Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 10(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35740361

ABSTRACT

Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.

2.
Viruses ; 14(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35215847

ABSTRACT

(1) Background: Haloarchaea comprise extremely halophilic organisms of the Archaea domain. They are single-cell organisms with distinctive membrane lipids and a protein-based cell wall or surface layer (S-layer) formed by a glycoprotein array. Pleolipoviruses, which infect haloarchaeal cells, have an envelope analogous to eukaryotic enveloped viruses. One such member, Halorubrum pleomorphic virus 6 (HRPV-6), has been shown to enter host cells through virus-cell membrane fusion. The HRPV-6 fusion activity was attributed to its VP4-like spike protein, but the physiological trigger required to induce membrane fusion remains yet unknown. (2) Methods: We used SDS-PAGE mass spectroscopy to characterize the S-layer extract, established a proteoliposome system, and used R18-fluorescence dequenching to measure membrane fusion. (3) Results: We show that the S-layer extraction by Mg2+ chelating from the HRPV-6 host, Halorubrum sp. SS7-4, abrogates HRPV-6 membrane fusion. When we in turn reconstituted the S-layer extract from Hrr. sp. SS7-4 onto liposomes in the presence of Mg2+, HRPV-6 membrane fusion with the proteoliposomes could be readily observed. This was not the case with liposomes alone or with proteoliposomes carrying the S-layer extract from other haloarchaea, such as Haloferax volcanii. (4) Conclusions: The S-layer extract from the host, Hrr. sp. SS7-4, corresponds to the physiological fusion trigger of HRPV-6.


Subject(s)
Archaeal Proteins/metabolism , Archaeal Viruses/physiology , Halorubrum/virology , Membrane Glycoproteins/metabolism , Virus Internalization , Archaeal Viruses/ultrastructure , Halorubrum/ultrastructure , Host Microbial Interactions , Membrane Fusion , Proteolipids/metabolism
3.
Front Microbiol ; 12: 744164, 2021.
Article in English | MEDLINE | ID: mdl-34675908

ABSTRACT

Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.

4.
Front Plant Sci ; 9: 904, 2018.
Article in English | MEDLINE | ID: mdl-29997646

ABSTRACT

The pathogenicity of phytonematodes relies on secreted virulence factors to rewire host cellular pathways for the benefits of the nematode. In the root-knot nematode (RKN) Meloidogyne incognita, thousands of predicted secreted proteins have been identified and are expected to interact with host proteins at different developmental stages of the parasite. Identifying the host targets will provide compelling evidence about the biological significance and molecular function of the predicted proteins. Here, we have focused on the hub protein CSN5, the fifth subunit of the pleiotropic and eukaryotic conserved COP9 signalosome (CSN), which is a regulatory component of the ubiquitin/proteasome system. We used affinity purification-mass spectrometry (AP-MS) to generate the interaction network of CSN5 in M. incognita-infected roots. We identified the complete CSN complex and other known CSN5 interaction partners in addition to unknown plant and M. incognita proteins. Among these, we described M. incognita PASSE-MURAILLE (MiPM), a small pioneer protein predicted to contain a secretory peptide that is up-regulated mostly in the J2 parasitic stage. We confirmed the CSN5-MiPM interaction, which occurs in the nucleus, by bimolecular fluorescence complementation (BiFC). Using MiPM as bait, a GST pull-down assay coupled with MS revealed some common protein partners between CSN5 and MiPM. We further showed by in silico and microscopic analyses that the recombinant purified MiPM protein enters the cells of Arabidopsis root tips in a non-infectious context. In further detail, the supercharged N-terminal tail of MiPM (NTT-MiPM) triggers an unknown host endocytosis pathway to penetrate the cell. The functional meaning of the CSN5-MiPM interaction in the M. incognita parasitism is discussed. Moreover, we propose that the cell-penetrating properties of some M. incognita secreted proteins might be a non-negligible mechanism for cell uptake, especially during the steps preceding the sedentary parasitic phase.

5.
Viruses ; 8(5)2016 05 24.
Article in English | MEDLINE | ID: mdl-27213430

ABSTRACT

The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.


Subject(s)
Bunyaviridae/physiology , Host-Pathogen Interactions , Virus Attachment , Virus Internalization , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL