Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.492
Filter
1.
Turk J Haematol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39113479

ABSTRACT

Objective: We investigated the occurrence and characteristics of secondary solid cancers (SSC) in Philadelphia chromosome-negative myeloproliferative neoplasm (Ph- MPN) patients from Türkiye. We identified the potential risk factors for SSC development including the impact of cytoreductive therapies and assess the influence of SSC on patient survival. Material and Methods: 1013 Ph- MPN patients diagnosed between 1995 and 2022 was retrospectively analyzed. Data related to demographics, clinical and laboratory parameters, SSC development, cytoreductive therapy exposure and survival outcomes were collected. Statistical analyses were performed using SPSS 26.0 software. Results: Of the Ph- MPN patients, 6.6% developed SSC, with carcinoma being the most common type. Older age at Ph- MPN diagnosis and male gender were associated with SSC occurrence. Ph- MPN patients diagnosed with SSC and patients with no diagnosis of SSC showed no significant difference for complete blood count, spleen size, Ph- MPN diagnostic groups and driver mutation frequencies. However, SSC patients showed a higher frequency of arterial thrombosis and tendency towards increased rate for total thrombosis (p=0.030, p=0.069; respectively). In multivariate analysis, arterial thrombosis was the sole independent risk factor and interferon (IFN)-based therapy the sole protective factor for SSC development. Median overall survival (OS) did not differ between patients with and without SSC except for polycythemia vera (PV) patients with SSC, who had shorter OS (175±15 and 321±26 months, respectively; p = 0.005). Conclusion: Our study highlights the prevalence and characteristics of SSC in Turkish patients diagnosed with Ph- MPN. Arterial thrombosis was associated with increased SSC risk while IFN-based therapy offered potential protection from SSC. Screening for SSC in Ph- MPN patients with arterial thrombosis may be relevant. These findings emphasize the importance of malignancy screening in Ph- MPN patients, especially in high-risk subgroups and call for further research to elucidate the underlying mechanisms and optimize treatment strategies.

2.
Biophys Rev ; 16(3): 331-343, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39099845

ABSTRACT

Histone and non-histone proteins play key roles in the activation and repression of genes. In addition to experimental studies of their regulation of gene expression, molecular modeling at the nucleosome, chromatin, and chromosome levels can contribute insights into the molecular mechanisms involved. In this review, we provide an overview for protein-bound chromatin modeling, and describe how our group has integrated protein binding into genome systems across the scales, from all-atom to coarse-grained models, using explicit to implicit descriptions. We describe the associated applications to protein binding effects and biological mechanisms of genome folding and gene regulation. We end by illustrating the application of machine learning tools like AlphaFold2 to proteins relevant to chromatin systems.

3.
Evol Lett ; 8(4): 467-477, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39100237

ABSTRACT

Almost all species in the genus Salix (willow) are dioecious and willows have variable sex-determining systems, the role of this variation in maintaining species barriers is relatively untested. We first analyzed the sex determination systems (SDS) of two species, Salix cardiophylla and Salix interior, whose positions in the Salix phylogeny make them important for understanding a sex chromosome turnover that has been detected in their relatives, and that changed the system from male (XX/XY) to female (ZW/ZZ) heterogamety. We show that both species have male heterogamety, with sex-linked regions (SLRs) on chromosome 15 (termed a 15XY system). The SLRs occupy 21.3% and 22.8% of the entire reference chromosome, respectively. By constructing phylogenetic trees, we determined the phylogenetic positions of all the species with known SDSs. Reconstruction of ancestral SDS character states revealed that the 15XY system is likely the ancestral state in willows. Turnovers of 15XY to 15ZW and 15XY to 7XY likely contributed to early speciation in Salix and gave rise to major groups of the Vetrix and Salix clades. Finally, we tested introgression among species in the phylogenetic trees based on both autosomes and SLRs separately. Frequent introgression was observed among species with 15XY, 15ZW, and 7XY on autosomes, in contrast to the SLR datasets, which showed less introgression, and in particular no gene flow between 15ZW and 7XY species. We argue that, although SDS turnovers in willow speciation may not create complete reproductive barriers, the evolution of SLRs plays important roles in preventing introgression and maintaining species boundaries.

4.
Proc Natl Acad Sci U S A ; 121(33): e2405636121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102548

ABSTRACT

Chromosomal abnormalities are a common cause of human miscarriage but rarely reported in any other species. As a result, there are currently inadequate animal models available to study this condition. Horses present one potential model since mares receive intense gynecological care. This allowed us to investigate the prevalence of chromosomal copy number aberrations in 256 products of conception (POC) in a naturally occurring model of pregnancy loss (PL). Triploidy (three haploid sets of chromosomes) was the most common aberration, found in 42% of POCs following PL over the embryonic period. Over the same period, trisomies and monosomies were identified in 11.6% of POCs and subchromosomal aberrations in 4.2%. Whole and subchromosomal aberrations involved 17 autosomes, with chromosomes 3, 4, and 20 having the highest number of aberrations. Triploid fetuses had clear gross developmental anomalies of the brain. Collectively, data demonstrate that alterations in chromosome number contribute to PL similarly in women and mares, with triploidy the dominant ploidy type over the key period of organogenesis. These findings, along with highly conserved synteny between human and horse chromosomes, similar gestation lengths, and the shared single greatest risk for PL being advancing maternal age, provide strong evidence for the first animal model to truly recapitulate many key features of human miscarriage arising due to chromosomal aberrations, with shared benefits for humans and equids.


Subject(s)
Abortion, Spontaneous , Chromosome Aberrations , Animals , Horses , Female , Abortion, Spontaneous/genetics , Pregnancy , Disease Models, Animal , Humans , Triploidy
5.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091753

ABSTRACT

Xist, a pivotal player in X chromosome inactivation (XCI), has long been perceived as a cis-acting long noncoding RNA that binds exclusively to the inactive X chromosome (Xi). However, Xist's ability to diffuse under select circumstances has also been documented, leading us to suspect that Xist RNA may have targets and functions beyond the Xi. Here, using female mouse embryonic stem cells (ES) and mouse embryonic fibroblasts (MEF) as models, we demonstrate that Xist RNA indeed can localize beyond the Xi. However, its binding is limited to ~100 genes in cells undergoing XCI (ES cells) and in post-XCI cells (MEFs). The target genes are diverse in function but are unified by their active chromatin status. Xist binds discretely to promoters of target genes in neighborhoods relatively depleted for Polycomb marks, contrasting with the broad, Polycomb-enriched domains reported for human XIST RNA. We find that Xist binding is associated with down-modulation of autosomal gene expression. However, unlike on the Xi, Xist binding does not lead to full silencing and also does not spread beyond the target gene. Over-expressing Xist in transgenic ES cells similarly lead to autosomal gene suppression, while deleting Xist's Repeat B motif reduces autosomal binding and perturbs autosomal down-regulation. Furthermore, treating female ES cells with the Xist inhibitor, X1, leads to loss of autosomal suppression. Altogether, our findings reveal Xist targets ~100 genes beyond the Xi, identify Repeat B as a crucial domain for its in-trans function in mice, and indicate that autosomal targeting can be disrupted by the X1 small molecule inhibitor.

6.
Front Plant Sci ; 15: 1393796, 2024.
Article in English | MEDLINE | ID: mdl-39109054

ABSTRACT

The use of wild species as a source of genetic variability is a valued tool in the framework of crop breeding. Hordeum chilense Roem. et Schult is a wild barley species that can be a useful genetic donor for sustainable wheat breeding which carries genes conferring resistance to some diseases or increasing grain quality, among others. Septoria tritici blotch (STB), caused by the Zymoseptoria tritici fungus, is one of the most important wheat diseases worldwide, affecting both bread and durum wheat and having a high economic impact. Resistance to STB has been previously described in H. chilense chromosome 4Hch. In this study, we have developed introgression lines for H. chilense chromosome 4Hch in durum wheat using interspecific crosses, advanced backcrosses, and consecutive selfing strategies. Alien H. chilense chromosome segments have been reduced in size by genetic crosses between H. chilense disomic substitution lines in durum wheat and durum wheat lines carrying the Ph1 deletion. Hordeum chilense genetic introgressions were identified in the wheat background through several plant generations by fluorescence in situ hybridisation (FISH) and simple sequence repeat (SSR) markers. An STB infection analysis has also been developed to assess STB resistance to a specific H. chilense chromosome region. The development of these H. chilense introgression lines with moderate to high resistance to STB represents an important advance in the framework of durum breeding and can be a valuable tool for plant breeders.

7.
Front Vet Sci ; 11: 1441021, 2024.
Article in English | MEDLINE | ID: mdl-39104546

ABSTRACT

Introduction: Japanese quail are of significant economic value, providing protein nutrition to humans through their reproductive activity; however, sexual dimorphism in this species remains relatively unexplored compared with other model species. Method: A total of 114 RNA sequencing datasets (18 and 96 samples for quail and chicken, respectively) were collected from existing studies to gain a comprehensive understanding of sexual dimorphism in quail. Cross-species integrated analyses were performed with transcriptome data from evolutionarily close chickens to identify sex-biased genes in the embryonic, adult brain, and gonadal tissues. Results: Our findings indicate that the expression patterns of genes involved in sex-determination mechanisms during embryonic development, as well as those of most sex-biased genes in the adult brain and gonads, are identical between quails and chickens. Similar to most birds with a ZW sex determination system, quails lacked global dosage compensation for the Z chromosome, resulting in directional outcomes that supported the hypothesis that sex is determined by the individual dosage of Z-chromosomal genes, including long non-coding RNAs located in the male hypermethylated region. Furthermore, genes, such as WNT4 and VIP, reversed their sex-biased patterns at different points in embryonic development and/or in different adult tissues, suggesting a potential hurdle in breeding and transgenic experiments involving avian sex-related traits. Discussion: The findings of this study are expected to enhance our understanding of sexual dimorphism in birds and subsequently facilitate insights into the field of breeding and transgenesis of sex-related traits that economically benefit humans.

8.
Mol Biol Evol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107250

ABSTRACT

Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.

9.
Elife ; 132024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110491

ABSTRACT

The chromosomes in multicellular eukaryotes are organized into a series of topologically independent loops called TADs. In flies, TADs are formed by physical interactions between neighboring boundaries. Fly boundaries exhibit distinct partner preferences, and pairing interactions between boundaries are typically orientation-dependent. Pairing can be head-to-tail or head-to-head. The former generates a stem-loop TAD, while the latter gives a circle-loop TAD. The TAD that encompasses the Drosophila even skipped (eve) gene is formed by the head-to-tail pairing of the nhomie and homie boundaries. To explore the relationship between loop topology and the physical and regulatory landscape, we flanked the nhomie boundary region with two attP sites. The attP sites were then used to generate four boundary replacements: λ DNA, nhomie forward (WT orientation), nhomie reverse (opposite of WT orientation), and homie forward (same orientation as WT homie). The nhomie forward replacement restores the WT physical and regulatory landscape: in MicroC experiments, the eve TAD is a 'volcano' triangle topped by a plume, and the eve gene and its regulatory elements are sequestered from interactions with neighbors. The λ DNA replacement lacks boundary function: the endpoint of the 'new' eve TAD on the nhomie side is ill-defined, and eve stripe enhancers activate a nearby gene, eIF3j. While nhomie reverse and homie forward restore the eve TAD, the topology is a circle-loop, and this changes the local physical and regulatory landscape. In MicroC experiments, the eve TAD interacts with its neighbors, and the plume at the top of the eve triangle peak is converted to a pair of 'clouds' of contacts with the next-door TADs. Consistent with the loss of isolation afforded by the stem-loop topology, the eve enhancers weakly activate genes in the neighboring TADs. Conversely, eve function is partially disrupted.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Drosophila melanogaster/genetics , Drosophila/genetics
10.
Rev Med Inst Mex Seguro Soc ; 62(1): 1-7, 2024 Jan 08.
Article in Spanish | MEDLINE | ID: mdl-39116260

ABSTRACT

Background: 20q11.2 microdeletion syndrome [ORPHA: 444051] is a rare disease, since 16 patients have been reported in literature worldwide. Prevalence ratio is < 1:1,000,000 individuals. Haploinsufficiency on GDF5, SAMHD1 and EPB41L1 genes is important due to phenotypic manifestations in patients. Clinical features can be grouped into craniofacial abnormalities, limb abnormalities, neurological and perinatal disorders. The aim of this report is to present a clinical case of 20q11.21-q11.23 microdeletion, to describe clinical manifestations found, to compare them with features reported in literature, and to contribute to the phenotypic spectrum expansion. Clinical case: 5-year-old female patient who presented hypotonia, psychomotor retardation, microcephaly, facial dysmorphia, pectus excavatum, thoracolumbar scoliosis, right hip subluxation, camptodactyly and clinodactyly. Karyotype test was normal and SNP microarray test reported deletion of chromosomal region 20q11.21-q11.23. Conclusions: It was presented a 20q11.2 microdeletion syndrome confirmed case that shares the features reported in literature, in addition to previously unreported features, such as blepharoptosis, pectus excavatum, scoliosis and hip dysplasia. Interdisciplinary management is important to improve the patient's condition (in her 3 spheres), in order to achieve her best possible health status.


Introducción: el síndrome de microdeleción 20q11.2 [ORPHA: 444051] es una enfermedad rara, pues se han reportado 16 casos a nivel mundial. Su prevalencia se estima en < 1:1,000,000 de nacidos vivos. Induce haploinsuficiencia en los genes GDF5, SAMHD1 y EPB41L1, los cuales son de importancia clínica por las manifestaciones fenotípicas. Se caracteriza por anomalías craneofaciales, anomalías de extremidades, alteraciones neurológicas y perinatales. El objetivo de este reporte es presentar un caso de microdeleción 20q11.21-q11.23, describir las manifestaciones clínicas encontradas, compararlo con lo reportado en la literatura y colaborar en la ampliación del espectro fenotípico. Caso clínico: paciente del sexo femenino de 5 años que presentó hipotonía, retraso psicomotor, microcefalia, dismorfias faciales, pectus excavatum, escoliosis toracolumbar, subluxación de cadera derecha, camptodactilia y clinodactilia. La prueba de cariotipo se reportó sin alteraciones y el ensayo de microarreglo de polimorfismos de un nucleótido (SNP) reportó deleción de la región cromosómica 20q11.21-q11.23. Conclusiones: se presentó un caso confirmado de síndrome de microdeleción 20q11.2 que comparte las características reportadas en la literatura, además de características no reportadas previamente, como ptosis palpebral, pectus excavatum, escoliosis y displasia del desarrollo de cadera. Es importante el manejo interdisciplinario para buscar mejoría en la condición de la paciente (en sus 3 esferas), a fin de alcanzar el mejor estado de salud posible.


Subject(s)
Phenotype , Humans , Female , Child, Preschool , DiGeorge Syndrome/genetics , DiGeorge Syndrome/diagnosis , Chromosome Deletion
11.
Methods Mol Biol ; 2818: 3-22, 2024.
Article in English | MEDLINE | ID: mdl-39126464

ABSTRACT

During meiosis, Spo11 generates DNA double-strand breaks to induce recombination, becoming covalently attached to the 5' ends on both sides of the break during this process. Such Spo11 "covalent complexes" are transient in wild-type cells, but accumulate in nuclease mutants unable to initiate repair. The CC-seq method presented here details how to map the location of these Spo11 complexes genome-wide with strand-specific nucleotide-resolution accuracy in synchronized Saccharomyces cerevisiae meiotic cells.


Subject(s)
DNA Breaks, Double-Stranded , Endodeoxyribonucleases , Meiosis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Meiosis/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA, Fungal/genetics , DNA, Fungal/metabolism , Sequence Analysis, DNA/methods , DNA Repair
12.
Chromosome Res ; 32(3): 11, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126507

ABSTRACT

Interphase chromosomes reside within distinct nuclear regions known as chromosome territories (CTs). Recent observations from Hi-C analyses, a method mapping chromosomal interactions, have revealed varied decay in contact probabilities among different chromosomes. Our study explores the relationship between this contact decay and the particular shapes of the chromosome territories they occupy. For this, we employed molecular dynamics (MD) simulations to examine how confined polymers, resembling chromosomes, behave within different confinement geometries similar to chromosome territory boundaries. Our simulations unveil so far unreported relationships between contact probabilities and end-to-end distances varying based on different confinement geometries. These findings highlight the crucial impact of chromosome territories on shaping the larger-scale properties of 3D genome organization. They emphasize the intrinsic connection between the shapes of these territories and the contact behaviors exhibited by chromosomes. Understanding these correlations is key to accurately interpret Hi-C and microscopy data, and offers vital insights into the foundational principles governing genomic organization.


Subject(s)
Chromosomes , Molecular Dynamics Simulation , Polymers/chemistry , Humans , Chromatin/genetics , Interphase
13.
BMC Pediatr ; 24(1): 517, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127642

ABSTRACT

BACKGROUND: BCR::ABL1-like or Philadelphia chromosome-like (Ph-like) acute lymphoblastic leukemia (ALL) was first reported in 2009. Ph-like ALL is characterized by gene signature similar to Philadelphia chromosome ALL, but without BCR::ABL1 fusions. Molecularly, Ph-like ALL is divided into seven categories, with CRLF2 and ABL-class rearrangements being the two most common subtypes, exhibiting alterations in distinct downstream signaling cascades. CASE PRESENTATION: We report a rare case of pediatric Ph-like ALL with concomitant CRLF2 and ABL1 rearrangements. CRLF2 was fused with P2RY8, its most common fusion partner, whereas ABL1 was fused with MYO18B, a novel fusion partner that has not been previously reported. The 4-year-old female patient was treated using the national multicenter CCCG-ALL-2020 protocol with the addition of dasatinib at the end of induction when ABL1 rearrangement was confirmed by RNA-seq. Morphologically and molecularly, the patient remained in continuous remission until the last follow-up. To the best of our knowledge, this is the first case of Ph-like ALL harboring two distinct rearrangement categories. CONCLUSIONS: Our results identified that ABL1 rearrangement and CRLF2 rearrangement can coexist. The application of FISH, whole transcription sequencing, PCR can help us to have a more comprehensive understanding of ALL cytogenetics and molecular biology. Further studies are needed to explore the role of targeted therapies in such rare clinical scenarios.


Subject(s)
Gene Rearrangement , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Cytokine , Humans , Female , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child, Preschool , Receptors, Cytokine/genetics , Proto-Oncogene Proteins c-abl/genetics
14.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125948

ABSTRACT

Polyploids are essential in plant evolution and species formation, providing a rich genetic reservoir and increasing species diversity. Complex polyploids with higher ploidy levels often have a dosage effect on the phenotype, which can be highly detrimental to gametes, making them rare. In this study, offspring plants resulting from an autoallotetraploid (RRRC) derived from the interspecific hybridization between allotetraploid Raphanobrassica (RRCC, 2n = 36) and diploid radish (RR, 2n = 18) were obtained. Fluorescence in situ hybridization (FISH) using C-genome-specific repeats as probes revealed two main genome configurations in these offspring plants: RRRCC (2n = 43, 44, 45) and RRRRCC (2n = 54, 55), showing more complex genome configurations and higher ploidy levels compared to the parental plants. These offspring plants exhibited extensive variation in phenotypic characteristics, including leaf type and flower type and color, as well as seed and pollen fertility. Analysis of chromosome behavior showed that homoeologous chromosome pairing events are widely observed at the diakinesis stage in the pollen mother cells (PMCs) of these allopolyploids, with a range of 58.73% to 78.33%. Moreover, the unreduced C subgenome at meiosis anaphase II in PMCs was observed, which provides compelling evidence for the formation of complex allopolyploid offspring. These complex allopolyploids serve as valuable genetic resources for further analysis and contribute to our understanding of the mechanisms underlying the formation of complex allopolyploids.


Subject(s)
Aneuploidy , Chromosomes, Plant , Polyploidy , Raphanus , Raphanus/genetics , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Brassica/genetics , Hybridization, Genetic , Meiosis/genetics , Genome, Plant , Pollen/genetics , Phenotype
15.
Int J Mol Sci ; 25(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39126057

ABSTRACT

The genus Hedysarum L. (Fabaceae) includes about 200 species of annual and perennial herbs distributed in Asia, Europe, North Africa, and North America. Many species of this genus are valuable medicinal, melliferous, and forage resources. In this review, we consider the taxonomic history of the genus Hedysarum, the chromosomal organization of the species from the sections Hedysarum and Multicaulia, as well as phylogenetic relationships between these sections. According to morphological, genetic, and phylogenetic data, the genus Hedysarum is divided into three main sections: Hedysarum (= syn. Gamotion), Multicaulia, and Stracheya. In species of this genus, two basic chromosome numbers, x = 7 (section Hedysarum) and x = 8 (sections Multicaulia and Stracheya), were determined. The systematic positions of some species within the sections are still uncertain due to their morphological similarities. The patterns of distribution of molecular chromosomal markers (45S rDNA, 5S rDNA, and different satellite DNAs) in karyotypes of various Hedysarum species made it possible to determine their ploidy status and also specify genomic relationships within the sections Hedysarum and Multicaulia. Recent molecular phylogenetic studies clarified significantly the taxonomy and evolutionary development of the genus Hedysarum.


Subject(s)
Chromosomes, Plant , Fabaceae , Genome, Plant , Phylogeny , Fabaceae/genetics , Fabaceae/classification , Chromosomes, Plant/genetics
16.
Sci Total Environ ; 950: 175358, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127215

ABSTRACT

Deep-sea hydrothermal vents are characterized by high hydrostatic pressure, hypoxia, darkness and toxic substances. However, how organisms adapt to such extreme marine ecosystems remain poorly understood. We hypothesize that adaptive evolution plays an essential role in generating novelty for evolutionary adaptation to the deep-sea environment because adaptive evolution has been found to be critical for species origin and evolution. In this project, the chromosome-level genome of the deep-sea hydrothermal vent gastropod T. jamsteci was constructed for the first time to examine molecular mechanisms of its adaptation to the deep-sea environment. The genome size was large (2.54 Gb), ranking at the top of all species in the Vetigastropoda subclass, driven primarily by the bursts of transposable elements (TEs). The transposition of TEs may also trigger chromosomal changes including both inter-chromosomal fusions and intra-chromosomal activities involving chromosome inversions, rearrangements and fusions, as revealed by comparing the genomes of T. jamsteci and its closely related shallow-sea species Gibbula magus. Innovative changes including the expansion of the ABC transporter gene family that may facilitate detoxification, duplication of genes related to endocytosis, immunity, apoptosis, and anti-apoptotic domains that may help T. jamsteci fight against microbial pathogens, were identified. Furthermore, comparative analysis identified positive selection signals in a large number of genes including the hypoxia up-regulated protein 1, which is a chaperone that may promote adaptation of the T. jamsteci to hypoxic deepsea environments, hox2, Rx2, Pax6 and cilia-related genes BBS1, BBS2, BBS9 and RFX4. Notably, because of the critical importance of cilia and IFT in development, positive selection in cilia-related genes may play a critical role in facilitating T. jamsteci to adapt to the high-pressure deep-sea ecosystem. Results from this study thus revealed important molecular clues that may facilitate further research on the adaptation of molluscs to deep-sea hydrothermal vents.

17.
J Mol Biol ; : 168733, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128787

ABSTRACT

Detecting chromosome structural abnormalities in medical genetics is essential for diagnosing genetic disorders and understanding their implications for an individual's health. However, existing computational methods are formulated as a binary-class classification problem trained only on representations of positive/negative chromosome pairs. This paper introduces an innovative framework for detecting chromosome abnormalities with banding resolution, capable of precisely identifying and masking the specific abnormal regions. We highlight a pixel-level abnormal mapping strategy guided by banding features. This approach integrates data from both the original image and banding characteristics, enhancing the interpretability of prediction results for cytogeneticists. Furthermore, we have implemented an ensemble approach that pairs a discriminator with a conditional random field heatmap generator. This combination significantly reduces the false positive rate in abnormality screening. We benchmarked our proposed framework with state-of-the-art (SOTA) methods in abnormal screening and structural abnormal region segmentation. Our results show cutting-edge effectiveness and greatly reduce the high false positive rate. It also shows superior performance in sensitivity and segmentation accuracy. Being able to identify abnormal regions consistently shows that our model has demonstrated significant clinical utility with high model interpretability. BRChromNet is open-sourced and available at https://github.com/frankchen121212/BR-ChromNet.

18.
J Exp Bot ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129711
19.
Future Oncol ; : 1-3, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129712

ABSTRACT

Artificial intelligence (AI) has rapidly advanced in the past years, particularly in medicine for improved diagnostics. In clinical cytogenetics, AI is becoming crucial for analyzing chromosomal abnormalities and improving precision. However, existing software lack learning capabilities from experienced users. AI integration extends to genomic data analysis, personalized medicine and research, but ethical concerns arise. In this article, we discuss the challenges of the full automation in cytogenetic test interpretation and focus on its importance and benefits.

20.
Article in English | MEDLINE | ID: mdl-39134512

ABSTRACT

BACKGROUND AND HYPOTHESIS: Male patients with X-linked Alport syndrome (XLAS) generally develop end-stage kidney disease in early or middle adulthood and show distinct genotype-phenotype correlations. Female patients, however, show various phenotypes ranging from asymptomatic to severe with no genotype-phenotype correlations. However, the factors affecting the severity of XLAS in female patients are unclear. Since X-chromosome inactivation (XCI) affects the severity of certain female X-linked diseases, we investigated whether genotype and XCI were associated with XLAS severity in female patients in a large Japanese cohort. METHODS: Among 139 female patients with genetically diagnosed XLAS at our institution, we conducted XCI analysis on peripheral blood leukocytes using the human androgen receptor assay method and analyzed two cohorts. In 74 adult female patients, we evaluated the correlation between kidney function (creatinine-estimated glomerular filtration rate [Cr-eGFR] optimized for Japanese individuals) and genotype/XCI using multivariable linear regression analysis, and in 65 pediatric female patients, we evaluated the correlation between kidney function (Cr-eGFR optimized for Japanese individuals) and genotype/XCI using multivariable linear regression analysis. We also investigated the correlation between the development of proteinuria (urine protein-to-creatinine ratio above normal for the patient's age) and genotype/XCI using multivariable Cox proportional hazard analysis. RESULTS: In adult female patients, XCI pattern was significantly associated with Cr-eGFR (regression coefficient estimate = -0.53, P = 0.004), whereas genotype was not (P = 0.892). In pediatric female patients, both genotype and XCI pattern were significant independent risk factors for the development of proteinuria (hazard ratio [HR], 3.702; 95% confidence interval [CI], 1.681-8.150; P = 0.001 and HR, 1.043; 95% CI, 1.061-1.070; P = 0.001, respectively), whereas both genotype and XCI pattern were not associated with Cr-eGFR (P = 0.20, P = 0.67, respectively). CONCLUSION: Genotype and XCI are factors associated with the severity in females with XLAS.

SELECTION OF CITATIONS
SEARCH DETAIL