Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.926
Filter
1.
Curr Drug Targets ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39219419

ABSTRACT

An aneurysm is an abnormal enlargement or bulging of the wall of a blood vessel. Most often, aneurysms occur in large blood vessels - the aorta (Thoracic Aortic Aneurysm (TAA) and Abdominal Aortic Aneurysm (AAA) and brain vessels (Intracranial Aneurysm (IA)). Despite the presence of significant differences in the pathogenesis of the development and progression of IA and TAA/AAA, there are also similarities. For instance, both have been shown to be strongly influenced by shear stress, inflammatory processes, and enzymatic destruction of the elastic lamellae and extracellular matrix (ECM) proteins of the vascular wall. Moreover, although IA and TAA are predominantly considered arteriopathies with different pathological mechanisms, they share risk factors with AAA, such as hypertension and smoking. However, there is a need for a more in- -depth study of the key elements that may influence the formation and progression of a particular aneurysm to find ways of therapeutic intervention or search for a diagnostic tool. Today, it is known that the disruption of gene expression is one of the main mechanisms that contribute to the development of aneurysms. At the same time, growing evidence suggests that aberrant epigenetic regulation of gene function is strongly related to the genesis of aneurysms. Although much has been studied of the known protein-coding genes, circular RNAs (circRNAs), a relatively new and rapidly evolving large family of transcripts, have recently received much scientific attention. CircRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as therapeutic targets and biomarkers. Increasing evidence has implicated circRNAs in the pathogenesis of multiple cardiovascular diseases, including the development of aneurysms. However, the mechanism of dysregulation of certain circRNAs in a particular aneurysm remains to be studied. The discovery of circRNAs has recently advanced our understanding of the latest mode of miRNAs/target genes regulation in the development and progression of IA and TAA/AAA. The aim of this study is to compare the expression profiles of circRNAs to search for similar or different effects of certain circRNAs on the formation and progression of IA and TAA/AAA.

2.
Drug Resist Updat ; 77: 101126, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39243601

ABSTRACT

AIMS: With the wide application of trastuzumab deruxtecan (T-DXd), the survival of HER2-low breast cancer patients is dramatically improved. However, resistance to T-DXd still exists in a subset of patients, and the molecular mechanism remains unclear. METHODS: An in vivo shRNA lentiviral library functional screening was performed to identify potential circular RNA (crRNA) that mediates T-DXd resistance. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate the molecular mechanism. Ferroptosis was detected using C11-BODIPY, Liperfluo, FerroOrange staining, glutathione quantification, malondialdehyde quantification, and transmission electron microscopy. Molecular docking, virtual screening, and patient-derived xenograft (PDX) models were used to validate therapeutic agents. RESULTS: VDAC3-derived crRNA (crVDAC3) ranked first in functional shRNA library screening. Knockdown of crVDAC3 increased the sensitivity of HER2-low breast cancer cells to T-DXd treatment. Further mechanistic research revealed that crVDAC3 specifically binds to HSPB1 protein and inhibits its ubiquitination degradation, leading to intracellular accumulation and increased levels of HSPB1 protein. Notably, suppression of crVDAC3 dramatically increases excessive ROS levels and labile iron pool accumulation. Inhibition of crVDAC3 induces ferroptosis in breast cancer cells by reducing HSPB1 expression, thereby mediating T-DXd resistance. Through virtual screening and experimental validation, we identified that paritaprevir could effectively bind to crVDAC3 and prevent its interaction with HSPB1 protein, thereby increasing ubiquitination degradation of HSPB1 protein to overcome T-DXd resistance. Finally, we validated the enhanced therapeutic efficacy of T-DXd by paritaprevir in a HER2-low PDX model. CONCLUSION: This finding reveals the molecular mechanisms underlying T-DXd resistance in HER2-low breast cancer. Our study provides a new strategy to overcome T-DXd resistance by inhibiting the interaction between crVDAC3 and HSPB1 protein.

3.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273386

ABSTRACT

In vitro circular RNA (circRNA) preparation methods have been gaining a lot of attention recently as several reports suggest that circRNAs are more stable, with better performances in cells and in vivo, than linear RNAs in various biomedical applications. Self-splicing ribozymes are considered a major in vitro circRNA generation method for biomedical applications due to their simplicity and efficiency in the circularization of the gene of interest. This review summarizes, updates, and discusses the recently developed self-circularization methods based on the self-splicing ribozyme, such as group I and II intron ribozymes, and the pros and cons of each method in preparing circRNA in vitro.


Subject(s)
RNA, Catalytic , RNA, Circular , RNA, Catalytic/metabolism , RNA, Catalytic/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , RNA Splicing , Animals , RNA/genetics , RNA/metabolism , Introns/genetics
4.
Heliyon ; 10(16): e34385, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39262995

ABSTRACT

Hepatic ischemia‒reperfusion injury is a common injury in liver surgery and liver transplantation that can lead to liver function damage, including oxidative stress, apoptosis, autophagy and inflammatory reactions. Pyroptosis is a type of inflammatory programmed cell death that has been implicated in ischemia‒reperfusion injury-associated inflammatory reactions. Although circular RNAs can regulate cell death in hepatic ischemia‒reperfusion injury, their relationship with pyroptosis remains unclear. Therefore, this study aimed to investigate the effect of circular RNA on pyroptosis in hepatic ischemia‒reperfusion injury. We constructed a mouse hepatic ischemia‒reperfusion injury model for circular RNA sequencing and obtained 40 circular RNAs with significant differential expression, of which 39 were upregulated and 1 was downregulated. Subsequently, the endogenous competitive RNA network was constructed using TarBase, miRTarBase, TargetScan, RNAhybrid, and miRanda. Gene Set Enrichment Analysis, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology functional analyses of downstream target genes revealed that circRNA-Phf21a_0002 might affect pyroptosis by regulating the mTOR signaling pathway and Bach1 by sponging let-7b-5p. The overexpression plasmid upregulated the expression of circRNA-Phf21a_0002 in a hypoxia/reoxygenation model, which aggravated pyroptosis in AML12 cells and apoptosis and necrosis of hepatocytes. Next, we investigated the underlying mechanism and found that circRNA-Phf21a_0002 enabled the expression of Bach1 through sponging of let-7b-5p. The aggravation of pyroptosis via overexpression of circRNA-Phf21a_0002 was reversed by let-7b-5p mimics in hypoxia/reoxygenation-subjected AML12 cells. Collectively, our study clarifies that circRNA-Phf21a_0002 aggravates the pyroptosis of hepatocytes related to ischemia-reperfusion by sponging let-7b-5p. These findings provide new molecular mechanisms and novel biomarkers for follow-up treatment.

5.
Hematology ; 29(1): 2399419, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39268977

ABSTRACT

OBJECTIVES: Circular RNA_0003489 (Circ_0003489) promotes multiple myeloma (MM) progression and bortezomib resistance in MM cells, while its potential as a biomarker in newly diagnosed MM (NDMM) patients is unclear. Thus, this study aimed to investigate the association of circ_0003489 expression with treatment response and survival in NDMM patients who received bortezomib-based induction therapy. METHODS: Bone marrow (BM) specimens from 85 NDMM patients at diagnosis or before treatment and from 15 donor controls during BM examination were retrieved in this retrospective study. Circ_0003489 derived from BM plasma cells was detected by reverse transcription-quantitative polymerase chain reaction and cut by quartile and median for further analysis. RESULTS: Circ_0003489 expression was increased in NDMM patients versus donor controls (P < 0.001). Circ_0003489 quartile was positively correlated with BM plasma cells (P = 0.040), international staging system (ISS) stage (P = 0.007), the revision of ISS stage (P = 0.003), beta-2-microglobulin (P = 0.011), and lactate dehydrogenase (P = 0.042) in NDMM patients. Increased circ_0003489 quartile was linked with a lower possibility of achieving complete response (P = 0.020) and partial response or better (P = 0.041) in NDMM patients. Elevated circ_0003489 expression cut by quartile (P = 0.020) and cut by median (P = 0.006) were linked with decreased progression-free survival (PFS) in NDMM patients. Increased circ_0003489 expression cut by median was associated with shortened overall survival (OS) in NDMM patients (P = 0.038). Meanwhile, higher circ_0003489 quartile independently forecasted poorer PFS (hazard ratio = 1.342, P = 0.045), but not OS in NDMM patients. CONCLUSION: Circ_0003489 expression is increased and reflects unfavorable treatment response and survival in NDMM patients who receive bortezomib-based induction therapy.


Subject(s)
Bortezomib , Multiple Myeloma , RNA, Circular , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Bortezomib/therapeutic use , RNA, Circular/genetics , Male , Female , Middle Aged , Aged , Adult , Retrospective Studies , Treatment Outcome , Aged, 80 and over , Prognosis
6.
Pathol Res Pract ; 263: 155569, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39236498

ABSTRACT

Breast cancer (BC) is the most common cancer among women, characterized by significant heterogeneity. Diagnosis of the disease in the early stages and appropriate treatment plays a crucial role for these patients. Despite the available treatments, many patients due to drug resistance do not receive proper treatments. Recently, circular RNAs (circRNAs), a type of non-coding RNAs (ncRNAs), have been discovered to be involved in the progression and resistance to drugs in BC. CircRNAs can promote or inhibit malignant cells by their function. Numerous circRNAs have been discovered to be involved in the proliferation, invasion, and migration of tumor cells, as well as the progression, pathogenesis, tumor metastasis, and drug resistance of BC. Circular RNAs can also serve as a biomarker for diagnosing, predicting prognosis, and targeting therapy. In this review, we present an outline of the variations in circRNAs expression in various BCs, the functional pathways, their impact on the condition, and their uses in clinical applications.

7.
Eur J Med Res ; 29(1): 454, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261936

ABSTRACT

BACKGROUND: Neoadjuvant chemotherapy (NAC) is an effective treatment for locally advanced breast cancer (BC). However, there are no effective biomarkers for evaluating its efficacy. CDR1-AS, well known for its important role in tumorigenesis, is a famous circular RNA involved in the chemosensitivity of cancers other than BC. However, the predictive role of CDR1-AS in the efficacy and prognosis of NAC for BC has not been fully elucidated. We herein aimed to clarify this role. METHODS: The present study included patients treated with paclitaxel-cisplatin-based NAC. The expression of CDR1-AS was detected by real-time quantitative reverse transcription polymerase chain reaction testing. The predictive value of CDR1-AS expression was examined in pathological complete response (pCR) after NAC using logistic regression analysis. The relationship between CDR1-AS expression and survival was demonstrated using the Kaplan-Meier method, and tested by log-rank test and Cox proportional hazards regression model. RESULTS: The present study enrolled 106 patients with BC. Multivariate logistic regression analysis revealed that CDR1-AS expression was an independent predictive factor for pCR (odds ratio [OR] = 0.244; 95% confidence interval [CI] 0.081-0.732; p = 0.012). Furthermore, pCR benefits with low CDR1-AS expression were observed across all subgroups. The Kaplan-Meier curves and log-rank test suggested that the CDR1-AS high-expression group showed significantly better disease-free survival (DFS; log-rank p = 0.022) and relapse-free survival (RFS; log-rank p = 0.012) than the CDR1-AS low-expression group. Multivariate analysis revealed that CDR1-AS expression was an independent prognostic factor for DFS (adjusted HR = 0.177; 95% CI 0.034-0.928, p = 0.041), RFS (adjusted HR = 0.061; 95% CI 0.006-0.643, p = 0.020), and distant disease-free survival (adjusted HR = 0.061; 95% CI 0.006-0.972, p = 0.047). CONCLUSIONS: CDR1-AS may be a potential novel predictive biomarker of pCR and survival benefit in patients with locally advanced BC receiving NAC. This may help identify specific chemosensitive individuals and build personalized treatment strategies.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoadjuvant Therapy , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Neoadjuvant Therapy/methods , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Prospective Studies , Adult , RNA, Circular/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , China/epidemiology , Paclitaxel/therapeutic use , Paclitaxel/administration & dosage , East Asian People
8.
Am J Physiol Gastrointest Liver Physiol ; 327(4): G485-G498, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39259911

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition worldwide, demanding further investigation into its pathogenesis. Circular RNAs (circRNAs) are emerging as pivotal regulators in MASLD processes, yet their pathological implications in MASLD remain poorly understood. This study focused on elucidating the role of circular RNA ribonucleotide reductase subunit M2 (circRRM2) in MASLD progression. In this study, we used both in vitro and in vivo MASLD models using long-chain-free fatty acid (FFA)-treated hepatocytes and high-fat diet (HFD)-induced MASLD in mice, respectively. We determined the expression patterns of circRRM2, microRNA-142-5p (miR-142-5p), and neuregulin 1 (NRG1) in livers of MASLD-afflicted mice and MASLD hepatocytes by RT-qPCR. Dual-luciferase reporter assays verified the binding relationships among circRRM2, miR-142-5p, and NRG1. We conducted further analyses of their roles in MASLD hepatocytes and modulated circRRM2, miR-142-5p, and NRG1 expression in vitro by transfection. Our findings were validated in vivo. The results demonstrated reduced levels of circRRM2 and NRG1, along with elevated miR-142-5p expression in MASLD livers and hepatocytes. Overexpression of circRRM2 downregulated lipogenesis-related genes and decreased triglycerides accumulation in livers of MASLD mice. MiR-142-5p, which interacts with circRRM2, effectively counteracted the effects of circRRM2 in MASLD hepatocytes. Furthermore, NRG1 was identified as a miR-142-5p target, and its overexpression mitigated the regulatory impact of miR-142-5p on MASLD hepatocytes. In conclusion, circRRM2, via its role as a miR-142-5p sponge, upregulating NRG1, possibly influenced triglycerides accumulation in both in vitro and in vivo MASLD models.NEW & NOTEWORTHY CircRRM2 expression was downregulated in free fatty acid (FFA)-challenged hepatocytes and high-fat diet (HFD) fed mice. Overexpressed circular RNA ribonucleotide reductase subunit M2 (circRRM2) attenuated metabolic dysfunction-associated steatotic liver disease (MASLD) development by suppressing FFA-induced triglycerides accumulation. CircRRM2 targeted microRNA-142-5p (miR-142-5p), which served as an upstream inhibitor of neuregulin 1 (NRG1) and collaboratively regulated MASLD progression.


Subject(s)
Diet, High-Fat , Hepatocytes , MicroRNAs , Neuregulin-1 , RNA, Circular , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Mice , Hepatocytes/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Male , Neuregulin-1/genetics , Neuregulin-1/metabolism , Mice, Inbred C57BL , Fatty Liver/metabolism , Fatty Liver/genetics , Humans , Liver/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Ribonucleoside Diphosphate Reductase
9.
Toxicol Lett ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270811

ABSTRACT

2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD) is a teratogen that can induce cleft palate formation, a common birth defect. Competing endogenous RNAs (ceRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), indirectly regulate gene expression via sharing microRNAs (miRNAs). Nevertheless, the mechanism by which they act as ceRNAs to regulate palatal development remains to be explored in greater detail. Here, the cleft palate model of C57BL/6N pregnant mice was constructed by gavage of TCDD (64ug/kg) on gestation day (GD) 10.5, and the palatal shelves were taken on gestation day (GD) 14.5 for whole-transcriptome sequencing to investigate the underlying mechanisms of the roles of circRNAs and lncRNAs as ceRNAs in cleft palate. Sequencing results revealed that 293 lncRNA, 589 circRNA, 47 miRNA, and 138 messenger RNA (mRNA) were significantly dysregulated, and the cytochrome P450 (CYP) enzymes and the aryl hydrocarbon receptor (AhR) pathway play key roles in the induction of cleft palate upon exposure to TCDD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the function of TCDD function was mainly related to the metabolic processes of intracellular compounds, including the metabolic processes of cellular aromatic compounds and the metabolism of exogenous drugs by cytochrome P450, etc. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the circRNA_1781/miR-30c-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks were hypothesized to be a hub involved in palatal development suggesting that the circRNA_1781/miR-30c-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks may be critical for palatogenesis, setting the foundation for the investigation of cleft palate.

10.
Cells ; 13(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39272979

ABSTRACT

Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.


Subject(s)
Lung , Macrophage Activation , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Macrophage Activation/genetics , Animals , Lung/pathology , Lung/metabolism , Lung/immunology , Macrophages/metabolism , Macrophages/immunology , Pneumonia/genetics , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Inflammation/genetics , Inflammation/pathology
11.
Chem Biol Interact ; 403: 111221, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39233264

ABSTRACT

Exosomes play a crucial role in regulating extracellular communication between normal and cancer cells within the tumor microenvironment, thereby affecting tumor progression through their cargo molecules. However, the specific impact of exosomal circular RNAs (circRNAs) on the development of cadmium-induced carcinogenesis remains unclear. To address this, we investigated whether exosomes derived from normal human bronchial epithelial BEAS-2B (N-B2B) cells could transmit circRNA to cadmium-transformed BEAS-2B (Cd-B2B) cells and the potential effects on Cd-B2B cells. Our findings demonstrated a significant downregulation of circ_0004664 in Cd-B2B cells compared to N-B2B cells (P < 0.01). Overexpression of circ_0004664 in Cd-B2B cells led to a significant inhibition of cell migration and invasion (P < 0.01 or P < 0.05). Furthermore, N-B2B cells could transfer circ_0004664 into recipient Cd-B2B cells via exosomes, subsequently inhibiting cell migration and invasion (P < 0.05 or P < 0.01). Mechanistic investigations revealed that exosomal circ_0004664 functioned as a competitive endogenous RNA for miR-942-5p, resulting in an upregulation of PTEN (P < 0.05). Our study highlights the involvement of exosomal circ_0004664 in cell-cell communication during cadmium carcinogenesis, providing a novel insight into the role of exosomal circRNA in this process.

12.
Food Res Int ; 193: 114856, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160047

ABSTRACT

Epidemiological and experimental studies have demonstrated a strong association between maternal diet and fetal birth weight, obesity, and metabolic syndrome. We investigated the pathways and modes of action of circular RNAs (circRNAs) that mediate the regulation of maternal reproductive performance and fetal development by sugar-sweetened beverages (20 % sucrose water, SSBs) using C57BL/6J mice as a model. Results showed that SSBs significantly increased the reproductive performance (P<0.05), body weight (P<0.01), fetal birth weight (P<0.05), placental weight (P<0.01), and the expression of nutrient transporter genes in the placenta and fetal liver (P<0.05), mainly by accelerating the maternal energy metabolism during pregnancy. However, maternal serum biochemical indices, antioxidant indices, and pathological damage to the liver and placenta predicted that the mother would be at greater health risks during this period. Moreover, transcriptomics results indicated that the differentially expressed (DE) circRNAs in the placenta regulate the maternal multiple metabolic pathways and the placental nutrient transport efficiency by sponging miRNAs and forming growth factors and proteins, ultimately improving the maternal reproductive performance. In addition, we verified the reliability of the sequencing results using reverse transcription polymerase chain reaction and identified the possibility of DE circRNAs binding to nutrient transporter genes using targeting relationship prediction. Finally, we constructed a correlation network that regulates maternal placental nutrient transport based on DE circRNAs, targeted miRNAs and nutrient transport-related genes. This study will provide scientific dietary guidance for pregnant women and new research ideas for preventing and treating pregnancy complications.


Subject(s)
Fetal Development , Mice, Inbred C57BL , Placenta , RNA, Circular , Sugar-Sweetened Beverages , Female , Pregnancy , Placenta/metabolism , Animals , Mice , RNA, Circular/genetics , RNA, Circular/metabolism , Sugar-Sweetened Beverages/adverse effects , Nutrients/metabolism , Biological Transport , Maternal Nutritional Physiological Phenomena
13.
Funct Integr Genomics ; 24(5): 140, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39160285

ABSTRACT

Acute pancreatitis (AP) is an inflammatory disease of the pancreas and the main cause of hospital admissions for gastrointestinal diseases. Here, the work studied the circular RNA DTNB/microRNA-485-5p/MCL1 axis in AP and hoped to unravel the related mechanism. Caerulein exposure replicated an AP model in AR42J cells, and caerulein-mediated expression of circDTNB, miR-485-5p, and MCL1 was recorded. After exposure, cells were intervened with transfection plasmids and tested for LDH release, apoptosis, and inflammation. To determine the interwork of circDTNB, miR-485-5p, and MCL1, prediction results and verification experiments were conducted. Caerulein exposure reduced circDTNB and MCL1, while elevated miR-485-5p levels in AR42J cells. Upregulating circDTNB protected AR42J cells from caerulein-induced LDH cytotoxicity, apoptosis, and inflammation, but circDTNB upregulation-induced protections could be muffled by inhibiting MCL1. On the contrary, downregulating circDTNB further damaged AR42J cells under caerulein exposure, however, this phenomenon could be partially rescued after silencing miR-485-5p. miR-485-5p was mechanistically verified to be a target of circDTNB to mediate MCL1. Overall, the circDTNB/miR-485-5p/MCL1 axis protects inflammatory response and apoptosis in caerulein-exposed AR42J cells, promisingly identifying circDTNB as a novel molecule for AP treatment.


Subject(s)
Apoptosis , Ceruletide , Inflammation , MicroRNAs , Myeloid Cell Leukemia Sequence 1 Protein , RNA, Circular , MicroRNAs/genetics , MicroRNAs/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Rats , Inflammation/genetics , Pancreatitis/genetics , Pancreatitis/metabolism , Pancreatitis/chemically induced , Pancreatitis/pathology , Cell Line
14.
Biochem Biophys Res Commun ; 736: 150482, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39121670

ABSTRACT

Non-coding RNAs (ncRNAs), such as microRNA, long non-coding RNA, and circular RNA, are considered essential regulatory molecules mediating many cellular processes. Moreover, an increasing number of studies have investigated the role of ncRNAs in cancers and various metabolic disorders, including diabetes mellitus. Interestingly, some circulating ncRNA detected in body fluids may serve as novel biomarkers. There is still a lack of conventional biomarkers that detect the early stage of type 1 diabetes mellitus. Many circulating microRNA, long non-coding RNA, and circular RNA show aberrant expression in type 1 diabetes patients compared to healthy individuals. However, most studies have focused on circulating microRNA rather than long non-coding RNA or circular RNA. In addition, a few studies have evaluated sex differences in ncRNA biomarkers. Therefore, this article summarises current knowledge about circulating ncRNAs as potential biomarkers for type 1 diabetes and explores the effects of sex on such biomarkers.

15.
Anal Chim Acta ; 1319: 342951, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39122270

ABSTRACT

BACKGROUND: Circular ribonucleic acids (circRNAs) are a type of covalently closed noncoding RNA with disease-relevant expressions, making them promising biomarkers for diagnosis and prognosis. Accurate quantification of circRNA in biological samples is a necessity for their clinical application. So far, methods developed for detecting circRNAs include northern blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), microarray analysis, and RNA sequencing. These methods generally suffer from disadvantages such as large sample consumption, cumbersome process, low selectivity, leading to inaccurate quantification of circRNA. It was thought that the above drawbacks could be eliminated by the construction of a microfluidic sensor. RESULTS: Herein, for the first time, a microfluidic sensor was constructed for circRNA analysis by using tetrahedral DNA nanostructure (TDN) as the skeleton for recognition probes and target-initiated hybridization chain reaction (HCR) as the signal amplification strategy. In the presence of circRNA, the recognition probe targets the circRNA-specific backsplice junction (BSJ). The captured circRNA then triggers the HCR by reacting with two hairpin species whose ends were labeled with 6-FAM, producing long DNA strands with abundant fluorescent labels. By using circ_0061276 as a model circRNA, this method has proven to be able to detect circRNA of attomolar concentration. It also eliminated the interference of linear RNA counterpart, showing high selectivity towards circRNA. The detection process can be implemented isothermally and does not require expensive complicated instruments. Moreover, this biosensor exhibited good performance in analyzing circRNA targets in total RNA extracted from cancer cells. SIGNIFICANCE: This represents the first microfluidic system for detection of circRNA. The biosensor showed merits such as ease of use, low-cost, small sample consumption, high sensitivity and specificity, and good reliability in complex biological matrix, providing a facile tool for circRNA analysis and related disease diagnosis in point-of care application scenes.


Subject(s)
DNA , Nanostructures , RNA, Circular , RNA, Circular/genetics , RNA, Circular/analysis , DNA/chemistry , Humans , Nanostructures/chemistry , Lab-On-A-Chip Devices , Nucleic Acid Hybridization , Biosensing Techniques/methods , Microfluidic Analytical Techniques/instrumentation
16.
BMC Cancer ; 24(1): 988, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123167

ABSTRACT

BACKGROUND: Lung cancer is a leading cause of cancer-related death worldwide. Among various histological types of lung cancer, majority are non-small cell lung cancer (NSCLC) which account for > 80%. Circular RNAs (circRNAs) are widely expressed in various cancers including lung cancer and implicated in tumourigenesis and cancer progression. This study aimed to systematically evaluate the prognostic values of circRNAs in lung cancer. METHODS: A systematic literature search was done in PubMed, Embase, and MEDLINE databases to select the eligible studies which reported the association between the expression of circRNAs and overall survival (OS) or disease-free survival (DFS) in histopathologically diagnosed lung cancer patients. The pooled hazard ratio (HR) and 95% confidence interval (CI) were assessed to determine the prognostic significance of circRNAs. RESULTS: A total of 43 studies were eligible for this meta-analysis (MA). 39 different types of circRNAs were reported: 28 showing upregulating and 11 showing downregulating action in lung cancer. High expression of circRNAs with upregulating action in lung cancer was associated with worse prognosis and poor OS (HR 1.93, 95% CI [1.61-2.33], p < 0.00001). High expression of circRNAs with downregulating action in lung cancer was associated with favorable OS and prognosis (HR 0.73, 95% CI [0.58-0.94], p = 0.01). However, there was no statistically significant association between high and low expression of both upregulating and downregulating circRNAs and DFS (HR 1.44, 95% CI [0.92-2.24], p = 0.11). CONCLUSIONS: This MA confirmed the pivotal role of circRNAs as important prognostic biomarkers for lung cancer, especially NSCLC. High expression of upregulating circRNAs is associated with poor prognosis; however, high expression of downregulating circRNAs is associated with favorable prognosis. Therefore, downregulatory action of circRNAs should be considered a promising treatment in the management of lung cancer, especially NSCLC.


Subject(s)
Biomarkers, Tumor , Lung Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival
17.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39091722

ABSTRACT

Circular RNAs (circRNAs) are noncoding RNAs abundant in brain tissue, and many are derived from activity-dependent, linear mRNAs encoding for synaptic proteins, suggesting that circRNAs may directly or indirectly play a role in regulating synaptic development, plasticity, and function. However, it is unclear if the circular forms of these RNAs are similarly regulated by activity and what role these circRNAs play in developmental plasticity. Here, we employed transcriptome-wide analysis comparing differential expression of both mRNAs and circRNAs in juvenile mouse primary visual cortex (V1) following monocular deprivation (MD), a model of developmental plasticity. Among the differentially expressed mRNAs and circRNAs following 3-day MD, the circular and the activity-dependent linear forms of the Homer1 gene, circHomer1 and Homer1a respectively, were of interest as their expression changed in opposite directions: circHomer1 expression increased while the expression of Homer1a decreased following MD. Knockdown of circHomer1 prevented the depression of closed-eye responses normally observed after 3-day MD. circHomer1-knockdown led to a reduction in average dendritic spine size prior to MD, but critically there was no further reduction after 3-day MD, consistent with impaired structural plasticity. circHomer1-knockdown also prevented the reduction of surface AMPA receptors after 3-day MD. Synapse-localized puncta of the AMPA receptor endocytic protein Arc increased in volume after MD but were smaller in circHomer1-knockdown neurons, suggesting that circHomer1 regulates plasticity through mechanisms of activity-dependent AMPA receptor endocytosis. Thus, activity-dependent circRNAs regulate developmental synaptic plasticity, and our findings highlight the essential role of circHomer1 in V1 plasticity induced by short-term MD.

18.
Cell Mol Biol Lett ; 29(1): 109, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143552

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been shown to be involved in tumorigenesis and progression. However, the role of circGLIS3 (hsa_circ_0002874) in prostate cancer (PCa) has yet not been reported. METHODS: Candidate circRNA were determined through comprehensive analysis of public datasets, PCa cell lines, and tissues data. A series of cellular functional assays, including CCK-8, colony formation, wound healing, and transwell assays were performed. Subsequently, RNA sequencing, RNA immunoprecipitation, methylated RNA immunoprecipitation, microRNA pulldown, luciferase reporter assay, and western blot were used to explore the underlying molecular mechanisms. Moreover, the xenograft tumor mouse model was established to elucidate the function of circGLIS3. RESULTS: CircGLIS3, derived from exon 2 of the parental GLIS3 gene, was identified as a novel oncogenic circRNA in PCa that was closely associated with the biochemical recurrence. Its expression levels were upregulated in PCa tissues and cell lines as well as enzalutamide high-resistant cells. The cellular functional assays revealed that circGLIS3 promoted PCa cell proliferation, migration, and invasion. METTL3-mediated N6-methyladenosine (m6A) modification maintained its upregulation by enhancing its stability. Mechanically, CircGLIS3 sponged miR-661 to upregulate MDM2, thus regulating the p53 signaling pathway to promote cell proliferation, migration, and invasion. Furthermore, in vitro and in vivo experiments, the knockdown of circGLIS3 improved the response of PCa cells to ARSI therapies such as enzalutamide. CONCLUSIONS: METTL3-mediated m6A modification of circGLIS3 regulates the p53 signaling pathway via the miR-661/MDM2 axis, thereby facilitating PCa progression. Meanwhile, this study unveils a promising potential target for ARSI therapy for PCa.


Subject(s)
Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Methyltransferases , Prostatic Neoplasms , RNA, Circular , Male , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Cell Movement/genetics , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Drug Resistance, Neoplasm/genetics , Mice, Inbred BALB C , Benzamides , Nitriles
19.
Pathogens ; 13(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39204292

ABSTRACT

Engineered circular RNAs (circRNAs) are a class of single-stranded RNAs with head-to-tail covalently linked structures that integrate open reading frames (ORFs) and internal ribosome entry sites (IRESs) with the function of coding and expressing proteins. Compared to mRNA vaccines, circRNA vaccines offer a more improved method that is safe, stable, and simple to manufacture. With the rapid revelation of the biological functions of circRNA and the success of Severe Acute Respiratory Coronavirus Type II (SARS-CoV-2) mRNA vaccines, biopharmaceutical companies and researchers around the globe are attempting to develop more stable circRNA vaccines for illness prevention and treatment. Nevertheless, research on circRNA vaccines is still in its infancy, and more work and assessment are needed for their synthesis, delivery, and use. In this review, based on the current understanding of the molecular biological properties and immunotherapeutic mechanisms of circRNA, we summarize the current preparation methods of circRNA vaccines, including design, synthesis, purification, and identification. We discuss their delivery strategies and summarize the challenges facing the clinical application of circRNAs to provide references for circRNA vaccine-related research.

20.
J Bioinform Comput Biol ; : 2450018, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215523

ABSTRACT

Circular RNAs (circRNAs) are endogenous non-coding RNAs with a covalently closed loop structure. They have many biological functions, mainly regulatory ones. They have been proven to modulate protein-coding genes in the human genome. CircRNAs are linked to various diseases like Alzheimer's disease, diabetes, atherosclerosis, Parkinson's disease and cancer. Identifying the associations between circular RNAs and diseases is essential for disease diagnosis, prevention, and treatment. The proposed model, based on the variational autoencoder and genetic algorithm circular RNA disease association (VAGA-CDA), predicts novel circRNA-disease associations. First, the experimentally verified circRNA-disease associations are augmented with the synthetic minority oversampling technique (SMOTE) and regenerated using a variational autoencoder, and feature selection is applied to these vectors by a genetic algorithm (GA). The variational autoencoder effectively extracts features from the augmented samples. The optimized feature selection of the genetic algorithm effectively carried out dimensionality reduction. The sophisticated feature vectors extracted are then given to a Random Forest classifier to predict new circRNA-disease associations. The proposed model yields an AUC value of 0.9644 and 0.9628 under 5-fold and 10-fold cross-validations, respectively. The results of the case studies indicate the robustness of the proposed model.

SELECTION OF CITATIONS
SEARCH DETAIL