Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.684
Filter
1.
J Inflamm (Lond) ; 21(1): 36, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251994

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is associated with a high concentration of extracellular DNA (ecDNA). This could be a consequence of the inflammation, but the ecDNA could also be involved in the unknown etiopathogenesis of RA. Clearance of ecDNA is hypothesized to prevent the development of RA. This study aimed to analyze the effects of exogenous deoxyribonuclease I (DNase I) administration in an animal model of RA. METHODS: The collagen antibody-induced arthritis (CAIA) model of RA was induced in adult female DBA/1J mice. CAIA mice were treated with saline or DNase I (10 mg/kg) every 12 h for the whole duration of the experiment. Arthritic scores were assessed. Paw volume and temperature were assessed using a plethysmometer and a thermal camera, respectively. Plasma ecDNA and its subcellular origin were analyzed using fluorometry and real-time PCR. DNase activity was quantified with single radial enzyme diffusion method. RESULTS: The CAIA model was successfully induced as proved by a higher volume, temperature and the overall arthritis score in comparison to controls. The administration of DNase I resulted in a nearly two-fold increase in serum DNase activity. Still, it did affect neither plasma ecDNA, nor the arthritis score or other measures of joint inflammation. CONCLUSION: Our results suggest that exogenous DNase I does not prevent the development of CAIA in mice. Whether this is true for other animal models of arthritis or clinical RA requires further research. EcDNA does not seem to be involved in the pathogenesis of CAIA. Additional studies are also needed to elucidate the role of ecDNA in the development of RA, focusing especially on its origin and inhibition of ecDNA release.

2.
Adv Kidney Dis Health ; 31(5): 427-435, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39232613

ABSTRACT

Currently in the United States, there are more than 250,000 patients with a functioning kidney allograft and over 100,000 waitlisted patients awaiting kidney transplant, with a burgeoning number added to the kidney transplant wait list every year. Although early post-transplant care is delivered at the transplant center, the increasing number of kidney transplant recipients requires general nephrologists to actively participate in the long-term care of these patients. Serum creatinine and proteinuria are imperfect traditional biomarkers of allograft dysfunction and lag behind subclinical allograft injury. This manuscript reviews the various clinically available biomarkers in the field of kidney transplantation for a general nephrologist with a focus on the utility of donor-derived cell-free DNA, as a marker of early allograft injury. Blood gene expression profiling, initially studied in the context of early identification of subclinical rejection, awaits validation in larger multicentric trials. Urinary cellular messenger ribonucleic acid and chemokine CXCL10 hold promising potential for early diagnosis of both subclinical and acute rejection. Torque tenovirus, a ubiquitous DNA virus is emerging as a biomarker of immunosuppression exposure as peripheral blood torque tenovirus copy numbers might mirror the intensity of host immunosuppression. Although high-quality evidence is still being generated, evidence and recommendations are provided to aid the general nephrologist in implementation of novel biomarkers in their clinical practice.


Subject(s)
Biomarkers , Graft Rejection , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Biomarkers/blood , Biomarkers/urine , Graft Rejection/diagnosis , Graft Rejection/blood , Graft Rejection/immunology , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/urine
3.
Trends Mol Med ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39232927

ABSTRACT

Small cell lung cancer (SCLC) is highly aggressive with poor prognosis. Despite a relative prevalence of circulating tumour DNA (ctDNA) in SCLC, liquid biopsies are not currently implemented, unlike non-SCLC where cell-free DNA (cfDNA) mutation profiling in the blood has utility for guiding targeted therapies and assessing minimal residual disease. cfDNA methylation profiling is highly sensitive for SCLC detection and holds promise for disease monitoring and molecular subtyping; cfDNA fragmentation profiling has also demonstrated clinical potential. Extrachromosomal DNA (ecDNA), that is often observed in SCLC, promotes tumour heterogeneity and chemotherapy resistance and can be detected in blood. We discuss how these cfDNA profiling modalities can be harnessed to expand the clinical applications of liquid biopsy in SCLC.

4.
Cancer Lett ; : 217216, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233043

ABSTRACT

Cell-free DNA (cfDNA) analysis has shown potential in detecting early-stage lung cancer based on non-genetic features. To distinguish patients with lung cancer from healthy individuals, peripheral blood were collected from 926 lung cancer patients and 611 healthy individuals followed by cfDNA extraction. Low-pass whole genome sequencing and targeted methylation sequencing were conducted and various features of cfDNA were evaluated. With our customized algorithm using the most optimal features, the ensemble stacked model was constructed, called ESim-seq (Early Screening tech with Integrated Model). In the independent validation cohort, the ESim-seq model achieved an area under the curve (AUC) of 0.948 (95% CI: 0.915-0.981), with a sensitivity of 79.3% (95% CI: 71.5-87.0%) across all stages at a specificity of 96.0% (95% CI: 90.6-100.0%). Specifically, the sensitivity of the ESim-seq model was 76.5% (95% CI: 67.3-85.8%) in stage I patients, 100% (95% CI: 100.0-100.0%) in stage II patients, 100% (95% CI: 100.0-100.0%) in stage III patients and 87.5% (95% CI: 64.6%-100.0%) in stage IV patients in the independent validation cohort. Besides, we constructed LCSC model (Lung Cancer Subtype multiple Classification), which was able to accurately distinguish patients with small cell lung cancer from those with non-small cell lung cancer, achieving an AUC of 0.961 (95% CI: 0.949-0.957). The present study has established a framework for assessing cfDNA features and demonstrated the benefits of integrating multiple features for early detection of lung cancer.

5.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39222060

ABSTRACT

Instruction-tuned large language models (LLMs) demonstrate exceptional ability to align with human intentions. We present an LLM-based model-instruction-tuned LLM for assessment of cancer (iLLMAC)-that can detect cancer using cell-free deoxyribonucleic acid (cfDNA) end-motif profiles. Developed on plasma cfDNA sequencing data from 1135 cancer patients and 1106 controls across three datasets, iLLMAC achieved area under the receiver operating curve (AUROC) of 0.866 [95% confidence interval (CI), 0.773-0.959] for cancer diagnosis and 0.924 (95% CI, 0.841-1.0) for hepatocellular carcinoma (HCC) detection using 16 end-motifs. Performance increased with more motifs, reaching 0.886 (95% CI, 0.794-0.977) and 0.956 (95% CI, 0.89-1.0) for cancer diagnosis and HCC detection, respectively, with 64 end-motifs. On an external-testing set, iLLMAC achieved AUROC of 0.912 (95% CI, 0.849-0.976) for cancer diagnosis and 0.938 (95% CI, 0.885-0.992) for HCC detection with 64 end-motifs, significantly outperforming benchmarked methods. Furthermore, iLLMAC achieved high classification performance on datasets with bisulfite and 5-hydroxymethylcytosine sequencing. Our study highlights the effectiveness of LLM-based instruction-tuning for cfDNA-based cancer detection.


Subject(s)
Carcinoma, Hepatocellular , Cell-Free Nucleic Acids , Humans , Cell-Free Nucleic Acids/blood , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/blood , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/blood , ROC Curve , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Nucleotide Motifs , DNA Methylation
6.
Article in English | MEDLINE | ID: mdl-39238355

ABSTRACT

CONTEXT AND OBJECTIVE: The genetic profile of prolactinomas remains poorly understood. Our objective is to identify somatic genetic alterations associated with prolactinomas and to report the identification of an activating ESR1 mutation (ESR1Y537S) in an aggressive prolactinoma. SETTING: Brigham and Women's Hospital. DESIGN: Massively parallel-sequencing panel (OncoPanel) was performed in a cohort of patients with prolactinomas to identify mutations and copy number variation (CNV). RESULTS: Twenty subjects (mean age 38.6 years; 12 women and 8 men) were included in this study. A somatic ESR1Y537S mutation was identified in an aggressive prolactinoma in a post-menopausal woman. No SF3B1 or other somatic mutations were identified. The median number of CNV events identified in our samples was 46; the prolactinoma with ESR1Y537S had the highest number with 233 events. In breast cancer, ESR1Y537S has been shown to activate estrogen receptor alpha independent of ligand binding. In patients with resistant breast cancer and ESR1Y537S, elacestrant, a second-line ER degrader, improves progression-free survival. Therefore, given the lack of response to multimodality therapies, elacestrant was initiated in this patient after the third cycle of radiotherapy. Elacestrant, along with radiotherapy, controlled tumor growth and significantly reduced prolactin levels. CONCLUSION: Molecular profiling allowed the identification of ESR1Y537S, in an aggressive prolactinoma. ESR1Y537S was not detected early in the course of the disease and is likely conferring tumor aggressiveness. This finding emphasizes the significance of estrogen receptor signaling in prolactinomas. It also allowed the use of targeted therapy with successful control of disease progression.

7.
Mol Cancer ; 23(1): 189, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242496

ABSTRACT

Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liquid Biopsy/methods , Disease Management , Prognosis , Epigenesis, Genetic , Animals , Tumor Microenvironment
8.
Crit Rev Oncol Hematol ; : 104503, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245298

ABSTRACT

Classical Hodgkin lymphoma (cHL) is a common lymphoma that affects young patients. Fortunately, the disease is highly curable as it is susceptible to the currently available treatment modalities. Disease monitoring with Positron Emission Tomography and Computed Tomography (PET/ CT) is an integral part of managing these patients. PET guided protocols are currently used to adjust treatment according to the response. The pivotal idea behind the use of response-adapted approaches is to preserve efficacy while decreasing the toxicity. It also helps to intensify therapy in patients in need because of suboptimal response. However, imaging techniques are limited by their sensitivity and specificity. Minimal Residual Disease (MRD) assessment is a newly emerging concept in many hematologic malignancies. It utilizes various molecular techniques such as polymerase chain reaction (PCR), and next-generation sequencing (NGS) as well as flow cytometry, to detect disease traces. This review looks into MRD detection techniques, its current applications, and the evidence in the literature for its use in cHL.

9.
Best Pract Res Clin Obstet Gynaecol ; 97: 102544, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39255551

ABSTRACT

Non-invasive prenatal diagnosis of monogenic disorders is becoming integrated into routine clinical care for many indications. This is carried out by testing cell-free DNA extracted from the plasma portion of a maternal blood sample. The cell-free DNA is low in concentration, and consists of a mixture of maternal and fetally-derived DNA which are not easy to separate. Methods used therefore need to be rapid, sensitive and specific, including real-time PCR, digital PCR and next generation sequencing with complex algorithms. Testing may be required for pregnancies with an increased chance of a monogenic disorder due to family history or carrier status, or where there are specific abnormalities identified by ultrasound scan. In these situations, testing is considered to be diagnostic and therefore does not require confirmation by invasive testing. With increased access to genomic technologies, and more diagnoses for rare disease patients, future demand for NIPD and possibilities during pregnancy will continue.

10.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131379

ABSTRACT

While liquid biopsy has potential to transform cancer diagnostics through minimally-invasive detection and monitoring of tumors, the impact of preanalytical factors such as the timing and anatomical location of blood draw is not well understood. To address this gap, we leveraged pet dogs with spontaneous cancer as a model system, as their compressed disease timeline facilitates rapid diagnostic benchmarking. Key liquid biopsy metrics from dogs were consistent with existing reports from human patients. The tumor content of samples was higher from venipuncture sites closer to the tumor and from a central vein. Metrics also differed between lymphoma and non-hematopoietic cancers, urging cancer-type-specific interpretation. Liquid biopsy was highly sensitive to disease status, with changes identified soon after post chemotherapy administration, and trends of increased tumor fraction and other metrics observed prior to clinical relapse in dogs with lymphoma or osteosarcoma. These data support the utility of pet dogs with cancer as a relevant system for advancing liquid biopsy platforms.

11.
Front Cell Infect Microbiol ; 14: 1398190, 2024.
Article in English | MEDLINE | ID: mdl-39135636

ABSTRACT

Purpose: Metagenomic next-generation sequencing(mNGS) is a novel molecular diagnostic technique. For nucleic acid extraction methods, both whole-cell DNA (wcDNA) and cell-free DNA (cfDNA) are widely applied with the sample of bronchoalveolar lavage fluid (BALF). We aim to evaluate the clinical value of mNGS with cfDNA and mNGS with wcDNA for the detection of BALF pathogens in non-neutropenic pulmonary aspergillosis. Methods: mNGS with BALF-cfDNA, BALF-wcDNA and conventional microbiological tests (CMTs) were performed in suspected non-neutropenic pulmonary aspergillosis. The diagnostic value of different assays for pulmonary aspergillosis was compared. Results: BALF-mNGS (cfDNA, wcDNA) outperformed CMTs in terms of microorganisms detection. Receiver operating characteristic (ROC) analysis indicated BALF-mNGS (cfDNA, wcDNA) was superior to culture and BALF-GM. Combination diagnosis of either positive for BALF-mNGS (cfDNA, wcDNA) or CMTs is more sensitive than CMTs alone in the diagnosis of pulmonary aspergillosis (BALF-cfDNA+CMTs/BALF-wcDNA+CMTs vs. CMTs: ROC analysis: 0.813 vs.0.66, P=0.0142/0.796 vs.0.66, P=0.0244; Sensitivity: 89.47% vs. 47.37%, P=0.008/84.21% vs. 47.37%, P=0.016). BALF-cfDNA showed a significantly greater reads per million (RPM) than BALF-wcDNA. The area under the ROC curve (AUC) for RPM of Aspergillus detected by BALF-cfDNA, used to predict "True positive" pulmonary aspergillosis patients, was 0.779, with a cut-off value greater than 4.5. Conclusion: We propose that the incorporation of BALF-mNGS (cfDNA, wcDNA) with CMTs improves diagnostic precision in the identification of non-neutropenic pulmonary aspergillosis when compared to CMTs alone. BALF-cfDNA outperforms BALF-wcDNA in clinical value.


Subject(s)
Bronchoalveolar Lavage Fluid , Cell-Free Nucleic Acids , DNA, Fungal , High-Throughput Nucleotide Sequencing , Metagenomics , Pulmonary Aspergillosis , ROC Curve , Humans , High-Throughput Nucleotide Sequencing/methods , Bronchoalveolar Lavage Fluid/microbiology , Pulmonary Aspergillosis/diagnosis , Metagenomics/methods , Male , Female , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , Middle Aged , Molecular Diagnostic Techniques/methods , Aged , Sensitivity and Specificity , Adult
13.
Article in English | MEDLINE | ID: mdl-39110532

ABSTRACT

OBJECTIVES: Dermatomyositis (DM) is a rare type I interferon (IFN-I)-driven autoimmune disease, and anti-nuclear matrix protein 2 (NXP2) antibody is related to severe muscle disease and poor prognosis. Circulating cell-free DNA (ccf-DNA), including ccf-mitochondrial DNA and ccf-nuclear DNA, activates cGAS/STING pathway to induce IFN-I production in autoimmune diseases. We investigated whether serum-derived ccf-DNA played a pathogenic role on skeletal muscle in anti-NXP2 antibody-positive DM. METHODS: Serum ccf-DNA levels were measured, and correlations between ccf-DNA and clinicopathological indicators were performed. RNA sequencing, immunofluorescence, western blotting and RT-qPCR were performed on skeletal muscle samples. The serum-induced expression of p-STING in C2C12 cells was assessed in vitro. RESULTS: We found that increased ccf-DNA levels were positively correlated with MYOACT scores in anti-NXP2 antibody-positive DM. RNA sequencing and immunofluorescence results revealed that the cytosolic DNA-sensing pathway was upregulated and that increased cytosolic dsDNA was colocalised with cGAS in skeletal muscle in anti-NXP2 antibody-positive DM. Western blot analysis revealed activation of the cGAS/STING pathway in patients with perifascicular atrophy (PFA) but not in patients without PFA. RT-qPCR showed increased IFN-I scores in both patients with PFA and patients without PFA. Sera from patients with PFA increased p-STING expression in C2C12 cells, and DNase I treatment and STING inhibitor efficiently inhibited p-STING expression, respectively. CONCLUSIONS: Increased ccf-DNA levels may be potential biomarkers for monitoring disease activity in anti-NXP2 antibody-positive DM. Activation of the cGAS/STING pathway is associated with PFA. Our findings identify the pathogenic role of ccf-DNA on skeletal muscle via the cGAS/STING pathway.

14.
Transpl Int ; 37: 12772, 2024.
Article in English | MEDLINE | ID: mdl-39114640

ABSTRACT

During the last few years, cell-free DNA (cfDNA) has emerged as a possible non-invasive biomarker for prediction of complications after lung transplantation. We previously published a proof-of-concept study using a digital droplet polymerase chain reaction (ddPCR)-based method for detection of cfDNA. In the current study, we aimed to further evaluate the potential clinical usefulness of detecting chronic lung allograft dysfunction (CLAD) using three different ddPCR applications measuring and calculating the donor fraction (DF) of cfDNA as well as one method using the absolute amount of donor-derived cfDNA. We analyzed 246 serum samples collected from 26 lung transplant recipients. Nine of the patients had ongoing CLAD at some point during follow-up. All four methods showed statistically significant elevation of the measured variable in the CLAD samples compared to the non-CLAD samples. The results support the use of ddPCR-detected cfDNA as a potential biomarker for prediction of CLAD. These findings need to be validated in a subsequent prospective study.


Subject(s)
Biomarkers , Cell-Free Nucleic Acids , Lung Transplantation , Humans , Lung Transplantation/adverse effects , Cell-Free Nucleic Acids/blood , Male , Female , Middle Aged , Adult , Biomarkers/blood , Tissue Donors , Aged , Polymerase Chain Reaction/methods , Postoperative Complications/blood , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Prospective Studies , Primary Graft Dysfunction/blood , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/etiology , Allografts , Graft Rejection/blood , Graft Rejection/diagnosis
15.
Open Forum Infect Dis ; 11(8): ofae425, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091643

ABSTRACT

Background: Plasma microbial cell-free DNA (mcfDNA) sequencing can establish the etiology of multiple infectious syndromes by identifying microbial DNA in plasma. However, data are needed to define the clinical scenarios where this tool offers the highest clinical benefit. Methods: We conducted a prospective multicenter observational study that evaluated the impact of plasma mcfDNA sequencing compared with usual care testing among adults with hematologic malignancies. This is a secondary analysis of an expanded cohort that evaluated the clinical utility of plasma mcfDNA sequencing across prespecified and adjudicated outcomes. We examined the percentage of participants for whom plasma mcfDNA sequencing identified a probable cause of pneumonia or clinically relevant nonpneumonia infection. We then assessed potential changes in antimicrobial therapy based on plasma mcfDNA sequencing results and the potential for early mcfDNA testing to avoid bronchoscopy and its associated adverse events. Results: Of 223 participants, at least 1 microbial detection by plasma mcfDNA sequencing was adjudicated as a probable cause of pneumonia in 57 (25.6%) and a clinically relevant nonpneumonia infection in 88 (39.5%). A probable cause of pneumonia was exclusively identified by plasma mcfDNA sequencing in 23 (10.3%) participants. Antimicrobial therapy would have changed for 41 (18.4%) participants had plasma mcfDNA results been available in real time. Among the 57 participants with a probable cause of pneumonia identified by plasma mcfDNA sequencing, bronchoscopy identified no additional probable cause of pneumonia in 52 (91.2%). Conclusions: Plasma mcfDNA sequencing could improve management of both pneumonia and other concurrent infections in immunocompromised patients with suspected pneumonia.

16.
J Clin Med ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39124551

ABSTRACT

Background: Products of conception samples are often collected and analyzed to try to determine the cause of an early pregnancy loss. However, sample collection may not always be possible, and maternal cell contamination and culture failure can affect the analysis. Cell-free DNA-based analysis of a blood sample could be used as an alternative method in early pregnancy loss cases to detect if aneuploidies were present in the fetus. Methods: In this prospective study, blood samples from early pregnancy loss patients were analyzed for the presence of fetal aneuploidies using a modified version of a noninvasive prenatal testing assay for cell-free DNA analysis. Results from cell-free DNA analysis were compared against the gold standard, microarray analysis of products of conception samples. This study was registered with ClinicalTrials.gov, identifier: NCT04935138. Results: Of the 76 patient samples included in the final study cohort, 11 were excluded from performance calculations. The 65 patient samples included in the final analysis included 49 with an abnormal microarray result and 16 with a normal microarray result. Based on results from these 65 samples, the study found that genome-wide cell-free DNA analysis had a sensitivity of 73.5% with a specificity of 100% for the detection of fetal aneuploidies in early pregnancy loss cases. Conclusions: This prospective study provides further support for the utility of cell-free DNA analysis in detecting fetal aneuploidies in early pregnancy loss cases. This approach could allow for a noninvasive method of investigating the etiology of miscarriages to be made available clinically.

17.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125631

ABSTRACT

Kawasaki disease (KD) is a febrile illness characterised by systemic inflammation of small- and medium-sized blood vessels, which commonly occurs in young children. Although self-limiting, there is a risk of developing coronary artery lesions as the disease progresses, with delay in diagnosis and treatment. Unfortunately, the diagnosis of KD continues to remain a clinical dilemma. Thus, this article not only summarises the key research gaps associated with KD, but also evaluates the possibility of using circulating endothelial injury biomarkers, such as circulating endothelial cells, endothelial microparticles and vascular endothelial cell-free DNA, as diagnostic and prognostic tools for KD: a "liquid biopsy" approach. The challenges of translating liquid biopsies to use in KD and the opportunities for improvement in its diagnosis and management that such translation may provide are discussed. The use of endothelial damage markers, which are easily obtained via blood collection, as diagnostic tools is promising, and we hope this will be translated to clinical applications in the near future.


Subject(s)
Biomarkers , Mucocutaneous Lymph Node Syndrome , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/blood , Humans , Liquid Biopsy/methods , Endothelial Cells/metabolism , Endothelial Cells/pathology , Cell-Free Nucleic Acids/blood , Prognosis , Cell-Derived Microparticles/metabolism
19.
Prenat Diagn ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153191

ABSTRACT

BACKGROUND: The clinical performance of RHDO-based NIPD for PKU during early gestation remains under-evaluated. Furthermore, studies focused on SNP loci obtained by next-generation sequencing to analyze the genetic evolution of pathogenic variations in PKU is limited. METHODS: Maternal peripheral blood, along with proband and paternal samples, was collected between 7 and 12 weeks of gestation. The PAH gene and surrounding high heterozygosity SNPs were targeted for enrichment and sequencing. Fetal genotypes were inferred using RHDO-based NIPD. High-resolution PAH haplotypes were used for the analysis of two common pathogenic variants in the Chinese population: c.728G>A and c.1238G>C. RESULTS: Sixty one PKU families participated with an average fetal fraction of 6.08%. The median gestational age was 8+6 weeks. RHDO-based NIPD successfully identified fetal genotypes in 59 cases (96.72%, 59/62). Two cases failed because of insufficient informative SNPs. In addition, a recombination event was assessed in one fetus of 59 cases. Six, and three haplotypes were identified for c.728G>A(p.Arg243Gln) and c.1238G>C(p.Arg413Pro), respectively. Hap_3 and hap_8 were identified as the ancestral haplotypes for these pathogenic variants, with other haplotypes arising from mutations or recombination based on these ancestral haplotypes. CONCLUSIONS: This study validates the feasibility of an RHDO-based assay for NIPD of PKU in early pregnancy and introduces its application in the demonstration of founder effects in recurrent pathogenic variations, offering new insights into the evolutionary analysis of PAH variations.

20.
Am J Obstet Gynecol ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153534

ABSTRACT

Cell-free DNA (cfDNA) to determine the fetal RHD genotype from the maternal circulation was first described in 1993. High throughput assays using polymerase chain reaction technology were introduced in Europe and gained widespread acceptance in the management of the Rhesus alloimmunized pregnancy. The specificity and sensitivity of these assays approached 99%. As confidence was gained with these results, Scandinavian countries began to employ cfDNA for fetal RHD typing as an integral component of their introduction of antenatal Rhesus immune globulin (RhIG) in non-alloimmunized pregnancies. Since 40% of RhD-negative pregnant women will carry an RhD-negative fetus, doses of RhIG were conserved. Recently two U.S. companies have introduced cfDNA assays for RHD as part of their NIPT assays. Both utilize next generation sequencing and have developed methodologies to detect the aberrant RHD pseudogene and the hybrid RHD-CE-Ds genotype. In addition, excellent correlation studies with either neonatal genotyping or serology have been reported. The manufacturer of RhoGAM® has recently announced a national shortage. . Given the current availability of reliable cfDNA assays for determining the RHD status of the fetus, the time has come to implement this strategy to triage the antenatal use of Rhesus immune globulin in the U.S..

SELECTION OF CITATIONS
SEARCH DETAIL