Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273222

ABSTRACT

Tea plants are a perennial crop with significant economic value. Chlorophyll, a key factor in tea leaf color and photosynthetic efficiency, is affected by the photoperiod and usually exhibits diurnal and seasonal variations. In this study, high-throughput transcriptomic analysis was used to study the chlorophyll metabolism, under different photoperiods, of tea plants. We conducted a time-series sampling under a skeleton photoperiod (6L6D) and continuous light conditions (24 L), measuring the chlorophyll and carotenoid content at a photoperiod interval of 3 h (24 h). Transcriptome sequencing was performed at six time points across two light cycles, followed by bioinformatics analysis to identify and annotate the differentially expressed genes (DEGs) involved in chlorophyll metabolism. The results revealed distinct expression patterns of key genes in the chlorophyll biosynthetic pathway. The expression levels of CHLE (magnesium-protoporphyrin IX monomethyl ester cyclase gene), CHLP (geranylgeranyl reductase gene), CLH (chlorophyllase gene), and POR (cytochrome P450 oxidoreductase gene), encoding enzymes in chlorophyll synthesis, were increased under continuous light conditions (24 L). At 6L6D, the expression levels of CHLP1.1, POR1.1, and POR1.2 showed an oscillating trend. The expression levels of CHLP1.2 and CLH1.1 showed the same trend, they both decreased under light treatment and increased under dark treatment. Our findings provide potential insights into the molecular basis of how photoperiods regulate chlorophyll metabolism in tea plants.


Subject(s)
Chlorophyll , Circadian Rhythm , Gene Expression Profiling , Gene Expression Regulation, Plant , Photoperiod , Transcriptome , Chlorophyll/metabolism , Circadian Rhythm/genetics , Camellia sinensis/genetics , Camellia sinensis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , High-Throughput Nucleotide Sequencing
2.
Planta ; 260(1): 25, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861219

ABSTRACT

MAIN CONCLUSION: In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.


Subject(s)
Chlorophyll , Light , Magnoliopsida , Temperature , Chlorophyll/metabolism , Magnoliopsida/metabolism , Magnoliopsida/growth & development , Magnoliopsida/physiology , Magnoliopsida/genetics , Water/metabolism , Oxygen/metabolism , Photosynthesis , Plant Leaves/metabolism , Plant Leaves/radiation effects , Environment , Altitude
3.
BMC Plant Biol ; 24(1): 455, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789917

ABSTRACT

BACKGROUND: The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically important woody crops. Plastic greenhouse covering cultivation has been widely used in tea areas of northern China. Chlorophyll is not only the crucial pigment for green tea, but also plays an important role in the growth and development of tea plants. Currently, little is known about the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves. RESULTS: To investigate the effect of plastic greenhouse covering cultivation on chlorophyll in tea leaves, color difference values, chlorophyll contents, gene expression, enzyme activities and photosynthetic parameters were analyzed in our study. Sensory evaluation showed the color of appearance, liquor and infused leaves of greenhouse tea was greener than field tea. Color difference analysis for tea liquor revealed that the value of ∆L, ∆b and b/a of greenhouse tea was significantly higher than field tea. Significant increase in chlorophyll content, intracellular CO2, stomatal conductance, transpiration rate, and net photosynthetic rate was observed in greenhouse tea leaves. The gene expression and activities of chlorophyll-metabolism-related enzymes in tea leaves were also activated by greenhouse covering. CONCLUSION: The higher contents of chlorophyll a, chlorophyll b and total chlorophyll in greenhouse tea samples were primarily due to higher gene expression and activities of chlorophyll-metabolism-related enzymes especially, chlorophyll a synthetase (chlG), pheophorbide a oxygenase (PAO) and chlorophyllide a oxygenase (CAO) in tea leaves covered by greenhouse. In general, our results revealed the molecular basis of chlorophyll metabolism in tea leaves caused by plastic greenhouse covering cultivation, which had great significance in production of greenhouse tea.


Subject(s)
Camellia sinensis , Chlorophyll , Plant Leaves , Camellia sinensis/genetics , Camellia sinensis/enzymology , Camellia sinensis/growth & development , Camellia sinensis/physiology , Camellia sinensis/metabolism , Chlorophyll/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Photosynthesis , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics
4.
Plant Sci ; 343: 112081, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579979

ABSTRACT

Chlorophyll biosynthesis and breakdown, important cellular processes for photosynthesis, occur in the chloroplast. As a semi-autonomous organelle, chloroplast development is mainly regulated by nuclear-encoded chloroplast proteins and proteins encoded by itself. However, the knowledge of chloroplast development regulated by other organelles is limited. Here, we report that the nuclear-localized XAP5 CIRCADIAN TIMEKEEPER (XCT) is essential for chloroplast development in Arabidopsis. In this study, significantly decreased chlorophyll content phenotypes of cotyledons and subsequently emerging organs from shoot apical meristem were observed in xct-2. XCT is constitutively expressed in various tissues and localized in the nuclear with speckle patterns. RNA-seq analysis identified 207 differently spliced genes and 1511 differently expressed genes, in which chloroplast development-, chlorophyll metabolism- and photosynthesis-related genes were enriched. Further biochemical assays suggested that XCT was co-purified with the well-known splicing factors and transcription machinery, suggesting dual functions of XCT in gene transcription and splicing. Interestingly, we also found that the chlorophyll contents in xct-2 significantly decreased under high temperature and high light condition, indicating XCT integrates temperature and light signals to fine-tune the chlorophyll metabolism in Arabidopsis. Therefore, our results provide new insights into chloroplast development regulation by XCT, a nuclear-localized protein, at the transcriptional and post-transcriptional level.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Photosynthesis , Nuclear Proteins/metabolism , Chlorophyll/metabolism , Gene Expression Regulation, Plant
5.
Plants (Basel) ; 13(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38592960

ABSTRACT

Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis in plants. We discovered a novel eggplant (Solanum melongena L.) mutant yl20 (yellow leaf 20) that exhibits yellow leaves. In this study, we compared the leaves of the mutant yl20 and wild type (WT) plants for cytological, physiological, and transcriptomic analyses. The results showed that the mutant yl20 exhibits abnormal chloroplast ultrastructure, reduced chlorophyll and carotenoid contents, and lower photosynthetic efficiency compared to the WT. Transcriptome data indicated 3267 and 478 differentially expressed genes (DEGs) between WT and yl20 lines in the cotyledon and euphylla stages, respectively, where most DEGs were downregulated in the yl20. Gene Ontology (GO) analysis revealed the "plastid-encoded plastid RNA polymerase complex" and the "chloroplast-related" terms were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the significantly enriched DEGs were involved in flavone and flavonol biosynthesis, porphyrin and chlorophyll metabolism, etc. We speculated that these DEGs involved in significant terms were closely related to the leaf color development of the mutant yl20. Our results provide a possible explanation for the altered phenotype of leaf color mutants in eggplant and lay a theoretical foundation for plant breeding.

6.
J Exp Bot ; 75(1): 204-218, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37712824

ABSTRACT

The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.


Subject(s)
Actinidia , Humans , Actinidia/genetics , Chlorophyll/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant
7.
Chemosphere ; 329: 138554, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37037159

ABSTRACT

Photosynthesis mediated by chlorophyll metabolism is the basis for plant growth, and also the important regulatory mechanism of carbon pool in cropland ecosystems. Soil organic pollutants induced growth inhibition in crop plants, herein, we conducted an in-depth investigation on the effects of three representative polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP) on rice (Oryza sativa) growth and photosynthesis. PAHs were absorbed via root uptake and accumulated in leaves, causing the swelling of thylakoids and the increase of osmiophilic granules in chloroplasts. The actual quantum efficiency of PSII was significantly decreased under the stress of PHE, PYR, and BaP by 29.9%, 11.9%, and 24.1% respectively, indicating the inhibition in photon absorption and transfer, which was consistent with the decrease of chlorophyll a (22.3%-32.2% compared to the control) in rice leaves. Twenty-two encoding genes involved in chlorophyll metabolism were determined and the results indicated that the expression of chlorophyll synthetases was downregulated by over 50% whereas the degradation process was promoted. Consequently, the production of carbohydrates and the carbon fixation were inhibited, which revealed by the downregulation of intermediate metabolites in Calvin cycle and the declined carboxylation rate. The disturbed photosynthesis resulted in the decrease of the biomasses of both roots (21.0%-42.7%) and leaves (6.4%-22.1%) under the tested PAH stresses. The findings of this study implied that the photosynthetic inhibition was possibly attributed to the disorder of chlorophyll metabolism, thus providing novel insights into the mechanism of growth inhibition induced by organic pollutants and theoretical basis for the estimation of cropland carbon sequestration potential.


Subject(s)
Environmental Pollutants , Oryza , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/metabolism , Oryza/metabolism , Chlorophyll A/metabolism , Ecosystem , Photosynthesis , Environmental Pollutants/metabolism , Chlorophyll/metabolism
8.
Plant Physiol Biochem ; 197: 107645, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963300

ABSTRACT

Magnesium (Mg2+) is a critical component of chlorophyll and enzymes involved in various physiological and biochemical processes essential for plant growth, biomass accumulation, and photosynthesis. Mg2+ deficiency (MgD) is common in hot and rainy subtropical areas due to its easy loss from soil. Neolamarckia cadamba, an important tropical tree in South Asia, faces severe effects of MgD, however, the responses of N. cadamba to MgD stress remain unclear. In here, effects of N. cadamba under MgD stress were investigated. The study revealed that MgD had lower plant biomass, fresh and dry weight, root length, root volume, and surface area compared to CK (normal Mg2+). As treatment time increased, the leaves began to yellow, and lesions appeared. Chlorophyll a, chlorophyll b, and total chlorophyll content, along with fluorescence-related parameters and leaf photosynthetic capacity, were significantly reduced in MgD stress compared to CK treatment. Transcriptome analysis showed that transporters as well as transcription factors (TFs) from MYC (v-myc avian myelocytomatosis viral oncogene homolog), MYB (v-myb avian myeloblastosis viral oncogene homolog), bHLH (basic helix-loop-helix) and WRKY families were upregulated in leaves at 10 d of MgD stress, indicating that magnesium signaling transduction might be activated to compensate MgD. In addition, genes including chlorophyll(ide) b reductase (NYC1/NOL) chlorophyll/bacteriochlorophyll synthase (G4) and 7-hydroxymethyl chlorophyll a reductase synthesizing (HCAR) chlorophyll a and chlorophyll b were down-regulated in leaves, while those scavenging reactive oxygen species (ROS) were mainly up-regulated at 10 d of MgD stress. These results shed light on underlying MgD in N. cadamba.


Subject(s)
Magnesium Deficiency , Transcriptome , Chlorophyll A , Magnesium , Gene Expression Profiling/methods , Chlorophyll , Oxidoreductases/metabolism , Plant Leaves/metabolism
9.
Plants (Basel) ; 12(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36840241

ABSTRACT

To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 mmol·L-1 nitrogen, respectively). The N. tangutorum seedling leaf transcriptome was analyzed by high-throughput sequencing (Illumina HiSeq 4000), and 332,420 transcripts and 276,423 unigenes were identified. The numbers of differentially expressed genes (DEGs) were 4052 in N0 vs. N6, 6181 in N0 vs. N36, and 3937 in N0 vs. N60. Comparing N0 and N6, N0 and N36, and N0 and N60, we found 1101, 2222, and 1234 annotated DEGs in 113, 121, and 114 metabolic pathways, respectively, classified in the Kyoto Encyclopedia of Genes and Genomes database. Metabolic pathways with considerable accumulation were involved mainly in anthocyanin biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and amino acid metabolism. N36 increased δ-amino levulinic acid synthesis and upregulated expression of the magnesium chelatase H subunit, which promoted chlorophyll a synthesis. Hence, N36 stimulated chlorophyll synthesis rather than heme synthesis. These findings enrich our understanding of the N. tangutorum transcriptome and help us to research desert xerophytes' responses to increased nitrogen in the future.

10.
Antioxidants (Basel) ; 11(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36552689

ABSTRACT

(1) Background: Senescence represents the final stage of plant growth and development, which transfers nutrients to growing seeds and directly affects the yield and quality of crops. However, little is known about chlorophyll degradation in developing and maturing seeds, in contrast to leaf senescence; (2) Methods: RNA-Seq was used to analyze the differentially expressed genes of different late-senescent germplasms. A widely untargeted metabolic analysis was used to analyze differential metabolites. In addition, qRT-PCR was conducted to detect gene expression levels; (3) Results: Transcriptome analysis revealed that ZX12 seeds have a higher expression level of the chlorophyll synthesis genes in the early stage of maturity, compared with ZX4, and have a lower expression level of chlorophyll degradation genes in the late stage of maturity. Flavonoids were the primary differential metabolites, and ZX12 contains the unique and highest expression of three types of metabolites, including farrerol-7-O-glucoside, cyanidin-3-o-(6'-o-feruloyl) glucoside, and kaempferide-3-o-(6'-malonyl) glucoside. Among them, farrerol-7-O-glucoside and cyanidin-3-o-(6'-o-feruloyl) glucoside are flavonoid derivatives containing mono and dihydroxy-B-ring chemical structures, respectively; and (4) Conclusions: It is speculated that the two metabolites can slow down the degradation process of chlorophyll by scavenging oxygen-free radicals in the chloroplast.

11.
Foods ; 11(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36553830

ABSTRACT

Atmospheric cold plasma (ACP) is a potential green preservation technology, but its preservation mechanism is still unclear, and the effects of different plasma intensities on postharvest tomatoes are little studied. In this study, the effects of different ACP treatments (0 kV, 40 kV, 60 kV, and 80 kV) on the sensory quality, physiological indexes, key enzyme activities, and gene expression related to the chlorophyll metabolism of postharvest tomatoes were investigated during the storage time. The results showed that compared with the control group, the tomatoes in the plasma treatment group had a higher hardness and total soluble solid (TSS) and titratable acid (TA) contents, a lower respiratory intensity and weight loss rate, a higher brightness, and a lower red transformation rate, especially in the 60 kV treatment group. In addition, chlorophyll degradation, carotenoid accumulation, and chlorophyllase and pheophorbide a mono-oxygenase (PAO) enzyme activities in the postharvest tomatoes were inhibited in the 60 kV treatment group, and the expressions of three key genes related to chlorophyll metabolism, chlorophyll (CLH1), pheophytinase (PPH), and red chlorophyll catabolic reductase (RCCR) were down-regulated. The results of the correlation analysis also confirmed that the enzyme activity and gene expression of the chlorophyll metabolism were regulated by the ACP treatment, aiming to maintain the greenness of postharvest tomatoes.

12.
BMC Plant Biol ; 22(1): 419, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36045322

ABSTRACT

BACKGROUND: Primulina pungentisepala is suitable for use as a potted plant because of its beautiful leaf variegation, which is significantly different in its selfed offspring. However, the mechanism of P. pungentisepala leaf variegation is unclear. In this study, two types of offspring showing the greatest differences were compared in terms of leaf structure, chlorophyll contents, chlorophyll fluorescence parameters and transcriptomes to provide a reference for studying the molecular mechanism of structural leaf variegation. RESULTS: Air spaces were found between water storage tissue, and the palisade tissue cells were spherical in the white type. The content of chlorophyll a and total chlorophyll (chlorophyll a + b) was significantly lower in the white type, but there were no significant differences in the content of chlorophyll b, chlorophyll a/b or chlorophyll fluorescence parameters between the white and green types. We performed transcriptomic sequencing to identify differentially expressed genes (DEGs) involved in cell division and differentiation, chlorophyll metabolism and photosynthesis. Among these genes, the expression of the cell division- and differentiation-related leucine-rich repeat receptor-like kinases (LRR-RLKs), xyloglucan endotransglycosylase/hydrolase (XET/H), pectinesterase (PE), expansin (EXP), cellulose synthase-like (CSL), VARIEGATED 3 (VAR3), and ZAT10 genes were downregulated in the white type, which might have promoted the development air spaces and variant palisade cells. Chlorophyll biosynthesis-related hydroxymethylbilane synthase (HEMC) and the H subunit of magnesium chelatase (CHLH) were downregulated, while chlorophyll degradation-related chlorophyllase-2 (CHL2) was upregulated in the white type, which might have led to lower chlorophyll accumulation. CONCLUSION: Leaf variegation in P. pungentisepala was caused by a combination of mechanisms involving structural variegation and low chlorophyll levels. Our research provides significant insights into the molecular mechanisms of structural leaf variegation.


Subject(s)
Plant Leaves , Transcriptome , Chlorophyll/metabolism , Chlorophyll A/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Leaves/metabolism
13.
Front Plant Sci ; 13: 882120, 2022.
Article in English | MEDLINE | ID: mdl-35498687

ABSTRACT

Cucumber (Cucumis sativus L.) is consumed worldwide and various cultivars have been developed to enhance fruit quality. However, few studies have comprehensively evaluated the quality of various cultivars. We carried out a metabolomics approach to study the three different cucumber cultivars (Chuichung, White Dadagi, and Mini) and their parts (peel and flesh) coupled with antioxidant activities. The amino acids, sugars, flavonoids, carotenoids, and chlorophylls were upregulated in Mini flesh; however, in the case of peel, they were highly expressed in Chuichung. The highest antioxidant activity was observed in the peel of Chuichung and flesh of Mini. Through correlation analysis between metabolites and antioxidant activity, apigenin and quercetin derivatives, chlorophyll a, chlorophyll b, lutein, α-carotene, and ß-carotene were found to be significantly positively correlated with antioxidant activity. To understand the metabolism of these compounds, we performed a comprehensive pathway analysis using a metabolomics approach and analysis of associated gene expression. In secondary metabolism, the expression levels of carotenoid-related genes (15-cis-phytoene synthase and ζ-carotene desaturase) and chlorophyll-related genes (protochlorophyllide reductase and glutamyl-tRNA reductase) were consistent with the metabolome analysis data. Collectively, carotenoid and chlorophyll metabolism were upregulated in Chuichung peel and Mini flesh, which had the highest antioxidant activity in each part. These bioactive compounds can be used as biomarkers of commercial cucumber fruit quality. Accordingly, this study offers integrative insights into the quality of different cucumber cultivars and explores valuable metabolites and genes that are helpful in improving quality with functional properties.

14.
Environ Pollut ; 306: 119360, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35489534

ABSTRACT

Androstenedione (ADSD) was the main androgen detected in wastewaters. Chlorella was the most widely used plant in biological wastewater treatment process. In order to understand the toxicological response of chlorella to ADSD contamination, we used the weighted gene co-expression network analysis (WGCNA) method to systematically analyze the gene regulatory networks of chlorella after ADSD treatments. Total of 25 modules was identified from gene co-expression networks, and the turquoise module were selected for GO and KEGG enrichment analysis. Results showed that most hub genes were associated with chloroplast organizations or photosystems processes. Among them, the expressions profiles of hcar, nol, pao and sgr genes were highly correlated to the content fluctuations of chlorophylls after different ADSD treatments. All these results demonstrated that chlorophylls play a key role in preventing cell damage of chlorella caused by ADSD contamination. Besides, we proposed a possible chlorophyll metabolism pathway in chlorella response to ADSD contamination.


Subject(s)
Chlorella vulgaris , Gene Expression Profiling , Androgens , Androstenedione , Chlorella vulgaris/genetics , Chlorophyll , Gene Expression Profiling/methods
15.
BMC Plant Biol ; 22(1): 222, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35484490

ABSTRACT

BACKGROUND: Ratoon sugarcane is susceptible to chlorosis, characterized by chlorophyll loss, poor growth, and a multitude of nutritional deficiency mainly occurring at young stage. Chlorosis would significantly reduce the cane production. The molecular mechanism underlying this phenomenon remains unknown. We analyzed the transcriptome and metabolome of chlorotic and non-chlorotic sugarcane leaves of the same age from the same field to gain molecular insights into this phenomenon. RESULTS: The agronomic traits, such as plant height and the number of leaf, stalk node, and tillers declined in chlorotic sugarcane. Chlorotic leaves had substantially lower chlorophyll content than green leaves. A total of 11,776 differentially expressed genes (DEGs) were discovered in transcriptome analysis. In the KEGG enriched chlorophyll metabolism pathway, sixteen DEGs were found, eleven of which were down-regulated. Two photosynthesis pathways were also enriched with 32 genes downregulated and four genes up-regulated. Among the 81 enriched GO biological processes, there were four categories related to metal ion homeostasis and three related to metal ion transport. Approximately 400 metabolites were identified in metabolome analysis. The thirteen differentially expressed metabolites (DEMs) were all found down-regulated. The phenylpropanoid biosynthesis pathway was enriched in DEGs and DEMs, indicating a potentially vital role for phenylpropanoids in chlorosis. CONCLUSIONS: Chlorophyll production, metal ion metabolism, photosynthesis, and some metabolites in the phenylpropanoid biosynthesis pathway were considerably altered in chlorotic ratoon sugarcane leaves. Our finding revealed the relation between chlorosis and these pathways, which will help expand our mechanistic understanding of ratoon sugarcane chlorosis.


Subject(s)
Anemia, Hypochromic , Saccharum , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Metabolome , Photosynthesis/genetics , Saccharum/genetics , Saccharum/metabolism , Transcriptome
16.
Front Plant Sci ; 13: 836015, 2022.
Article in English | MEDLINE | ID: mdl-35211145

ABSTRACT

Deoxyribonucleic acid (DNA) methylation is an important epigenetic mark involved in diverse biological processes. Here, we report the critical function of tomato (Solanum lycopersicum) Domains Rearranged Methyltransferase7 (SlDRM7) in plant growth and development, especially in leaf interveinal chlorosis and senescence. Using a hairpin RNA-mediated RNA interference (RNAi), we generated SlDRM7-RNAi lines and observed pleiotropic developmental defects including small and interveinal chlorosis leaves. Combined analyses of whole genome bisulfite sequence (WGBS) and RNA-seq revealed that silencing of SlDRM7 caused alterations in both methylation levels and transcript levels of 289 genes, which are involved in chlorophyll synthesis, photosynthesis, and starch degradation. Furthermore, the photosynthetic capacity decreased in SlDRM7-RNAi lines, consistent with the reduced chlorophyll content and repression of genes involved in chlorophyll biosynthesis, photosystem, and photosynthesis. In contrast, starch granules were highly accumulated in chloroplasts of SlDRM7-RNAi lines and associated with lowered expression of genes in the starch degradation pathway. In addition, SlDRM7 was activated by aging- and dark-induced senescence. Collectively, these results demonstrate that SlDRM7 acts as an epi-regulator to modulate the expression of genes related to starch and chlorophyll metabolism, thereby affecting leaf chlorosis and senescence in tomatoes.

17.
Genes (Basel) ; 12(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34946820

ABSTRACT

Chlorophyllase (Chlase, CLH) is one of the earliest discovered enzymes present in plants and green algae. It was long considered to be the first enzyme involved in chlorophyll (Chl) degradation, while strong evidence showed that it is not involved in Chl breakdown during leaf senescence. On the other hand, it is possible that CLH is involved in Chl breakdown during fruit ripening. Recently, it was discovered that Arabidopsis CLH1 is located in developing chloroplasts but not in mature chloroplasts, and it plays a role in protecting young leaves from long-term photodamage by catalysing Chl turnover in the photosystem II (PSII) repair cycle. However, there remain other important questions related to CLH. In this article, we briefly reviewed the research progress on CLH and listed the main unanswered questions related to CLH for further study.


Subject(s)
Arabidopsis Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Hydrolases/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism
18.
Genes (Basel) ; 12(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34946925

ABSTRACT

Nicotiana alata is an ornamental horticultural plant with a variety of flower colors and a long flowering period. The genes in four different colored N. alata (white, purple, red, and lemon green) were analyzed to explain the differences in flower color using transcriptomes. A total of 32 differential expression genes in the chlorophyll biosynthesis pathway and 41 in the anthocyanin biosynthesis pathway were identified. The enrichment analysis showed that the chlorophyll biosynthesis pathway and anthocyanin biosynthesis pathway play critical roles in the color differences of N. alata. The HEMA of the chlorophyll biosynthesis pathway was up-regulated in lemon green flowers. Compared with white flowers, in the red and purple flowers, F3H, F3'5'H and DFR were significantly up-regulated, while FLS was significantly down-regulated. Seventeen differential expression genes homologous to transcription factor coding genes were obtained, and the homologues of HY5, MYB12, AN1 and AN4 were also involved in flower color differences. The discovery of these candidate genes related to flower color differences is significant for further research on the flower colors formation mechanism and color improvements of N. alata.


Subject(s)
Flowers/genetics , Nicotiana/genetics , Pigmentation/genetics , Pigments, Biological/genetics , Transcription Factors/genetics , Anthocyanins/genetics , Color , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Phenotype , Plant Proteins/genetics , Transcriptome/genetics
19.
Aquat Toxicol ; 239: 105964, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34534865

ABSTRACT

Tylosin (TYN) is widely used in veterinary prophylactic as a macrolide and frequently detected in the surface water. Previous studies showed that exposure to TYN caused suppression of chlorophyll biosynthesis and inhibition of photosynthesis at the physiological level, associated with reduced growth performances in algae, but the molecular mechanisms remain unknown, especially at environmental exposure levels. The present study elucidated the underlying molecular mechanism(s) of TYN toxicity in a model green alga Raphidocelis subcapitata using approaches of transcriptomics and metabolomics. Following a 7-day exposure, algal growth performances were reduced by 26.3% and 58.3% in the 3 (an environmentally realistic level) and 400 µg L-1 TYN treatment group, respectively. A total of 577 (99) and 5438 (180) differentially expressed genes (differentially accumulated metabolites) were identified in algae treated with 3 and 400 µg L-1 TYN, respectively. Signaling pathways including photosynthesis - antenna protein, porphyrin and chlorophyll metabolism, carbon fixation in photosynthetic organisms, and DNA replication were altered in the 400 µg L-1 TYN treatment, while photosynthesis and DNA replication were the shared pathways in both TYN treatments. The metabolomic data further suggest that molecular pathways related to photosynthesis, DNA replication-coupled repair and energy metabolism were impaired. Photosynthesis was identified as the most sensitive target of TYN toxicity in R. subcapitata, in contrast to protein synthesis inhibition caused by TYN in bacteria. This study provides novel mechanistic information of TYN toxicity in R. subcapitata.


Subject(s)
Transcriptome , Water Pollutants, Chemical , DNA Replication , Metabolome , Photosynthesis , Tylosin , Water Pollutants, Chemical/toxicity
20.
J Biol Chem ; 296: 100802, 2021.
Article in English | MEDLINE | ID: mdl-34022219

ABSTRACT

Understanding the pathways involved in chlorophyll breakdown provides a molecular map to the color changes observed in plant life on a global scale each fall. Surprisingly, little is known about the fate of phytol, chlorophyll's 20-carbon branched-chain tail, during this process. A recent study from Gutbrod et al. provides evidence using physiological, genetic, and exquisitely sensitive analytical approaches that phytenal is an intermediate in plant phytol catabolism. These insights and techniques open the door to further investigation of this complicated metabolic system, with implications for plant health and agriculture.


Subject(s)
Chlorophyll/metabolism , Phytol/metabolism , Arabidopsis/metabolism , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL