Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
mBio ; 15(5): e0069324, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587426

ABSTRACT

Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.


Subject(s)
Genetic Variation , Genotype , Streptococcus pyogenes , Streptococcus pyogenes/genetics , Streptococcus pyogenes/classification , Humans , Recombination, Genetic , Bacterial Outer Membrane Proteins/genetics , Fimbriae Proteins/genetics , Gene Transfer, Horizontal , Antigens, Bacterial/genetics , Streptococcal Infections/microbiology , Streptococcal Infections/epidemiology , Impetigo/microbiology , Impetigo/epidemiology , Pharyngitis/microbiology , Fimbriae, Bacterial/genetics , Carrier Proteins
2.
Acta Neuropathol Commun ; 12(1): 39, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454495

ABSTRACT

Chordomas are clinically aggressive tumors with a high rate of disease progression despite maximal therapy. Given the limited therapeutic options available, there remains an urgent need for the development of novel therapies to improve clinical outcomes. Cell surface proteins are attractive therapeutic targets yet are challenging to profile with common methods. Four chordoma cell lines were analyzed by quantitative proteomics using a differential ultracentrifugation organellar fractionation approach. A subtractive proteomics strategy was applied to select proteins that are plasma membrane enriched. Systematic data integration prioritized PLA2R1 (secretory phospholipase A2 receptor-PLA2R1) as a chordoma-enriched surface protein. The expression profile of PLA2R1 was validated across chordoma cell lines, patient surgical tissue samples, and normal tissue lysates via immunoblotting. PLA2R1 expression was further validated by immunohistochemical analysis in a richly annotated cohort of 25-patient tissues. Immunohistochemistry analysis revealed that elevated expression of PLA2R1 is correlated with poor prognosis. Using siRNA- and CRISPR/Cas9-mediated knockdown of PLA2R1, we demonstrated significant inhibition of 2D, 3D and in vivo chordoma growth. PLA2R1 depletion resulted in cell cycle defects and metabolic rewiring via the MAPK signaling pathway, suggesting that PLA2R1 plays an essential role in chordoma biology. We have characterized the proteome of four chordoma cell lines and uncovered PLA2R1 as a novel cell-surface protein required for chordoma cell survival and association with patient outcome.


Subject(s)
Chordoma , Humans , Chordoma/genetics , Chordoma/metabolism , Proteomics , Cell Membrane/metabolism , Membrane Proteins , Organelles/metabolism , Organelles/pathology , Receptors, Phospholipase A2/metabolism
3.
Angew Chem Int Ed Engl ; 63(18): e202319232, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38472118

ABSTRACT

Cell-surface proteins are important drug targets but historically have posed big challenges for the complete elimination of their functions. Herein, we report antibody-peptide conjugates (Ab-CMAs) in which a peptide targeting chaperone-mediated autophagy (CMA) was conjugated with commercially available monoclonal antibodies for specific cell-surface protein degradation by taking advantage of lysosomal degradation pathways. Unique features of Ab-CMAs, including cell-surface receptor- and E3 ligase-independent degradation, feasibility towards different cell-surface proteins (e.g., epidermal growth factor receptor (EGFR), programmed cell death ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2)) by a simple change of the antibody, and successful tumor inhibition in vivo, make them attractive protein degraders for biomedical research and therapeutic applications. As the first example employing CMA to degrade proteins from the outside in, our findings may also shed new light on CMA, a degradation pathway typically targeting cytosolic proteins.


Subject(s)
Chaperone-Mediated Autophagy , Neoplasms , Humans , Autophagy/physiology , Membrane Proteins/metabolism , Neoplasms/metabolism , Peptides/metabolism , Lysosomes/metabolism
4.
Expert Rev Proteomics ; 21(1-3): 99-113, 2024.
Article in English | MEDLINE | ID: mdl-38300624

ABSTRACT

INTRODUCTION: Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets. AREAS COVERED: In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies. EXPERT OPINION: Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.


The cell surface contains many important proteins such as receptors and transporters. These proteins are responsible for cells to communicate with each other, take nutrients from outside, and interact with their surroundings. Aberrant changes in surface protein expression, modifications, and interactions with other molecules directly result in various diseases, including infections, immune disorders, and cancer. Currently, mass spectrometry (MS)-based proteomics is very powerful to study proteins on a large scale, and there has been a strong interest in employing MS to investigate cell-surface proteins. In this review, we discuss different methods combining mass spectrometry with other approaches to systematically characterize protein abundance, dynamics, modification, and interaction on the cell surface. These methods help uncover protein functions and specific cell-surface proteins related to human diseases. A better understanding of the functions and properties of cell-surface proteins can facilitate the discovery of surface proteins as effective biomarkers for disease early detection and the identification of drug targets for disease treatment.


Subject(s)
Membrane Proteins , Protein Processing, Post-Translational , Humans , Mass Spectrometry/methods , Membrane Proteins/metabolism , Glycosylation
5.
Cell Rep ; 43(2): 113798, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381608

ABSTRACT

Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV's co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo.


Subject(s)
Cell Communication , Immunoglobulins , Animals , Immunoglobulins/genetics , Cell Membrane , Drosophila , Membrane Proteins
6.
Bioorg Chem ; 138: 106680, 2023 09.
Article in English | MEDLINE | ID: mdl-37336103

ABSTRACT

Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.


Subject(s)
Neoplasms , Humans , Nitrogen , Vascular Endothelial Growth Factor A , Angiogenesis Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Receptor Protein-Tyrosine Kinases/metabolism
7.
Biosens Bioelectron ; 234: 115366, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37148802

ABSTRACT

Due to their pivotal roles in many biological functions, cell surface proteins (CSPs) are often used for cancer prognosis, as evidenced by a number of studies that have reported significant changes in the expression levels of specific surface proteins depending on the stage of tumorigenesis and selection/variety of reprogrammed cells during cell fate conversion. Current CSP detection strategies suffer from poor selectivity and lack the ability for in situ analysis but maintain the spatial information between cells. Here, we have fabricated nanoprobes for surface-enhanced Raman scattering (SERS) immunoassays by conjugating a specific antibody onto silica-coated gold nanoparticles incorporating an individual Raman reporter (Au-tag@SiO2-Ab NPs) for highly sensitive and selective in situ detection in different types of cells. When multiple HEK293 cell lines stably expressing different levels of the CSP, ACE2, were investigated by the SERS immunoassay, we demonstrated that the level of ACE2 expression in each cell line could be statistically distinguished from that in the other cell lines, indicating the quantitative feature of this biosensing system. When detecting living cells without cell lysis or fixation, as well as fixed cells, the levels of the epithelial CSPs, EpCAM (epithelial cell adhesion molecule) and E-cadherin, were successfully determined using our Au-tag@SiO2-Ab NPs and SERS immunoassay system in a highly selective and quantitative manner without significant cytotoxicity. Hence, our work provides technical insight into the development of a biosensing platform for a variety of biomedical applications, such as cancer metastasis prognosis and the in situ monitoring of stem cell reprogramming and differentiation.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Neoplasms , Humans , Membrane Proteins , Gold , Silicon Dioxide , Angiotensin-Converting Enzyme 2 , HEK293 Cells , Spectrum Analysis, Raman , Immunoassay
8.
Methods Mol Biol ; 2654: 113-122, 2023.
Article in English | MEDLINE | ID: mdl-37106178

ABSTRACT

The plasma membrane of cells is covered by proteins, glycoproteins, and glycolipids with molecular heights ranging from just a few nanometers to hundreds of nanometers. Formation of cell-cell contacts and signal transduction by individual receptors can be dependent on both the average height of a cell's glycocalyx and the specific height of individual receptors, sometimes with nanometer-scale sensitivity. While super-resolution imaging techniques allow molecular distances to be measured with the sub-diffraction limited resolution, typically 10 nm in the lateral direction and 100 nm in the axial direction, measurements of molecular heights at the single nanometer scale on native cell membranes have been difficult to obtain. Cell surface optical profilometry (CSOP) is a simple and rapid method that achieves nanometer height resolution by localizing fluorophores at the tip and base of cell surface molecules and determining their separation with high precision by radially averaging across many molecules. Here we describe how to make CSOP measurements of multi-domain proteins on model membrane surfaces as well as native cell surfaces.


Subject(s)
Glycocalyx , Glycoproteins , Cell Membrane/metabolism , Glycoproteins/metabolism , Signal Transduction
9.
ACS Sens ; 8(3): 1348-1356, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36848221

ABSTRACT

Cell surface proteins, as important components of biological membranes, cover a wide range of important markers of diseases and even cancers. In this regard, precise detection of their expression levels is of crucial importance for both cancer diagnosis and the development of responsive therapeutic strategies. Herein, a size-controlled core-shell Au@ Copper(II) benzene-1,3,5-tricarboxylate (Au@Cu-BTC) nanomaterial was synthesized for specific and simultaneous imaging of multiple protein expression levels on cell membranes. The porous shell of Cu-BTC constructed on Au nanoparticles enabled effective loading of Raman reporter molecules, followed by further modification of the targeting moieties, which equipped the nanoprobe with good specificity and stability. Additionally, given the flexibility of the types of Raman reporter molecules available for loading, the nanoprobes were also demonstrated with good multichannel imaging capabilities. Ultimately, the present strategy of electromagnetic and chemical dual Raman scattering enhancement was successfully applied for the simultaneous detection of varied proteins on cell surfaces with high sensitivity and accuracy. The proposed nanomaterial holds promising applications in biosensing and therapeutic fields, which could not only provide a general strategy for the synthesis of metal-organic framework-based core-shell surface-enhanced Raman scattering nanoprobes but also enable further utilization in multitarget and multichannel cell imaging.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Cell Line, Tumor , Metal Nanoparticles/chemistry , Membrane Proteins , Gold/chemistry
10.
Methods Mol Biol ; 2572: 45-54, 2023.
Article in English | MEDLINE | ID: mdl-36161406

ABSTRACT

Polychromatic flowcytometry is increasingly used for simultaneously analyzing multiple intracellular and cell-surface proteins on a given cell population. Here we describe a flowcytometry-based method to analyze various proteins on the surface of endothelial cells (which comprise of less than 0.5% of the tumor microenvironment) and concurrently sort the live endothelial cells for the downstream applications such as gene expression by conventional quantitative PCR or by single-cell RNA sequencing.


Subject(s)
Endothelial Cells , Neoplasms , Cell Count , Endothelial Cells/pathology , Flow Cytometry/methods , Humans , Membrane Proteins , Neoplasms/pathology , Tumor Microenvironment
11.
Front Physiol ; 13: 1032383, 2022.
Article in English | MEDLINE | ID: mdl-36505044

ABSTRACT

ADAM10 is A Disintegrin And Metalloproteinase (ADAM) family member that is membrane bound with its catalytic domain present on the cell surface. It is a sheddase that cleaves anchored cell surface proteins to shed them from the cell surface. ADAM10 can cleave at least a hundred different proteins and is expressed in most tissues of the body. ADAM10 is best characterized for its role in Notch signaling. Interestingly, ADAM10 is transported to specific sites on the cell surface by six different tetraspanins. Although the mechanism is not clear, tetraspanins can regulate ADAM10 substrate specificity, which likely contributes to the diversity of ADAM10 substrates. In developing mouse teeth, ADAM10 is expressed in the stem cell niche and subsequently in pre-ameloblasts and then secretory stage ameloblasts. However, once ameloblasts begin transitioning into the maturation stage, ADAM10 expression abruptly ceases. This is exactly when ameloblasts stop their movement that extends enamel crystallites and when the enamel layer reaches its full thickness. ADAM10 may play an important role in enamel development. ADAM10 can cleave cadherins and other cell-cell junctions at specific sites where the tetraspanins have transported it and this may promote cell movement. ADAM10 can also cleave the transmembrane proteins COL17A1 and RELT. When either COL17A1 or RELT are mutated, malformed enamel may occur in humans and mice. So, ADAM10 may also regulate these proteins that are necessary for proper enamel development. This mini review will highlight ADAM10 function, how that function is regulated by tetraspanins, and how ADAM10 may promote enamel formation.

12.
Phytochemistry ; 202: 113296, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35868566

ABSTRACT

Plant secretomics has been especially important in understanding the molecular basis of plant development, stress resistance and biomarker discovery. In addition to sharing a similar role in maintaining cell metabolism and biogenesis with the animal secretome, plant-secreted proteins actively participate in signaling events crucial for cellular homeostasis during stress adaptation. However, investigation of the plant secretome remains largely overlooked, particularly in pulse crops, demanding urgent attention. To better understand the complexity of the secretome, we developed a reference map of a stress-resilient orphan legume, Lathyrus sativus (grasspea), which can be utilized as a potential proteomic resource. Secretome analysis of L. sativus led to the identification of 741 nonredundant proteins belonging to a myriad of functional classes, including antimicrobial, antioxidative and redox potential. Computational prediction of the secretome revealed that ∼29% of constituents are predicted to follow unconventional protein secretion (UPS) routes. We conducted additional in planta analysis to determine the localization of two secreted proteins, recognized as cell surface residents. Sequence-based homology comparison revealed that L. sativus shares ∼40% of the constituents reported thus far from in vitro and in planta secretome analysis in model and crop species. Significantly, we identified 571 unique proteins secreted from L. sativus involved in cell-to-cell communication, organ development, kinase-mediated signaling, and stress perception, among other critical roles. Conclusively, the grasspea secretome participates in putative crosstalk between genetic circuits that regulate developmental processes and stress resilience.


Subject(s)
Fabaceae , Lathyrus , Crops, Agricultural/metabolism , Edible Grain/metabolism , Lathyrus/genetics , Lathyrus/metabolism , Plant Development , Plant Proteins/metabolism , Proteomics , Secretome , Vegetables/metabolism
13.
Anal Chim Acta ; 1203: 339694, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35361423

ABSTRACT

Cell surface-exposed proteins (CSPs), termed the surfaceome, play a key role in many cellular processes. In-depth CSP analysis is significant for screening candidate biomarkers and drug targets. Highly selective enrichment of CSPs in physiological cellular environments is attractive but remains technically challenging. Here, we present a photocrosslinking-assisted cell surface protein enrichment (PCSPE) strategy. In this strategy, CSP labeling would be achieved within 2 min of UV irradiation by developing a new photocrosslinking probe (SDB) followed by one-step enrichment. The enrichment selectivity of CSPs reached 70.5%, and we identified up to 1017 CSPs from living HEK-293T cells, attributed to the high photocrosslinking reactivity and inherent impermeability of SDB, as well as the high cell viability maintained after rapid cell surface labeling to decrease the interference of intracellular proteins. Finally, this strategy was successfully applied to sorafenib-resistance cells for quantitative surfaceome analysis. All results demonstrated that our developed PCSPE method might provide a valuable toolkit for in-depth surfaceome profiling and comprehensive functional analysis.


Subject(s)
Membrane Proteins , Cell Membrane/metabolism , Cell Survival , Membrane Proteins/metabolism
14.
Foods ; 11(8)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35454744

ABSTRACT

Streptococcus thermophilus, a lactic acid bacterium widely used in the dairy industry, is consumed regularly by a significant proportion of the population. Some strains show in vitro anti-inflammatory activity which is not fully understood. We hypothesized that peptides released from the surface proteins of this bacterium during digestion could be implied in this activity. Consequently, we prepared a peptide hydrolysate by shaving and hydrolysis of surface proteins using trypsin, and the origin of peptides was checked by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Most of the identified peptides originated from bacterial cell surface proteins. The anti-inflammatory activity of peptide hydrolysate was investigated under inflammatory conditions in two cell models. Peptide hydrolysate significantly decreased secretion of pro-inflammatory cytokine IL-8 in lipopolysaccharide (LPS)-stimulated human colon epithelial HT-29 cells. It also reduced the production of pro-inflammatory cytokines IL-8, IL-1ß and the protein expression levels of Pro-IL-1ß and COX-2 in LPS-stimulated THP-1 macrophages. The results showed that peptides released from bacterial surface proteins by a pancreatic protease could therefore participate in an anti-inflammatory activity of S. thermophilus LMD-9 and could prevent low-grade inflammation.

15.
Elife ; 112022 02 24.
Article in English | MEDLINE | ID: mdl-35200140

ABSTRACT

Antibody binding to cell surface proteins plays a crucial role in immunity, and the location of an epitope can altogether determine the immunological outcome of a host-target interaction. Techniques available today for epitope identification are costly, time-consuming, and unsuited for high-throughput analysis. Fast and efficient screening of epitope location can be useful for the development of therapeutic monoclonal antibodies and vaccines. Cellular morphology typically varies, and antibodies often bind heterogeneously across a cell surface, making traditional particle-averaging strategies challenging for accurate native antibody localization. In the present work, we have developed a method, SiteLoc, for imaging-based molecular localization on cellular surface proteins. Nanometer-scale resolution is achieved through localization in one dimension, namely, the distance from a bound ligand to a reference surface. This is done by using topological image averaging. Our results show that this method is well suited for antibody binding site measurements on native cell surface morphology and that it can be applied to other molecular distance estimations as well.


Antibodies play a key role in the immune system. These proteins stick to harmful substances, such as bacteria and other disease-causing pathogens, marking them for destruction or blocking their attack. Antibodies are highly selective, and this ability has been used to target particular molecules in research, diagnostics and therapies. Typically, antibodies need to stick to a particular segment, or 'epitope', on the surface of a cell in order to trigger an immune response. Knowing where these regions are can help explain how these immune proteins work and aid the development of more effective drugs and diagnostic tools. One way to identify these sites is to measure the nano-distance between antibodies and other features on the cell surface. To do this, researchers take multiple images of the cell the antibody is attached to using light microscopy. Various statistical methods are then applied to create an 'average image' that has a higher resolution and can therefore be used to measure the distance between these two points more accurately. While this approach works on fixed shapes, like a perfect circle, it cannot handle human cells and bacteria which are less uniform and have more complex surfaces. Here, Kumra Ahnlide et al. have developed a new method called SiteLoc which can overcome this barrier. The method involves two fluorescent probes: one attached to a specific site on the cell's surface, and the other to the antibody or another molecule of interest. These two probes emit different colours when imaged with a fluorescent microscope. To cope with objects that have uneven surfaces, such as cells and bacteria, the two signals are transformed to 'follow' the same geometrical shape. The relative distance between them is then measured using statistical methods. Using this approach, Kumra Ahnlide et al. were able to identify epitopes on a bacterium, and measure distances on the surface of human red blood cells. The SiteLoc system could make it easier to develop antibody-based treatments and diagnostic tools. Furthermore, it could also be beneficial to the wider research community who could use it to probe other questions that require measuring nanoscale distances.


Subject(s)
Antibodies, Monoclonal/metabolism , Binding Sites, Antibody , Cell Membrane/metabolism , Epitope Mapping/methods , Membrane Proteins/metabolism , Binding Sites , Cell Membrane/immunology , Epitopes/metabolism , Humans , Ligands , Membrane Proteins/immunology , Models, Molecular
16.
J Proteome Res ; 21(2): 349-359, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34978816

ABSTRACT

The interactions between ectodomains of cell surface proteins are vital players in many important cellular processes, such as regulating immune responses, coordinating cell differentiation, and shaping neural plasticity. However, while the construction of a large-scale protein interactome has been greatly facilitated by the development of high-throughput experimental techniques, little progress has been made to support the discovery of extracellular interactome for cell surface proteins. Harnessed by the recent advances in computational modeling of protein-protein interactions, here we present a structure-based online database for the extracellular interactome of cell surface proteins in humans, called EXCESP. The database contains both experimentally determined and computationally predicted interactions among all type-I transmembrane proteins in humans. All structural models for these interactions and their binding affinities were further computationally modeled. Moreover, information such as expression levels of each protein in different cell types and its relation to various signaling pathways from other online resources has also been integrated into the database. In summary, the database serves as a valuable addition to the existing online resources for the study of cell surface proteins. It can contribute to the understanding of the functions of cell surface proteins in the era of systems biology.


Subject(s)
Membrane Proteins , Systems Biology , Computational Biology/methods , Humans , Membrane Proteins/genetics , Protein Interaction Mapping/methods , Signal Transduction
17.
Methods Mol Biol ; 2416: 257-265, 2022.
Article in English | MEDLINE | ID: mdl-34870841

ABSTRACT

Cell-surface proteins provide excellent biomarkers to identify specific cell types and resolve heterogeneous cell populations. The analysis of cell-surface proteins by flow cytometry produces robust and quantitative information with single-cell resolution, and allows live target cells to be purified and characterized or re-cultured. Studies using antibody screens, proteomics, and candidate analysis have identified a comprehensive set of proteins that are expressed on the surface of naïve and primed human pluripotent stem cells. These findings have led to the development of suitable protein markers and antibodies to accurately distinguish between these two cell types. Here, a detailed protocol is provided that uses multi-color flow cytometry to analyze cell-surface protein expression in naïve and primed human pluripotent stem cells. This method enables the unambiguous identification of pluripotent cell types and the opportunity to sort target cells including during cell state transitions. The protocol can be combined to additionally investigate the expression of reporter genes and other informative features, such as DNA content.


Subject(s)
Pluripotent Stem Cells , Biomarkers , Cell Differentiation , Flow Cytometry , Humans , Membrane Proteins
18.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613715

ABSTRACT

Cell surface proteins, including transmembrane and other surface-anchored proteins, play a key role in several critical cellular processes and have a strong diagnostic value. The development of quick and robust experimental methods remains vital for the accurate and comprehensive characterization of the cell surface subproteome of individual cells. Here we present a high-throughput technique which relies on the biotinylation of the accessible primary amino groups in the extracellular segments of the proteins, using HL60 as a model cell line. Several steps of the method have been thoroughly optimized to capture labeled surface proteins selectively and in larger quantities. These include the following: improving the efficiency of the cell surface biotinylation; reducing the endogen protease activity; applying an optimal amount of affinity column and elution steps for labeled peptide enrichment; and examining the effect of various solid-phase extraction methods, different HPLC gradients, and various tandem mass spectrometry settings. Using the optimized workflow, we identified at least 1700 surface-associated individual labeled peptides (~6000-7000 redundant peptides) from the model cell surface in a single nanoHPLC-MS/MS run. The presented method can provide a comprehensive and specific list of the cell surface available protein segments that could be potential targets in various bioinformatics and molecular biology research.


Subject(s)
Membrane Proteins , Tandem Mass Spectrometry , Biotinylation , Membrane Proteins/metabolism , Tandem Mass Spectrometry/methods , Peptides/chemistry , Cell Membrane/metabolism
19.
BMC Cancer ; 21(1): 850, 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34301218

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is a highly lethal, stage IV brain tumour with a prevalence of approximately 2 per 10,000 people globally. The cell surface proteins or surfaceome serve as information gateway in many oncogenic signalling pathways and are important in modulating cancer phenotypes. Dysregulation in surfaceome expression and activity have been shown to promote tumorigenesis. The expression of GBM surfaceome is a case in point; OMICS screening in a cell-based system identified that this sub-proteome is largely perturbed in GBM. Additionally, since these cell surface proteins have 'direct' access to drugs, they are appealing targets for cancer therapy. However, a comprehensive GBM surfaceome landscape has not been fully defined yet. Thus, this study aimed to define GBM-associated surfaceome genes and identify key cell-surface genes that could potentially be developed as novel GBM biomarkers for therapeutic purposes. METHODS: We integrated the RNA-Seq data from TCGA GBM (n = 166) and GTEx normal brain cortex (n = 408) databases to identify the significantly dysregulated surfaceome in GBM. This was followed by an integrative analysis that combines transcriptomics, proteomics and protein-protein interaction network data to prioritize the high-confidence GBM surfaceome signature. RESULTS: Of the 2381 significantly dysregulated genes in GBM, 395 genes were classified as surfaceome. Via the integrative analysis, we identified 6 high-confidence GBM molecular signature, HLA-DRA, CD44, SLC1A5, EGFR, ITGB2, PTPRJ, which were significantly upregulated in GBM. The expression of these genes was validated in an independent transcriptomics database, which confirmed their upregulated expression in GBM. Importantly, high expression of CD44, PTPRJ and HLA-DRA is significantly associated with poor disease-free survival. Last, using the Drugbank database, we identified several clinically-approved drugs targeting the GBM molecular signature suggesting potential drug repurposing. CONCLUSIONS: In summary, we identified and highlighted the key GBM surface-enriched repertoires that could be biologically relevant in supporting GBM pathogenesis. These genes could be further interrogated experimentally in future studies that could lead to efficient diagnostic/prognostic markers or potential treatment options for GBM.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/genetics , Glioblastoma/metabolism , Proteome , Transcriptome , Brain Neoplasms/pathology , Computational Biology/methods , Female , Gene Expression Profiling/methods , Glioblastoma/pathology , Humans , Male , Neoplasm Staging , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Signal Transduction
20.
Front Cell Dev Biol ; 9: 621810, 2021.
Article in English | MEDLINE | ID: mdl-34178975

ABSTRACT

Distant metastasis is a major cause of treatment failure in nasopharyngeal carcinoma (NPC) patients. Cell surface proteins represent attractive targets for cancer diagnosis or therapy. However, the cell surface proteins associated with NPC metastasis are poorly understood. To identify potential therapeutic targets for NPC metastasis, we isolated cell surface proteins from two isogenic NPC cell lines, 6-10B (low metastatic) and 5-8F (highly metastatic), through cell surface biotinylation. Stable isotope labeling by amino acids in cell culture (SILAC) based proteomics was applied to comprehensively characterize the cell surface proteins related with the metastatic phenotype. We identified 294 differentially expressed cell surface proteins, including the most upregulated protein myoferlin (MYOF), two receptor tyrosine kinases(RTKs) epidermal growth factor receptor (EGFR) and ephrin type-A receptor 2 (EPHA2) and several integrin family molecules. These differentially expressed proteins are enriched in multiple biological pathways such as the FAK-PI3K-mTOR pathway, focal adhesions, and integrin-mediated cell adhesion. The knockdown of MYOF effectively suppresses the proliferation, migration and invasion of NPC cells. Immunohistochemistry analysis also showed that MYOF is associated with NPC metastasis. We experimentally confirmed, for the first time, that MYOF can interact with EGFR and EPHA2. Moreover, MYOF knockdown could influence not only EGFR activity and its downstream epithelial-mesenchymal transition (EMT), but also EPHA2 ligand-independent activity. These findings suggest that MYOF might be an attractive potential therapeutic target that has double effects of simultaneously influencing EGFR and EPHA2 signaling pathway. In conclusion, this is the first study to profile the cell surface proteins associated with NPC metastasis and provide valuable resource for future researches.

SELECTION OF CITATIONS
SEARCH DETAIL