Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.709
Filter
1.
Chemosphere ; : 142987, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094706

ABSTRACT

Fine particulate matter (PM2.5) is an air pollutant that enhances susceptibility to cardiovascular diseases. Macrophages are the first immune cells to encounter the inhaled particles and orchestrate an inflammatory response. Given their role in atherosclerosis development, we investigated whether aqueous PM2.5 could elicit atherogenic effects by polarising macrophages to a pro-oxidative and pro-inflammatory phenotype and enhancing foam cell formation. The RAW264.7 macrophage cell line was exposed to PM2.5 for 48 h, with PBS as the control. Aqueous PM2.5 induced apoptosis and reduced cell proliferation. In surviving cells, we observed morphological, phagocytic, oxidative, and inflammatory features (i.e. enhanced iNOS, Integrin-1ß, IL-6 expression), indicative of classical macrophage activation. We also detected an increase in total and surface HSP70 levels, suggesting macrophage activation. Further, exposure of high-cholesterol diet-fed mice to PM2.5 resulted in aortic wall enlargement, indicating vascular lesions. Macrophages exposed to PM2.5 and non-modified low-density lipoprotein (LDL) showed exacerbated lipid accumulation. Given the non-oxidised LDL used and the evidence linking inflammation to disrupted cholesterol negative feedback, we hypothesise that PM2.5-induced inflammation in macrophages enhances their susceptibility to transforming into foam cells. Finally, our results indicate that exposure to aqueous PM2.5 promotes classical macrophage activation, marked by increased HSP70 expression and that it potentially contributes to atherosclerosis.

2.
FEBS Open Bio ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049197

ABSTRACT

According to the World Health Organization in 2022, 2.3 million women were diagnosed with breast cancer. Investigating the interaction networks between Bcl-2-associated athanogene (Bag)-1 and other chaperone proteins may further the current understanding of the regulation of protein homeostasis in breast cancer cells and contribute to the development of treatment options. The present study aimed to determine the interactions between Bag-1 and heat shock proteins (HSPs); namely, HSP90, HSP70 and HSP27, to elucidate their role in promoting heat shock factor-1 (HSF1)-dependent survival of breast cancer cells. HER2-negative (MCF-7) and HER2-positive (BT-474) cell lines were used to examine the impact of Bag-1 expression on HSF1 and HSPs. We demonstrated that Bag-1 overexpression promoted HER2 expression in breast cancer cells, thereby resulting in the concurrent constitutive activation of the HSF1-HSP axis. The activation of HSP results in the stabilization of several tumor-promoting HSP clients such as AKT, mTOR and HSF1 itself, which substantially accelerates tumor development. Our results suggest that Bag-1 can modulate the chaperone activity of HSPs, such as HSP27, by directly or indirectly regulating the phosphorylation of HSF1. This modulation of chaperone activity can influence the activation of genes involved in cellular homeostasis, thereby protecting cells against stress.

3.
Cerebellum ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052145

ABSTRACT

Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.

4.
Chemistry ; : e202401957, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042517

ABSTRACT

Post-translational modifications such as protein N-glycosylation, significantly influence cellular processes. Dysregulated N-glycosylation, exemplified in Grp94, a member of the Hsp90 family, leads to structural changes and the formation of epichaperomes, contributing to pathologies. Targeting N-glycosylation-induced conformations offers opportunities for developing selective chemical tools and drugs for these pathologic forms of chaperones. We here demonstrate how a specific Grp94 conformation induced by N-glycosylation, identified previously via molecular dynamics simulations, rationalizes the distinct behavior of similar ligands. Integrating dynamic ligand unbinding information with SAR development, we differentiate ligands productively engaging the pathologic Grp94 conformers from those that are not. Additionally, analyzing binding site stereoelectronic properties and QSAR models using cytotoxicity data unveils relationships between chemical, conformational properties, and biological activities. These findings facilitate the design of ligands targeting specific Grp94 conformations induced by abnormal glycosylation, selectively disrupting pathogenic protein networks while sparing normal mechanisms.

5.
Sleep Biol Rhythms ; 22(3): 363-372, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962802

ABSTRACT

Currently hypoglossal nerve-genioglossus axis is the major research core of OSA pathogenesis. The pathogenesis of OSA incidence changes before and after menopause needs to be clarified further. Little is known about the influences of ovariectomy on hypoglossal motoneurons. In the research, we utilized a rat ovariectomy model to evaluate the expression changes of 5-HT2A and α1-Adrenergic receptors in the hypoglossal nucleus and to explore the involvement of BDNF/TrkB signaling and endoplasmic reticulum molecular chaperones in the hypoglossal nucleus. Results indicated that the expression of 5-HT2A and α1-Adrenergic receptors reduced dramatically in the hypoglossal nucleus of ovariectomized rats. The apoptosis level of hypoglossal motor neurons increased markedly in the OVX groups. The up-regulated expression of BDNF and down-regulated expression of TrkB were found in the OVX groups. Ovarian insufficiency resulted in the activation of UPR and the loss of CANX-CALR cycle. Estrogen replacement could restore these changes partially. Estrogen level influences the expression of neurotransmitter receptors, and regulates BDNF/TrkB signaling compensation and endoplasmic reticulum homeostasis, which might be one of the pathogenesis of menopausal female OSA. The results reveal a new perspective for studying female OSA from the view of hypoglossal nerve and hormonal changes and attempt to propel 17ß-estradiol toward a feasible therapy for female OSA. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-024-00520-5.

6.
Subcell Biochem ; 104: 459-483, 2024.
Article in English | MEDLINE | ID: mdl-38963496

ABSTRACT

The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth and metabolism, integrating environmental signals to regulate anabolic and catabolic processes, regulating lipid synthesis, growth factor-induced cell proliferation, cell survival, and migration. These activities are performed as part of two distinct complexes, mTORC1 and mTORC2, each with specific roles. mTORC1 and mTORC2 are elaborated dimeric structures formed by the interaction of mTOR with specific partners. mTOR functions only as part of these large complexes, but their assembly and activation require a dedicated and sophisticated chaperone system. mTOR folding and assembly are temporarily separated with the TELO2-TTI1-TTI2 (TTT) complex assisting the cotranslational folding of mTOR into a native conformation. Matured mTOR is then transferred to the R2TP complex for assembly of active mTORC1 and mTORC2 complexes. R2TP works in concert with the HSP90 chaperone to promote the incorporation of additional subunits to mTOR and dimerization. This review summarizes our current knowledge on how the HSP90-R2TP-TTT chaperone system facilitates the maturation and assembly of active mTORC1 and mTORC2 complexes, discussing interactions, structures, and mechanisms.


Subject(s)
HSP90 Heat-Shock Proteins , Molecular Chaperones , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Animals , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Multiprotein Complexes/metabolism , Multiprotein Complexes/chemistry , Signal Transduction
7.
Mol Neurobiol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896156

ABSTRACT

Major depressive disorder (MDD) is characterized by high rates of disability and death and has become a public health problem that threatens human life and health worldwide. HPA axis disorder and neuroinflammation are two common biological abnormalities in MDD patients. Hsp90 is an important molecular chaperone that is widely distributed in the organism. Hsp90 binds to the co-chaperone and goes through a molecular chaperone cycle to complete its regulation of the client protein. Numerous studies have demonstrated that Hsp90 regulates how the HPA axis reacts to stress and how GR, the HPA axis' responsive substrate, matures. In addition, Hsp90 exhibits pro-inflammatory effects that are closely related to neuroinflammation in MDD. Currently, Hsp90 inhibitors have made some progress in the treatment of a variety of human diseases, but they still need to be improved. Further insight into the role of Hsp90 in MDD provides new ideas for the development of new antidepressant drugs targeting Hsp90.

8.
Small ; : e2312046, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829034

ABSTRACT

Accurate construction of artificial nano-chaperones' structure is crucial for precise regulation of protein conformational transformation, facilitating effective treatment of proteopathy. However, how the ligand-anchors of nano-chaperones affect the spatial conformational changes in proteins remains unclear, limiting the development of efficient nano-chaperones. In this study, three types of gold nanoparticles (AuNPs) with different core/ligands interface anchor structures (Au─NH─R, Au─S─R, and Au─C≡C─R, R = benzoic acid) are synthesized as an ideal model to investigate the effect of interfacial anchors on Aß and amylin fibrillization. Computational results revealed that the distinct interfacial anchors imparted diverse distributions of electrostatic potential on the nanointerface and core/ligands bond strength of AuNPs, leading to differential interactions with amyloid peptides. Experimental results demonstrated that all three types of AuNPs exhibit site-specific inhibitory effects on Aß40 fibrillization due to preferential binding. For amylin, amino-anchored AuNPs demonstrate strong adsorption to multiple sites on amylin and effectively inhibit fibrillization. Conversely, thiol- and alkyne-anchored AuNPs adsorb at the head region of amylin, promoting folding and fibrillization. This study not only provided molecular insights into how core/ligands interfacial anchors of nanomaterials induce spatial conformational changes in amyloid peptides but also offered guidance for precisely engineering artificial-chaperones' nanointerfaces to regulate the conformational transformation of proteins.

9.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38895373

ABSTRACT

The maintenance of a properly folded proteome is critical for cellular function and organismal health, and its age-dependent collapse is associated with a wide range of diseases. Here, we find that despite the central role of Coenzyme A as a molecular cofactor in hundreds of cellular reactions, limiting Coenzyme A levels in C. elegans and in human cells, by inhibiting the conserved pantothenate kinase, promotes proteostasis. Impairment of the cytosolic iron-sulfur clusters formation pathway, which depends on Coenzyme A, similarly promotes proteostasis and acts in the same pathway. Proteostasis improvement by Coenzyme A/iron-sulfur cluster deficiencies are dependent on the conserved HLH-30/TFEB transcription factor. Strikingly, under these conditions, HLH-30 promotes proteostasis by potentiating the expression of select chaperone genes providing a chaperone-mediated proteostasis shield, rather than by its established role as an autophagy and lysosome biogenesis promoting factor. This reflects the versatile nature of this conserved transcription factor, that can transcriptionally activate a wide range of protein quality control mechanisms, including chaperones and stress response genes alongside autophagy and lysosome biogenesis genes. These results highlight TFEB as a key proteostasis-promoting transcription factor and underscore it and its upstream regulators as potential therapeutic targets in proteostasis-related diseases.

10.
Noncoding RNA ; 10(3)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38921833

ABSTRACT

Telomerase is an enzyme involved in the maintenance of telomeres. Telomere shortening due to the end-replication problem is a threat to the genome integrity of all eukaryotes. Telomerase inside cells depends on a myriad of protein-protein and RNA-protein interactions to properly assemble and regulate the function of the telomerase holoenzyme. These interactions are well studied in model eukaryotes, like humans, yeast, and the ciliated protozoan known as Tetrahymena thermophila. Emerging evidence also suggests that deep-branching eukaryotes, such as the parasitic protist Trypanosoma brucei require conserved and novel RNA-binding proteins for the assembly and function of their telomerase. In this review, we will discuss telomerase regulatory pathways in the context of telomerase-interacting proteins, with special attention paid to RNA-binding proteins. We will discuss these interactors on an evolutionary scale, from parasitic protists to humans, to provide a broader perspective on the extensive role that protein-protein and RNA-protein interactions play in regulating telomerase activity in eukaryotes.

11.
Mol Cell ; 84(13): 2455-2471.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38908370

ABSTRACT

Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.


Subject(s)
Escherichia coli Proteins , Escherichia coli , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Protein Biosynthesis , Protein Folding , Ribosomes , Ribosomes/metabolism , Ribosomes/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Protein Binding , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Models, Molecular , Protein Conformation , Peptidylprolyl Isomerase
12.
Int J Biol Macromol ; 273(Pt 2): 133113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885870

ABSTRACT

Transglutaminase (TGase) from Streptomyces mobaraensis commonly used to improve protein-based foods due to its unique enzymatic reactions, which imply considerable attention in its production. Recently, TGase exhibit broad market potential in non-food industries. However, achieving efficient synthesis of TGase remains a significant challenge. Herein, we achieved a substantial amount of a fully functional and kinetically stable TGase produced by Komagataella phaffii (Pichia pastoris) using multiple strategies including Geneticin (G418) screening, combinatorial mutations, promoter optimization, and co-expression. The active TGase expression reached a maximum of 10.1 U mL-1 in shake flask upon 96 h of induction, which was 3.8-fold of the wild type. Also, the engineered strain exhibited a 6.4-fold increase in half-life and a 2-fold increase in specific activity, reaching 172.67 min at 60 °C (t1/2(60 °C)) and 65.3 U mg-1, respectively. Moreover, the high-cell density cultivation in 5-L fermenter was also applied to test the productivity at large scale. Following optimization at a fermenter, the secretory yield of TGase reached 47.96 U mL-1 in the culture supernatant. Given the complexity inherent in protein expression and secretion, our research is of great significance and offers a comprehensive guide for improving the production of a wide range of heterologous proteins.


Subject(s)
Streptomyces , Transglutaminases , Streptomyces/genetics , Streptomyces/enzymology , Transglutaminases/genetics , Transglutaminases/metabolism , Transglutaminases/biosynthesis , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Fermentation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis , Kinetics , Promoter Regions, Genetic
13.
Cells ; 13(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38920668

ABSTRACT

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.


Subject(s)
Frataxin , Friedreich Ataxia , Iron-Binding Proteins , Animals , Humans , Friedreich Ataxia/genetics , Gene Expression Regulation , Iron-Binding Proteins/genetics
14.
Bull Exp Biol Med ; 176(6): 756-760, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38922549

ABSTRACT

The enzyme tryptophan hydroxylase 2 (TPH2) catalyzes the hydroxylation of L-tryptophan to L-5-hydroxytryptophan (5-HTP), the first and the key step in 5-HT synthesis in the mammalian brain. Mutations in the human Tph2 gene reducing enzyme activity increase the risk of psychopathology. Pharmacological chaperones are small molecules that can specifically bind to mutant protein molecules, restore their disturbed 3D structure to the native state, and increase their stability and functional activity. The chaperone activity of (R)-2-amino-6-(1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is expressed by increasing the in vitro thermal stability of mutant tyrosine hydroxylase and phenylalanine hydroxylase molecules which are similar to TPH2 in their structure and characteristics. The P447R substitution in the mouse TPH2 molecule results in a 2-fold decrease in enzyme activity in their brains. We studied the effect of this mutation on the TPH2 thermal stability, as well as on the ability of BH4 and its 8 structural analogues to increase the thermal stability of the mutant TPH2 from midbrain extracts of BALB/C mice. Temperature stability was studied by the decrease in enzyme activity during its heating for 2 min at increasing temperatures and was evaluated by the T50 value that is the temperature at which the enzyme activity decreased by half. For the mutant TPH2, the T50 value was decreased compared to the wild type enzyme. BH4 and its closest structural analogue, 6-methyl-5,6,7,8-tetrahydropterin, increased the T50 value, i.e., exhibited chaperone activity. Other close BH4 analogs, 6,7-dimethyl-5,6,7,8-tetrahydropterin and folic acid, were not effective. It can be assumed that BH4 can be effective in the treatment of mental disorders caused by mutations in the Tph2 gene.


Subject(s)
Enzyme Stability , Tryptophan Hydroxylase , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/chemistry , Animals , Mice , Humans , Mutation , Temperature , Brain/metabolism , Brain/drug effects , Pterins/chemistry , Pterins/metabolism , Pterins/pharmacology
15.
EMBO Rep ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937628

ABSTRACT

Hsp90 is a molecular chaperone that acts on its clients through an ATP-dependent and conformationally dynamic functional cycle. The cochaperone Accelerator of Hsp90 ATPase, or Ahsa1, is the most potent stimulator of Hsp90 ATPase activity. Ahsa1 stimulates the rate of Hsp90 ATPase activity through a conserved motif, NxNNWHW. Metazoan Ahsa1, but not yeast, possesses an additional 20 amino acid peptide preceding the NxNNWHW motif that we have called the intrinsic chaperone domain (ICD). The ICD of Ahsa1 diminishes Hsp90 ATPase stimulation by interfering with the function of the NxNNWHW motif. Furthermore, the NxNNWHW modulates Hsp90's apparent affinity to Ahsa1 and ATP. Lastly, the ICD controls the regulated recruitment of Hsp90 in cells and its deletion results in the loss of interaction with Hsp90 and the glucocorticoid receptor. This work provides clues to how Ahsa1 conserved regions modulate Hsp90 kinetics and how they may be coupled to client folding status.

16.
Chembiochem ; 25(15): e202400081, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38830828

ABSTRACT

Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal inherited disease caused by mutations in gene encoding the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU). These mutations result in reduced NAGLU activity, preventing it from catalyzing the hydrolysis of the glycosaminoglycan heparan sulfate (HS). There are currently no approved treatments for MPS IIIB. A novel approach in the treatment of lysosomal storage diseases is the use of pharmacological chaperones (PC). In this study, we used a drug repurposing approach to identify and characterize novel potential PCs for NAGLU enzyme. We modeled the interaction of natural and artificial substrates within the active cavity of NAGLU (orthosteric site) and predicted potential allosteric sites. We performed a virtual screening for both the orthosteric and the predicted allosteric site against a curated database of human tested molecules. Considering the binding affinity and predicted blood-brain barrier permeability and gastrointestinal absorption, we selected atovaquone and piperaquine as orthosteric and allosteric PCs. The PCs were evaluated by their capacity to bind NAGLU and the ability to restore the enzymatic activity in human MPS IIIB fibroblasts These results represent novel PCs described for MPS IIIB and demonstrate the potential to develop novel therapeutic alternatives for this and other protein deficiency diseases.


Subject(s)
Acetylglucosaminidase , Mucopolysaccharidosis III , Humans , Mucopolysaccharidosis III/drug therapy , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/pathology , Acetylglucosaminidase/metabolism , Acetylglucosaminidase/antagonists & inhibitors , Acetylglucosaminidase/chemistry , Acetylglucosaminidase/genetics , Allosteric Site/drug effects , Allosteric Regulation/drug effects
17.
Behav Brain Res ; 469: 115054, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38768687

ABSTRACT

Parkinsons disease (PD) is a chronic fast growing neurodegenerative disorder of Central Nervous System (CNS) characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and formation of Lewy bodies (LBs) which causes dopamine deficiency within basal ganglia leading to motor and non-motor manifestation. According to reports, many factors are responsible for pathogenesis of PD which includes environmental factors, genetic factors, and aging factors. Whereas death of dopaminergic neurons is also caused by oxidative stress, neuroinflammation, and autophagy disorder. Molecular chaperones/co-chaperones are proteins that binds to an unstable conformer of another protein and stabilizes it. Chaperones prevent incorrect interaction between non-native polypeptides which increases the yield but not the rate of reaction. The Bcl-2-associated athanogene (BAG) is a multifunctional group of proteins belonging to BAG family of co-chaperones. Recent studies demonstrates that chaperones interact with PD-related proteins. Co-chaperones like BAG family proteins regulate the function of chaperones. Molecular chaperones regulate the mitochondrial functions by interacting with the PD-related proteins associated with it. This review studies the contribution of chaperones and PD-related proteins in pathogenesis of PD aiming to provide an alternate molecular target for preventing the disease progression.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Animals , Molecular Chaperones/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Dopaminergic Neurons/metabolism
19.
Adv Clin Chem ; 121: 270-333, 2024.
Article in English | MEDLINE | ID: mdl-38797543

ABSTRACT

Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the "life" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer's, Parkinson's, and Huntington's disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.


Subject(s)
Autophagy , Neurodegenerative Diseases , Proteasome Endopeptidase Complex , Proteostasis , Humans , Neurodegenerative Diseases/metabolism , Proteasome Endopeptidase Complex/metabolism , Molecular Chaperones/metabolism , Animals , Ubiquitin/metabolism
20.
Genes Dev ; 38(7-8): 336-353, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38744503

ABSTRACT

High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes SRCAP and P400-TIP60 in melanoma remains unclear. Here, we show that individual subunit depletion of SRCAP, P400, and VPS72 (YL1) results in not only the loss of H2A.Z deposition into chromatin but also a reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is particularly found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Histones , Melanoma , Humans , Melanoma/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Histones/metabolism , Histones/genetics , Acetylation , Apoptosis/genetics , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics
SELECTION OF CITATIONS
SEARCH DETAIL