , Presenilin-1 , tau Proteins , Presenilin-1/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Minocycline/pharmacology , Animals , tau Proteins/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Mice , Humans , Cell Death/drug effects , Cell Death/physiology , Neuroprotective Agents/pharmacology , Molecular Docking Simulation
2.
Antioxidants (Basel) ; 13(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38929144

ABSTRACT

Oxidative stress and apoptosis cell death are critical secondary damage mechanisms that lead to losing neighboring healthy tissue after cerebral ischemia. This study aims to characterize the type of interaction between dapsone (DDS) and cannabidiol (CBD) and its cytoprotective effect in an in vitro model of oxygen and glucose deprivation for 6 h followed by 24 h of reoxygenation (OGD/R), using the SH-SY5Y cell line. For the combined concentrations, an isobolographic study was designed to determine the optimal concentration-response combinations. Cell viability was evaluated by measuring the lactate dehydrogenase (LDH) release and 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assays. Also, the reactive oxygen species (ROS) and reduced glutathione (GSH) levels were analyzed as oxidative stress markers. Finally, caspase-3 activity was evaluated as a marker cell death by apoptosis. The results showed a decrease in cell viability, an increase in oxidant stress, and the activity of caspase-3 by the effect of OGD/R. Meanwhile, both DDS and CBD demonstrated antioxidant, antiapoptotic, and cytoprotective effects in a concentration-response manner. The isobolographic study indicated that the concentration of 2.5 µM of DDS plus 0.05 µM of CBD presented a synergistic effect so that in treatment, cell death due to OGD/R decreased. The findings indicate that DDS-CBD combined treatment may be a helpful therapy in cerebral ischemia with reperfusion.

3.
J Alzheimers Dis ; 99(2): 639-656, 2024.
Article in English | MEDLINE | ID: mdl-38728184

ABSTRACT

Background: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-ß (Aß) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective: To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods: Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25µM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results: We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aß fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions: Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.


Subject(s)
Alzheimer Disease , Cholinergic Neurons , Mutation , Presenilin-1 , Sildenafil Citrate , Presenilin-1/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Mutation/genetics , Animals , Sildenafil Citrate/pharmacology , Amyloid beta-Peptides/metabolism , Humans , Cells, Cultured , Mice , tau Proteins/metabolism , tau Proteins/genetics , Phosphorylation/drug effects , Phenotype
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5265-5274, 2024 07.
Article in English | MEDLINE | ID: mdl-38270618

ABSTRACT

Melanoma, an aggressive and potentially fatal skin cancer, is constrained by immunosuppression, resistance, and high toxicity in its treatment. Consequently, there is an urgent need for innovative antineoplastic agents. Therefore, this study investigated the antimelanoma potential of guttiferone E (GE). In an allogeneic murine B16 melanoma model, GE was administered subcutaneously and intraperitoneally. Antitumor evaluation included tumor volume/weight measurements and histopathological and immunohistochemical analysis. Furthermore, the toxicity of the treatments was evaluated through body/organ weights, biochemical parameters, and genotoxicity. Subcutaneous administration of 20 mg/kg of GE resulted in a significant reduction in both tumor volume and weight, effectively suppressing melanoma cell proliferation as evidenced by a decrease in mitotic figures. The tumor growth inhibition rate was equivalent to 54%. This treatment upregulated cleaved caspase-3, indicating apoptosis induction. On the other hand, intraperitoneal administration of GE showed no antimelanoma effect. Remarkably, GE treatments exhibited no toxicity, evidenced by non-significant differences in body weight gain, as well as organ weight, biochemical parameters of nephrotoxicity and hepatotoxicity, and genotoxic damage. This study revealed, for the first time, the efficacy of subcutaneous administration of GE in reducing melanoma, in the absence of toxicity. Furthermore, it was observed that the apoptotic signaling pathway is involved in the antimelanoma property of GE. These findings offer valuable insights for further exploring GE's therapeutic applications in melanoma treatment.


Subject(s)
Melanoma, Experimental , Mice, Inbred C57BL , Animals , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Apoptosis/drug effects , Mice , Male , Antineoplastic Agents/toxicity , Antineoplastic Agents/administration & dosage , Benzophenones/pharmacology , Benzophenones/administration & dosage , Benzophenones/toxicity , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Cell Proliferation/drug effects , Tumor Burden/drug effects , Cell Line, Tumor , Injections, Subcutaneous , Female
5.
J Biol Inorg Chem ; 29(1): 159-168, 2024 02.
Article in English | MEDLINE | ID: mdl-38182820

ABSTRACT

Melanoma is the most aggressive and lethal type of skin cancer due to its characteristics such as high metastatic potential and low response rate to existing treatment modalities. In this way, new drug prototypes are being studied to solve the problem of treating patients with melanoma. Among these, ruthenium-based metallopharmaceuticals may be promising alternatives due to their antitumor characteristics and low systemic toxicity. In this context, the present study evaluated the antineoplastic effect of the ruthenium complex [Ru(mtz)(dppe)2]PF6-2-mercaptothiazoline-di-1,2-bis(diphenylphosphine) ethaneruthenium(II), namely RuMTZ, on human melanoma (A-375) and murine (B16-F10) cells, considering different approaches. Through XTT colorimetric and clonogenic efficiency assays, the complex revealed the selective cytotoxic activity, with the lowest IC50 (0.4 µM) observed for A375 cells. RuMTZ also induced changes in cell morphology, increased cell population in the sub-G0 phase and inhibiting cell migration. The levels of γH2AX and cleaved caspase 3 proteins were increased in both cell lines treated with RuMTZ. These findings indicated that the cytotoxic activity of RuMTZ on melanoma cells is related, at least in part, to the induction of DNA damage and apoptosis. Therefore, RuMTZ exhibited promising antineoplastic activity against melanoma cells.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Melanoma , Ruthenium , Thiazolidines , Humans , Animals , Mice , Ruthenium/pharmacology , Coordination Complexes/pharmacology , Melanoma/drug therapy , Ligands , Antineoplastic Agents/pharmacology , Apoptosis , DNA Damage , Cell Line, Tumor
6.
Theriogenology ; 216: 42-52, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38154205

ABSTRACT

Spermatogenesis is a finely regulated process that involves the interaction of several cellular mechanisms to ensure the proper development and maturation of germ cells. This study assessed autophagy contribution and its relation to apoptosis in fish spermatogenesis during starvation. To that end, Nile tilapia males were subjected to 0 (control), 7, 14, 21, and 28 days of starvation to induce autophagy. Testes samples were obtained for analyses of spermatogenesis by histology, electron microscopy, immunohistochemistry, and western blotting. Sperm quality was assessed using a computer-assisted sperm analysis (CASA) system. Data indicated a significant reduction in gonadosomatic index, seminiferous tubule area, and spermatozoa proportion in fish subject to starvation compared to the control group. Immunoblotting revealed a reduction of Bcl2 and Beclin 1 associated with increased Bax and Caspase-3, mainly after 21 and 28 days of starvation. LC3 and P62 indicated reduced autophagic flux in these starvation times. Immunolabeling for autophagic and apoptotic proteins occurred in all development stages of the germ cells, but protein expression varied throughout starvation. Beclin 1 and Cathepsin D decreased while Bax and Caspase-3 increased in spermatocytes, spermatids, and spermatozoa after 21 and 28 days. Autophagic and lysosomal proteins colocalization indicated the fusion of autophagosomes with lysosomes and lysosomal degradation in spermatogenic cells. The CASA system indicated reduced sperm motility and velocity in animals subjected to 21 and 28 days of starvation. Altogether, the data support autophagy acting at different spermatogenesis stages in Nile tilapia, with decreased autophagy and increased apoptosis after 21 and 28 days of starvation, which results in a decrease in the spermatozoa number and sperm quality.


Subject(s)
Cichlids , Male , Animals , Caspase 3/metabolism , Cichlids/metabolism , Beclin-1/genetics , Beclin-1/metabolism , bcl-2-Associated X Protein/metabolism , Sperm Motility , Semen/metabolism , Spermatozoa/metabolism , Spermatogenesis , Spermatids , Autophagy
7.
Front Chem ; 11: 1316779, 2023.
Article in English | MEDLINE | ID: mdl-38093819

ABSTRACT

As life expectancy increases, the number of people affected by cancer is increasing. The available drugs still cause several adverse reactions, and it is important to look for less toxic drugs that act on resistant cancers. The present study evaluated the antitumor potential of acetogenins. Through a literature review, 44 acetogenins isolated from Annona muricata were selected and subjected to in silico studies to predict the physicochemical properties, pharmacokinetics (Preadmet and Admet lab), toxicity (Preadmet and Protox II) and molecular docking in caspase 3 (DockThor). For muricatacin, a literature review was carried out for antitumor activity and cytotoxicity. Only muricatacin met all physicochemical criteria, while all compounds showed high cutaneous and intestinal absorption (HIA), moderate permeability in Madin-Darby canine kidney and Caco2 cells, strongly bound plasma proteins, freely crossed the blood-brain barrier, inhibited CYP2C19, CYP2C9 and CYP3A4 and have an affinity for CYP3A4, being metabolized by it, an undesirable characteristic for antitumor drugs. All compounds were toxic in at least one model, while compound 28 was not carcinogenic in rats and mice. Compounds 13, 14, 15, 16, 17 and 28 were selected for molecular docking into Caspase 3. Docking showed hydrophobic interactions, hydrogen and covalent bonds performed to maintain the stability of caspase 3, and cis-uvariamicin IV stood out more through the energies and chemical bonds of this parameter. The chloroform fraction from the methanolic extract of the seeds showed activity against triple-negative breast cancer, both in vitro and in vivo, and only muricatacin has studies in which the antitumor activity was evaluated in vitro and showed to be very promising. In summary, muricatacin and cis-uvariamicin IV appear to be very promising as antitumors, especially cis-uvariamicin IV.

8.
Int J Nanomedicine ; 18: 6393-6408, 2023.
Article in English | MEDLINE | ID: mdl-37954458

ABSTRACT

Background: Tarin, a lectin purified from Colocasia esculenta, promotes in vitro and in vivo immunomodulatory effects allied to promising anticancer and antimetastatic effects against human adenocarcinoma mammary cells. This makes this 47 kDa-protein a natural candidate against human breast cancer, a leading cause of death among women. Tarin encapsulated in pegylated nanoliposomes displays increased effectiveness in controlling the proliferation of a mammary adenocarcinoma lineage comprising MDA-MB-231 cells. Methods: The mechanisms enrolled in anticancer and antimetastatic responses were investigated by treating MDA-MB-231 cells with nano-encapsulated tarin at 72 µg/mL for up to 48h through flow cytometry and transmission electron microscopy (TEM). The safety of nano-encapsulated tarin towards healthy tissue was also assessed by the resazurin viability assay, and the effect of nanoencapsulated tarin on cell migration was evaluated by scratch assays. Results: Ultrastructural analyses of MDA-MB-231 cells exposed to nanoencapsulated tarin revealed the accumulation of autophagosomes and damaged organelles, compatible with autophagy-dependent cell death. On the other hand, the flow cytometry investigation detected the increased occurrence of acidic vacuolar organelles, a late autophagosome trait, along with the enhanced presence of apoptotic cells, activated caspase-3/7, and cell cycle arrest at G0/G1. No deleterious effects were observed in healthy fibroblast cells following tarin nanoencapsulated exposition, in contrast to reduced viability in cells exposed to free tarin. The migration of MDA-MB-231 cells was inhibited by nano-encapsulated tarin, with delayed movement by 24 h compared to free tarin. Conclusion: The nanoliposome formulation delivers tarin in a delayed and sustained manner, as evidenced by the belated and potent antitumoral and anti-migration effects on adenocarcinoma cells, with no toxicity to healthy cells. Although further investigations are required to fully understand antitumorigenic tarin mechanisms, the activation of both apoptotic and autophagic machineries along with the caspase-3/7 pathway, and cell cycle arrest may comprise a part of these mechanisms.


Subject(s)
Adenocarcinoma , Breast Neoplasms , Humans , Female , Caspase 3 , Cell Line, Tumor , Apoptosis , Breast Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Autophagy
9.
Odovtos (En línea) ; 25(2)ago. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1448734

ABSTRACT

Current research highlighted the importance to recognize feasible biomarkers for early diagnoses and treatment in oral cancer. Our study analyzed the expression and spatial distribution of ALDH1A1, FGFR2, caspase-3, and CD44 in Oral Squamous Cell Carcinoma (OSCC) and leukoplakia with and without oral mucosal dysplasia. Paraffin-embedded samples of OSCC (n=5), leukoplakia with (n=5) and without (n=5) dysplasia obtained by incisional biopsies were processed using conventional histochemical techniques. Immunohistochemistry was performed using antibodies against ALDH1A1, FGFR2, caspase-3, and CD44. Images of the immunohistochemically stained tissue sections were analyzed according to the intensity of the immunostaining of each marker and classified in Scores. The Kruskal- Wallis test was performed (p≤0.05). Our results demonstrated a statically difference in the expression of all immunomarkers between OSCC and leukoplakia without dysplasia, being more significant in FGFR2 and ALDH1A1. Within the limitations of this study, our data showed that all biomarkers were overexpressed in OSCC and leukoplakia with oral mucosa dysplasia, suggesting that the presence of dysplasia is a significant clinic-pathologic predictor for malignant transformation.


La actual evidencia científica enfatiza la importancia de reconocer biomarcadores viables para el diagnóstico y tratamiento temprano del cáncer oral. Nuestro estudio piloto analizó la expresión y distribución espacial de ALDH1A1, FGFR2, caspasa-3 y CD44 en carcinoma oral de células escamosas (COCE) y en leucoplasia con o sin displasia de la mucosa oral. Las muestras incluidas en parafina de COCE (n=5), con (n=5) y sin (n=5) displasia fueron obtenidas mediante biopsias incisionales, las cuales se procesaron utilizando técnicas histoquímicas convencionales. El análisis inmunohistoquímico se realizó utilizando anticuerpos contra ALDH1A1, FGFR2, caspasa-3 y CD44. Las imágenes de las secciones de cada muestra fueron analizadas según la intensidad de inmunoexpresión de cada marcador y se clasificaron en diferentes escalas (scores). Se realizó la prueba de Kruskal-Wallis (valores de p<0,05). Nuestros resultados demostraron una diferencia estadística en la expresión de todos los inmunomarcadores entre COCE y las muestras con leucoplasia sin displasia, siendo más significativa en FGFR2 y ALDH1A1. Considerando las limitaciones de este estudio, los datos sugieren que la presencia de displasia en la mucosa oral es un importante predictor clínico-patológico de transformación maligna.

10.
Reprod Domest Anim ; 58(7): 1005-1011, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37243876

ABSTRACT

Caspases are crucial mediators of programmed cell death (apoptosis). Apoptosis can occur in spermatozoa during spermatogenesis or epididymal transit, as well as in ejaculated spermatozoa. A high proportion of apoptotic sperm would be a poor indicator of the freezability of a raw seminal sample. Alpaca spermatozoa are notoriously difficult to freeze successfully. Therefore, the objectives of this study were to study caspase activation during incubation (37°C) of fresh alpaca spermatozoa, as well as before and after cryopreservation, to gain some insight into the mechanisms behind the vulnerability of alpaca spermatozoa. Eleven sperm samples were incubated for 4 h at 37°C (Study 1), and 23 samples were frozen using an automated system (Study 2). Caspase-3/7 activation was assessed at 0,1,2,3, and 4 h in samples incubated at 37°C (Study 1); and before/after cryopreservation (Study 2) using CellEvent™ Caspase 3/7 Green Detection Reagent and flow cytometry. The proportions of alpaca spermatozoa with caspase-3/7 activated increased (p < 0.05) after 3-4 h of incubation at 37°C; however, caspase activation was similar before and after cryopreservation (36.2 ± 11.2% vs. 36.6 ± 33.7%, p > 0.05). The high standard deviation found after freezing could be explained by the existence of two subpopulations: one subpopulation where caspase-3/7 activation decreased during cryopreservation (from 36.6 ± 9.1% to 1.5 ± 2.2%), and the other subpopulation where caspase-3/7 activation increased after cryopreservation (from 37.7 ± 13.0% to 64.3 ± 16.7%). In conclusion, after 3-4 h of incubation, caspase-3/7 activation increased in fresh alpaca sperm, whereas cryopreservation affects alpaca sperm samples in different ways.


Subject(s)
Camelids, New World , Semen Preservation , Male , Animals , Camelids, New World/physiology , Caspase 3 , Semen/physiology , Spermatozoa/physiology , Cryopreservation/veterinary , Caspases/metabolism , Semen Preservation/veterinary , Sperm Motility/physiology
11.
Mol Cell Neurosci ; 125: 103861, 2023 06.
Article in English | MEDLINE | ID: mdl-37182572

ABSTRACT

During Alzheimer's (AD), tau protein suffers from abnormal post-translational modifications, including cleaving by caspase-3. These tau forms affect synaptic plasticity contributing to the cognitive decline observed in the early stages of AD. In addition, caspase-3 cleaved tau (TauC3) impairs mitochondrial dynamics and organelles transport, which are both relevant processes for synapse. We recently showed that the absence of tau expression reverts age-associated cognitive and mitochondrial failure by blocking the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial complex involved in calcium regulation and apoptosis. Therefore, we studied the effects of TauC3 against the dendritic spine and synaptic vesicle formation and the possible role of mPTP in these alterations. We used mature hippocampal mice neurons to express a reporter protein (GFP, mCherry), coupled to full-length human tau protein (GFP-T4, mCherry-T4), and coupled to human tau protein cleaved at D421 by caspase-3 (GFP-T4C3, mCherry-T4C3) and synaptic elements were evaluated. Treatment with cyclosporine A (CsA), an immunosuppressive drug with inhibitory activity on mPTP, prevented ROS increase and mitochondrial depolarization induced by TauC3 in hippocampal neurons. These results were corroborated with immortalized cortical neurons in which ROS increase and ATP loss induced by this tau form were prevented by CsA. Interestingly, TauC3 expression significantly reduced dendritic spine density (filopodia type) and synaptic vesicle number in hippocampal neurons. Also, neurons transfected with TauC3 showed a significant accumulation of synaptophysin protein in their soma. More importantly, all these synaptic alterations were prevented by CsA, suggesting an mPTP role in these negative changes derived from TauC3 expression.


Subject(s)
Alzheimer Disease , tau Proteins , Mice , Humans , Animals , tau Proteins/metabolism , Cyclosporine/pharmacology , Caspase 3/metabolism , Reactive Oxygen Species , Apoptosis , Alzheimer Disease/metabolism
12.
ACS Chem Neurosci ; 14(11): 2159-2171, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37220279

ABSTRACT

Parkinson's disease (PD), a progressive neurodegenerative movement disorder, has reached pandemic status worldwide. This neurologic disorder is caused primarily by the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). Unfortunately, there are no therapeutic agents that slow or delay the disease progression. Herein, menstrual stromal cell-derived dopamine-like neurons (DALNs) intoxicated with paraquat (PQ2+)/maneb (MB) were used as a model system to elucidate the mechanism by which CBD protects the neural cell from apoptosis in vitro. According to immunofluorescence microscopy, flow cytometry, cell-free assay, and molecular docking analysis, we demonstrate that CBD offers protection to DALNs against PQ2+ (1 mM)/MB (50 µM)-induced oxidative stress (OS) by simultaneously (i) decreasing reactive oxygen species (ROS: O2•-, H2O2), (ii) maintaining the mitochondrial membrane potential (ΔΨm), (iii) directly binding to stress sensor protein DJ-1, thereby blunting its oxidation from DJ-1CYS106-SH into DJ-1CYS106-SO3, and (iv) directly binding to pro-apoptotic protease protein caspase 3 (CASP3), thereby disengaging neuronal dismantling. Furthermore, the protective effect of CBD on DJ-1 and CASP3 was independent of CB1 and CB2 receptor signaling. CBD also re-established the Ca2+ influx in DALNs as a response to dopamine (DA) stimuli under PQ2+/MB exposure. Because of its powerful antioxidant and antiapoptotic effects, CBD offers potential therapeutic utility in the treatment of PD.


Subject(s)
Cannabidiol , Maneb , Parkinson Disease , Humans , Paraquat/toxicity , Paraquat/metabolism , Maneb/toxicity , Maneb/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Caspase 3/metabolism , Dopamine/metabolism , Receptors, Cannabinoid/metabolism , Hydrogen Peroxide/pharmacology , Molecular Docking Simulation , Cell Death , Dopaminergic Neurons/metabolism , Oxidative Stress
13.
Photochem Photobiol Sci ; 22(1): 21-32, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36036336

ABSTRACT

Several inflammatory molecules have been suggested as biomarkers of age-related macular degeneration (AMD). Galectin-3 (Gal-3), which has been shown to have a protective role in corneal injury by promoting epithelial cells adhesion and migration to the extracellular matrix, is also highly expressed in the retinal pigment epithelium (RPE) of patients with AMD. This study evaluated the role of Gal-3 in an in vitro model of UVA-induced RPE damage, as a proof-of-concept. ARPE-19 cells (human RPE cell line), were incubated with Gal-3 at 0.5-2.5 µg/mL concentrations prior to UVA irradiation for 15, 30, and 45 min, which resulted in accumulated doses of 2.5, 5, and 7.5 J/cm2, respectively. After 24 h incubation, MTT and LDH assays, immunofluorescence, and ELISA were performed. UVA irradiation for 15, 30, and 45 min proved to reduce viability in 83%, 46%, and 11%, respectively. Based on the latter results, we chose the intermediate dose (5-J/cm2) for further analysis. Pretreatment with Gal-3 at concentrations > 1.5 µg/mL showed to increase the viability of UVA-irradiated cells (~ 75%) compared to untreated cells (64%). Increased levels of cleaved caspase 3, a marker of cell death, were detected in the ARPE cells after UVA irradiation with or without addition of exogenous Gal-3. The inhibitory effect of Gal-3 on UVA-induced cell damage was characterized by decreased ROS levels and increased p38 activation, as detected by fluorescence analysis. In conclusion, our study suggests a photoprotective effect of Gal-3 on RPE by reducing oxidative stress and increasing p38 activation.


Subject(s)
Galectin 3 , Oxidative Stress , Humans , Galectin 3/metabolism , Galectin 3/pharmacology , Cell Death , Retinal Pigment Epithelium/metabolism , Epithelial Cells/metabolism , Retinal Pigments/metabolism , Retinal Pigments/pharmacology , Reactive Oxygen Species/metabolism
14.
Pesqui. vet. bras ; 43: e06518, 2023. tab, ilus
Article in English | VETINDEX | ID: biblio-1448810

ABSTRACT

Determining cell proliferation rates and tumor apoptosis through immunohistochemistry allows the evaluation of the biological behavior of the tumor, optimizing the patient's clinical course. This study aimed to analyze the immunohistochemical expression of Ki-67, COX-2 and caspase-3 and correlate them with the type of response to ECT in feline cutaneous squamous cell carcinoma (SCC), thus determining the predictive potential of these variables. For this, 13 samples of feline cutaneous SCC were evaluated before ECT, and statistical analyses of the correlation intensity between the variables were performed using the Spearman correlation coefficient, with a significance level of 95%. The results indicate a significant negative correlation between histopathological grade and response to ECT (ρ=-0.6; p=0.03); there was no significant correlation between Ki-67, COX-2 and caspase-3 immunoexpression with the response to ECT (ρ=-0.18; p=0.54/ρ=-0.23; p=0.44/ρ=-0.12; p=0.69, respectively). Therefore, the study shows that the histopathological grade, tumor size and staging, degree of cellular pleomorphism and degree of inflammatory infiltrate can be considered negative prognostic factors for cutaneous SCC and negative predictors for response to ECT. However, the markers Ki-67, COX-2 and caspase-3 are not considered predictive factors for the type of response to ECT. In addition, no relationship between these immunoexpressions and greater tumor aggressiveness was observed. The SCCs evaluated in this study showed significant COX-2 labeling, indicating a potential therapeutic target. ECT has been shown to be safe and effective for local control of feline cutaneous SCC but with reduced effectiveness in larger and invasive lesions.


A determinação das taxas de proliferação celular e apoptose tumoral por meio da imuno-histoquímica, permite avaliar o comportamento biológico tumoral, com otimização da evolução clínica do paciente. Este trabalho teve como objetivo analisar as expressões imuno-histoquímicas de Ki-67, COX-2 e caspase-3 e correlacioná-las com o tipo de resposta à EQT em carcinoma de células escamosas (CEC) cutâneo de felinos; assim, determinar o potencial preditivo destas variáveis. Para tanto, foram avaliadas 13 amostras de CEC cutâneo de felinos antes da EQT e as análises estatísticas quanto à intensidade de correlação entre as variáveis foram realizadas utilizando o coeficiente de correlação de Spearman, com nível de significância de 95%. Os resultados indicam que houve correlação negativa significativa entre o grau histopatológico e a resposta à EQT (ρ=-0,6; p=0,03); não houve correlação significativa entre as imunoexpressões de Ki-67, COX-2 e caspase-3 com a resposta à EQT (ρ=-0,18; p=0,54/ρ=-0,23; p=0,44/ρ=-0,12; p=0,69, respectivamente). Portanto, este estudo evidenciou que as variáveis grau histopatológico, tamanho e estadiamento tumorais, grau de pleomorfismo celular e grau do infiltrado inflamatório foram consideradas fatores prognósticos negativos para o CEC cutâneo e preditivos negativos para a resposta à EQT. Entretanto, os marcadores Ki-67, COX-2 e caspase-3 não foram considerados fatores preditivos para o tipo de resposta à EQT, assim como não foi observada relação entre essas imunoexpressões com maior agressividade tumoral. Os CECs avaliados neste estudo apresentaram importante marcação para COX-2, indicando um potencial alvo terapêutico. A EQT mostrou-se segura e efetiva para o controle local dos CECs cutâneos dos felinos, porém com efetividade reduzida em lesões maiores e invasivas.


Subject(s)
Animals , Cats , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/veterinary , Cat Diseases , Biomarkers, Tumor , Ki-67 Antigen , Caspase 3 , Electrochemotherapy/veterinary
15.
Acta cir. bras ; Acta cir. bras;38: e381523, 2023. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1439109

ABSTRACT

Purpose: It was aimed to investigate the biochemical and immunohistochemical effects of ephedrine (EPH) in bilateral ovariectomized rats. Methods: Twenty-four Sprague Dawley female rats were divided into three groups: control group: The abdomen was opened and closed without any treatment; ischemia-reperfusion (IR) group: 2 h of ischemia followed by 2 h of reperfusion were allowed to cause IR injury; IR+EPH group: oral EPH solution (5 mg/kg) was administered for 28 days. Results: Biochemical parameters were statistically significant in group comparisons. Increased interleukin-6 (IL-6) expression, degenerative preantral and antral follicle cells and inflammatory cells around blood vessels were seen in IR group. Negative IL-6 expression was observed in seminal epithelial cells, preantral and antral follicle cells in IR+EPH group. While caspase-3 activity increased in granulosa cells and stromal cells in IR group, caspase-3 expression was negative in preantral and antral follicle cells in the germinal epithelium and cortex in IR+EPH group. Conclusion: The effect of apoptosis, which occurs with the signaling that starts in the cell nucleus, caused the cessation of the stimulating effect at the nuclear level after EPH administration, and a decrease in the antioxidative effect in IR damage and inflammation in the apoptotic process.


Subject(s)
Animals , Female , Rats , Ovary/cytology , Interleukin-6/physiology , Ephedrine/analysis , Caspase 3/physiology , Immunohistochemistry , Rats, Sprague-Dawley , Apoptosis
16.
J Microencapsul ; 39(7-8): 668-679, 2022.
Article in English | MEDLINE | ID: mdl-36476253

ABSTRACT

Solid lipid nanoparticles (SLNs) containing rutin were prepared to enhance their photochemopreventive effect on the skin. SLNs were produced by the hot melt microemulsion technique. Two 3D skin models: ex vivo skin explants and 3D tissue engineering skin were used to evaluate the photochemopreventive effect of topical formulations containing rutin SLNs, against ultraviolet B (UVB) radiation, inducing sunburn cells, caspase-3, cyclobutane pyrimidine dimers, lipid peroxidation, and metalloproteinase formation. The rutin SLNs presented average size of 74.22 ± 2.77 nm, polydispersion index of 0.16 ± 0.04, encapsulation efficiency of 98.90 ± 0.25%, and zeta potential of -53.0 ± 1.61 mV. The rutin SLNs were able to efficiently protect against UVB induced in the analysed parameters in both skin models. Furthermore, the rutin SLNs inhibited lipid peroxidation and metalloproteinase formation. These results support the use of rutin SLNs as skin photochemopreventive agents for topical application to the skin.


Subject(s)
Nanoparticles , Rutin , Rutin/pharmacology , Skin , Liposomes , Ultraviolet Rays/adverse effects
17.
Reprod Domest Anim ; 57(9): 980-988, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35612981

ABSTRACT

The aim of this study was to evaluate the effect of age of Nellore (Bos indicus) donors on the efficiency of in vitro embryo production (IVEP) and pregnancy rate. Thirty-six donors, including 11 female calves (13 ± 0.61 months), 17 prepubertal heifers (25 ± 0.78 months) and 8 cows (83 ± 28 months), were submitted to 3 procedures of ovum pickup (OPU) on random days of the estrous cycle at intervals of 21 days. Caspase-3 and IGFBP2 were quantified in oocytes and blastocysts for the evaluation of oocyte and embryo quality. The produced embryos were vitrified (n = 445) and transferred to synchronized recipients. Cows produced a larger number of follicles (cows: 54.5 ± 6.2; calves: 20.0 ± 0.57; prepubertal heifers: 20.8 ± 0.46), total oocytes (cows: 45.97 ± 7.22; calves: 28.93 ± 6.14; prepubertal heifers: 27.21 ± 4.94) and cleaved oocytes (cows: 21.14 ± 4.22; calves: 13.09 ± 3.72; prepubertal heifers: 12.4 ± 3.19). The cleavage rate was similar between age categories; however, cows tended (p < 0.07) to produce a larger number of blastocysts (9.74 ± 2.26) per OPU than calves (5.57 ± 1.99) and prepubertal heifers tended to have a higher blastocyst yield (35.4%) than calves (27.1%) (p < .07). The expression levels of IGFBP2 and caspase-3 were higher in oocytes derived from calves compared to the other two categories. The pregnancy rate was higher in calves (43.1%) and cows (40.4%) than in prepubertal heifers (33.8%) (p = .03). Despite the larger numbers of follicles and viable oocytes in cows, the blastocyst production results and pregnancy rates obtained indicate that the use of young females as oocyte donors in IVEP is feasible and may contribute to reduce the generation interval.


Subject(s)
Blastocyst , Fertilization in Vitro , Animals , Caspase 3 , Cattle , Female , Fertilization in Vitro/veterinary , Oocytes , Pregnancy , Pregnancy Rate
18.
Med Oncol ; 39(7): 109, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35578067

ABSTRACT

TPEN and TPGS have recently shown selective cytotoxic effects in vitro and ex vivo leukemia cells. In this study, we aimed to test the synergistic effect of combined TPEN and TPGS agents (thereafter, T2 combo) on Jurkat (clone-E61), K562, Ba/F3, and non-leukemia peripheral blood lymphocytes (PBL). The ED50 doses (i.e., TPEN ED50: 3.2 µM and TPGS ED50: 34 µM, potency ratio R = 10.62 = TPGS (ED50)/TPEN (ED50)) were identified as dose-effect curve (%DNA fragmentation (sub-G1 phase) versus agent concentration). The most effective synergistic doses were determined according to isobole analysis. The apoptotic and oxidative stress effects of combined doses (TPEN 0.1, 0.5, 1 µM) and TPGS (5, 10, 20 µM)) were evaluated by DNA fragmentation (sub-G1 phase), mitochondrial membrane potential, oxidation of stress sensor protein DJ-1, and activation of executer protein CASPASE-3. They testified to the synergistic effect of the T2 combo (e.g., TPEN 1: TPGS 20, combination index (CI) 0.90 < 1; 1/3.2+ 20/34, > 90% induced apoptosis) in all 3 cell lines. As proof of principle, we challenged complete bone marrow (n = 5) or isolated cells from bone marrow (n = 3) samples from acute pediatric acute B-cell patients and found that T2 combo (1:20; 10:200) dramatically reduced (- 50%) the CD34+/CD19+cell population and increased significantly CD19+/CASP-3+ positive B-ALL cells up to 960%. The T2 combo neither induced DNA fragmentation, altered ΔΨm, nor induced oxidation of stress sensor protein DJ-1, nor activated CASP-3 in PBL cells. We conclude that by using different combinations of TPEN and TPGS, a more efficient treatment strategy can be developed for leukemia patients.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid, Acute , Apoptosis , Child , Ethylenediamines , Humans , Jurkat Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Signal Transduction , Vitamin E
19.
Biometals ; 35(4): 741-758, 2022 08.
Article in English | MEDLINE | ID: mdl-35635647

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic disorder characterized by the abnormal proliferation and accumulation of immature B-lymphoblasts arrested at various stages of differentiation. Despite advances in treatment, a significant percentage of pediatric patients with precursor B-ALL still relapse. Therefore, alternative therapies are needed to improve the cure rates for pediatric patients. TPEN (N, N, N', N'-tetrakis(2-pyridylmethyl)-ethylenediamine) is a pro-oxidant agent capable of selectively inducing apoptosis in leukemia cell lines. Consequently, it has been suggested that TPEN could be a potential agent for oxidative therapy. However, it is not yet known whether TPEN can selectively destroy leukemia cells in a more disease-like model, for example, the bloodstream and bone marrow (BM), ex vivo. This investigation is an extension of a previous study that dealt with the effect of TPEN on ex vivo isolated/purified refractory B-ALL cells. Here, we evaluated the effect of TPEN on whole BM from nonleukemic patients (control) or pediatric patients diagnosed with de novo B-ALL or refractory B-ALL cells by analyzing the hematopoietic cell lineage marker CD34/CD19. Although TPEN was innocuous to nonleukemic BM (n = 3), we found that TPEN significantly induced apoptosis in de novo (n = 5) and refractory B-ALL (n = 6) leukemic cell populations. Moreover, TPEN significantly increased the counts of cells positive for the oxidation of the stress sensor protein DJ-1, a sign of the formation of H2O2, and significantly increased the counts of cells positive for the pro-apoptotic proteins TP53, PUMA, and CASPASE-3 (CASP-3), indicative of apoptosis, in B-ALL cells. We demonstrate that TPEN selectively eliminates B-ALL cells (CD34 + /CD19 +) but no other cell populations in BM (CD34 + /CD19-; CD34-/CD19 + ; CD34-/CD19-) independent of age, diagnosis status (de novo or refractory), sex, karyotype, or immunophenotype. Understanding TPEN-induced cell death in leukemia cells provides insight into more effective therapeutic oxidation-inducing anticancer agents.


Subject(s)
Bone Marrow , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antigens, CD19/metabolism , Bone Marrow/metabolism , Child , Ethylenediamines , Humans , Hydrogen Peroxide/metabolism , Immunophenotyping , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
20.
Biol Res ; 55(1): 2, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35016732

ABSTRACT

BACKGROUND: Chinese hamster ovary cell line has been used routinely as a bioproduction factory of numerous biopharmaceuticals. So far, various engineering strategies have been recruited to improve the production efficiency of this cell line such as apoptosis engineering. Previously, it is reported that the caspase-7 deficiency in CHO cells reduces the cell proliferation rate. But the effect of this reduction on the CHO cell productivity remained unclear. Hence, in the study at hand the effect of caspase-7 deficiency was assessed on the cell growth, viability and protein expression. In addition, the enzymatic activity of caspase-3 was investigated in the absence of caspase-7. RESULTS: Findings showed that in the absence of caspase-7, both cell growth and cell viability were decreased. Cell cycle analysis illustrated that the CHO knockout (CHO-KO) cells experienced a cell cycle arrest in G2/M phase. This cell cycle arrest resulted in a 1.7-fold increase in the expression of luciferase in CHO-KO cells compared to parenteral cells. Furthermore, in the apoptotic situation the enzymatic activity of caspase-3 in CHO-KO cells was approximately 3 times more than CHO-K1 cells. CONCLUSIONS: These findings represented that; however, caspase-7 deficiency reduces the cell proliferation rate but the resulted cell cycle arrest leads to the enhancement of recombinant protein expression. Moreover, increasing in the caspase-3 enzymatic activity compensates the absence of caspase-7 in the caspase cascade of apoptosis.


Subject(s)
CHO Cells , Caspase 7/genetics , Cell Cycle Checkpoints , Recombinant Proteins/biosynthesis , Animals , Cell Division , Cricetinae , Cricetulus , Gene Knockout Techniques , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL