Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
Int J Biol Macromol ; 277(Pt 4): 134323, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094871

ABSTRACT

This study aimed to evaluate the effect of applying oxidized cassava starch-based edible coatings with addition of lemongrass essential oil emulsion on 'Palmer' mangoes stored under refrigeration. A completely randomized design was used, arranged in a 5 × 3 factorial scheme, with five types of coatings and three evaluation times. The evaluated postharvest quality parameters consisted of weight loss, pulp and peel firmness, biochemical transformations related to pigments, and pulp and peel coloration of mango. The application of edible coatings with a 0.9 % EO concentration resulted in delayed fruit ripening, evidenced mainly by a 7.25 % reduction in weight loss, a 29.23 % increase in soluble solids content, and a 24.15 % decrease in total chlorophyll, when compared to uncoated fruits, which showed 19.8 %, 48.66 %, and 82.00 %, respectively, over the storage period. This effect was also evident in the angle Hue (°h) measurement, with uncoated fruits showing a decrease of 32.2 %. The antimicrobial effect and absence of anthracnose symptoms were observed in the fruits in which the coating with 0.9 % EO was applied. Therefore, biodegradable coating with the addition of 0.9 % emulsion EO, can be used as postharvest treatments for maintenance quality of 'Palmer' mangoes during refrigerated storage.


Subject(s)
Emulsions , Food Preservation , Fruit , Mangifera , Manihot , Oils, Volatile , Starch , Mangifera/chemistry , Manihot/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Starch/chemistry , Food Preservation/methods , Fruit/chemistry , Food Storage/methods , Edible Films
2.
Plants (Basel) ; 13(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39124248

ABSTRACT

Seed treatment with plant growth-promoting bacteria represents the primary strategy to incorporate them into agricultural ecosystems, particularly for crops under extensive management, such as maize. In this study, we evaluated the seed bacterization levels, root colonization patterns, and root competitiveness of a collection of autochthonous Pseudomonas isolates that have demonstrated several plant-probiotic abilities in vitro. Our findings indicate that the seed bacterization level, both with and without the addition of various protectants, is specific to each Pseudomonas strain, including their response to seed pre-hydration. Bacterization kinetics revealed that while certain isolates persisted on seed surfaces for up to 4 days post-inoculation (dpi), others experienced a rapid decline in viability after 1 or 2 dpi. The observed differences in seed bacterization levels were consistent with the root colonization densities observed through confocal microscopy analysis, and with root competitiveness quantified via selective plate counts. Notably, isolates P. protegens RBAN4 and P. chlororaphis subsp. aurantiaca SMMP3 demonstrated effective competition with the natural microflora for colonizing the maize rhizosphere and both promoted shoot and root biomass production in maize assessed at the V3 grown stage. Conversely, P. donghuensis SVBP6 was detected at very low levels in the maize rhizosphere, but still exhibited a positive effect on plant parameters, suggesting a growth-stimulatory effect during the early stages of plant development. In conclusion, there is a considerable strain-specific variability in the maize seed bacterization and survival capacities of Pseudomonas isolates with plant-probiotic traits, with a correlation in their root competitiveness under natural conditions. This variability must be understood to optimize their adoption as inputs for the agricultural system. Our experimental approach emphasizes the critical importance of tailoring seed bacterization treatments for each inoculant candidate, including the selection and incorporation of protective substances. It should not be assumed that all bacterial cells exhibit a similar performance.

3.
J Sci Food Agric ; 104(14): 8887-8896, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38958470

ABSTRACT

BACKGROUND: The Cosmos sulphureus Cav. plant is studied for its high polyphenolic content with antioxidant properties. Its flowers, rich in phenolic acids, flavonoids, and tannins, hold promise as antioxidants in food preservation. The inclusion of these compounds in chickpea-based coatings with a previously studied preservative effect would be an excellent option as a food preservation method and microencapsulation addresses challenges like dispersion and degradation of polyphenols in the coating. The objective of this research was to evaluate the in vitro antioxidant activity of Cosmos sulphureus leaves, seed, and flower extracts and explore the protective effects of chickpea-based coatings containing microcapsules of flower polyphenolic extract on the chemical quality of stored roasted sunflower seeds during storage. RESULTS: The ethanolic leaf extract exhibited the highest antiradical activity, followed by the aqueous flower extract. After a storage period of 15 days, at 40 °C, the chickpea-based coatings effectively delayed lipid oxidation in the roasted sunflowers seeds, and the inclusion of polyphenolic microcapsules with 0.01% extract (SMC 0.01%) in the coating significantly improved the protective effect. By day 15 of storage, SMC 0.01% showed comparable peroxide value, conjugated dienes, and linoleic acid content to samples containing the synthetic antioxidant BHT (butylated hydroxytoluene). Samples that only contained chickpea-based coating and coating with polyphenolic microcapsules with 0.005% extract exhibited significantly greater reduction in fatty acid content compared to the 0.01% SMC treatment. CONCLUSION: The chickpea-based coating with polyphenolic microcapsules demonstrated antioxidant activity akin to synthetic BHT, offering a promising biopackaging solution for lipid-rich foods like roasted sunflower seeds. © 2024 Society of Chemical Industry.


Subject(s)
Antioxidants , Capsules , Cicer , Flowers , Food Packaging , Food Preservation , Plant Extracts , Cicer/chemistry , Plant Extracts/chemistry , Flowers/chemistry , Antioxidants/chemistry , Capsules/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Food Packaging/instrumentation , Seeds/chemistry , Polyphenols/chemistry , Helianthus/chemistry , Plant Leaves/chemistry
4.
Polymers (Basel) ; 16(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39065390

ABSTRACT

In the present study, biopolymeric coatings of polyhydroxybutyrate (PHB) were deposited on 316L stainless steel substrates. The PHB coatings were developed using the spin coating method. To improve the adhesion of the PHB coating on the substrate, this method uses an atmospheric plasma treatment. Adhesion tests show a 156% increase in adhesion after 5 s of surface treatment. Raman spectroscopy analysis of the polymer shows the incorporation of functional groups and the formation of new hydrogen bonds, which can help us bind drugs and promote osteogenesis after plasma treatment. Additionally, the electrochemical behaviors in artificial body fluids (Hanks' solution) of the PHB coatings on the steel were evaluated with potentiodynamic tests, which revealed a decrease in the corrosion current and resistance to the transfer of the charge from the electrolyte to the 316L steel because of the PHB coating. All the PHB coatings were characterized using scanning electron microscopy and Raman spectroscopy after the electrochemical tests. This analysis confirmed the diffusion of electrolyte species toward the surface and the degradation of the polymer chain for the first 15 s of treatment with atmospheric plasma. These findings support the claim that plasma surface modification is a quick, environmentally friendly, and cost-effective method to enhance the performance of PHB coatings on 316L stainless steel for medical devices.

5.
Sensors (Basel) ; 24(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39065959

ABSTRACT

This research enhances ethanol sensing with Fe-doped tetragonal SnO2 films on glass, improving gas sensor reliability and sensitivity. The primary objective was to improve the sensitivity and operational efficiency of SnO2 sensors through Fe doping. The SnO2 sensors were synthesized using a flexible and adaptable method that allows for precise doping control, with energy-dispersive X-ray spectroscopy (EDX) confirming homogeneous Fe distribution within the SnO2 matrix. A morphological analysis showed a surface structure ideal for gas sensing. The results demonstrated significant improvement in ethanol response (1 to 20 ppm) and lower temperatures compared to undoped SnO2 sensors. The Fe-doped sensors exhibited higher sensitivity, enabling the detection of low ethanol concentrations and showing rapid response and recovery times. These findings suggest that Fe doping enhances the interaction between ethanol molecules and the sensor surface, improving performance. A mathematical model based on diffusion in porous media was employed to further analyze and optimize sensor performance. The model considers the diffusion of ethanol molecules through the porous SnO2 matrix, considering factors such as surface morphology and doping concentration. Additionally, the choice of electrode material plays a crucial role in extending the sensor's lifespan, highlighting the importance of material selection in sensor design.

6.
Antibiotics (Basel) ; 13(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39061348

ABSTRACT

Bacteriocins is the name given to products of the secondary metabolism of many bacterial genera that must display antimicrobial activity. Although there are several bacteriocins described today, it has not been possible to reach a consensus on the method of classification for these biomolecules. In addition, many of them are not yet authorized for therapeutic use against multi-drug-resistant microorganisms due to possible toxic effects. However, recent research has achieved considerable progress in the understanding, classification, and elucidation of their mechanisms of action against microorganisms, which are of medical and biotechnological interest. Therefore, in more current times, protocols are already being conducted for their optimal use, in the hopes of solving multiple health and food conservation problems. This review aims to synthetize the information available nowadays regarding bacteriocins, and their classification, while also providing an insight into the future possibilities of their usage for both the pharmaceutical, food, and biotechnological industry.

7.
Polymers (Basel) ; 16(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732766

ABSTRACT

A new, sustainable polypropylene terephthalate (PPT) coating was synthesized from recycled polyethylene terephthalate (PET) and applied onto a hydraulic concrete substrate to improve its durability. For the first step, PET bottle wastes were ground and depolymerized by glycolysis using propylene glycol (PG) in a vessel-type reactor (20-180 °C) to synthesize bis(2-hydroxypropyl)-terephthalate (BHPT), which was applied as a coating to one to three layers of hydraulic concrete substrate using the brushing technique and polymerized (150 °C for 15 h) to obtain PPT. PET, BHPT, and PPT were characterized by FT-IR, PET, and PPT using TGA, and the PPT coatings by SEM (thickness), ASTM-D3359-17 (adhesion), and water contact angle (wettability). The durability of hydraulic concrete coated with PPT was studied using resist chloride ion penetration (ASTM-C1202-17), carbonation depth at 28 days (RILEM-CPC-18), and the absorption water ratio (ASTM-C1585-20). The results demonstrated that the BHPT and PPT were synthetized (FT-IR), and PPT had a similar thermal behavior to PET (TGA); the PPT coatings had good adhesion to the substrate, with thicknesses of micrometric units. PPT coatings presented hydrophilic hydrophilic behavior like PET coatings, and the durability of hydraulic concrete coated with PPT (2-3 layers) improved (migration of chloride ions decreased, carbonation depth was negligible, and the absorption water ratio decreased).

8.
Materials (Basel) ; 17(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793302

ABSTRACT

Hardness is one of the most crucial mechanical properties, serving as a key indicator of a material's suitability for specific applications and its resistance to fracturing or deformation under operational conditions. Machine learning techniques have emerged as valuable tools for swiftly and accurately predicting material behavior. In this study, regression methods including decision trees, adaptive boosting, extreme gradient boosting, and random forest were employed to forecast Vickers hardness values based solely on scanned monochromatic images of indentation imprints, eliminating the need for diagonal measurements. The dataset comprised 54 images of D2 steel in various states, including commercial, quenched, tempered, and coated with Titanium Niobium Nitride (TiNbN). Due to the limited number of images, non-deep machine learning techniques were utilized. The Random Forest technique exhibited superior performance, achieving a Root Mean Square Error (RMSE) of 0.95, Mean Absolute Error (MAE) of 0.12, and Coefficient of Determination (R2) ≈ 1, surpassing the other methods considered in this study. These results suggest that employing machine learning algorithms for predicting Vickers hardness from scanned images offers a promising avenue for rapid and accurate material assessment, potentially streamlining quality control processes in industrial settings.

9.
Recent Adv Drug Deliv Formul ; 18(2): 131-137, 2024.
Article in English | MEDLINE | ID: mdl-38661037

ABSTRACT

BACKGROUND: Probiotics must be able to withstand the demanding environment of the gastrointestinal system to adhere to the intestinal epithelium, promoting health benefits. The use of probiotics can prevent or attenuate the effects of dysbiosis that have a deleterious effect on health, promoting anti-inflammatory, immunomodulatory, and antioxidant effects. OBJECTIVE: The aim of the study was to prepare tablets containing Lactobacillus fermentum LF-G89 coated with 20% Acryl-Eze II® or Opadry® enteric polymers. METHODS: Tablet dissolution was evaluated under acidic and basic pH conditions, and aliquots of the dissolution medium were plated to count the Colony-forming Units (CFU). The free probiotic's tolerance to pH levels of 1.0, 2.0, 3.0, and 4.0, as well as to pepsin, pancreatin, and bile salts, was assessed. RESULTS: The probiotic was released from tablets coated after they withstood the pH 1.2 acid stage for 45 minutes. The release was higher with the Acry-Eze II® polymer in the basic stage. The amount of CFU of free probiotics at pH 1.0 to 4.0 as well as pepsin reduced over time, indicating cell death. Conversely, the CFU over time with pancreatin and bile salts increased, demonstrating the resistance of L. fermentum to these conditions due to hydrolases. CONCLUSION: Both coating polymers were able to withstand the acid step, likely ensuring the release of the probiotic in the small intestine, promoting colonization. Coating with enteric material is a simple and effective process to increase the survival of probiotics, offering a promising alternative to mitigate the negative effects of the dysbiosis process.


Subject(s)
Limosilactobacillus fermentum , Probiotics , Tablets, Enteric-Coated , Probiotics/administration & dosage , Probiotics/pharmacology , Probiotics/chemistry , Hydrogen-Ion Concentration , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Solubility , Humans , Pancreatin/metabolism , Pancreatin/chemistry
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124220, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38560952

ABSTRACT

In this study, we comprehensively investigated the degradation of industrial trinitrotoluene (TNT), focusing on the effects of aging and direct contact with steel surfaces, mirroring real-world usage conditions. While practical knowledge exists regarding this degradation, the existing literature lacks in-depth insights into the underlying processes. To address this gap, we conducted experiments using small steel samples, representative of military ammunition casings, which were coated with TNT and subjected to 30 days of heating at 75 °C under vacuum conditions. A subset of these samples was coated with a protective red alkyd paint. After the aging process, the TNT was carefully removed from the metal surfaces and subjected to a comprehensive analysis encompassing scanning electron microscopy, Fourier-transform infrared spectroscopy, and gas chromatography-mass spectrometry. Our results reveal a remarkable preservation of the chemical integrity of industrial TNT, even in the presence of thermal stress and direct steel contact. Although superficial changes were observed in the TNT's appearance, all analytical data consistently demonstrated the maintenance of its chemical composition. Notably, the sole change in composition was attributed to the presence of degradation products associated with the alkyd paint coating, rather than intrinsic TNT degradation. These findings underscore the negligible impact of degradation processes on TNT in scenarios involving the solid-phase thermal stress of TNT in direct contact with metal, significantly enhancing our understanding of TNT safety when packaged within steel artifacts-a common context in military ammunition.

11.
Polymers (Basel) ; 16(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38475362

ABSTRACT

The goal of this research was to create an antibacterial biopolymeric coating integrating lytic bacteriophages against Salmonella enterica for use in ripened cheese. Salmonella enterica is the main pathogen that contaminates food products and the food industry. The food sector still uses costly and non-selective decontamination and disease control methods. Therefore, it is necessary to look for novel pathogen biocontrol technologies. Bacteriophage-based biocontrol seems like a viable option in this situation. The results obtained show promise for food applications since the edible packaging developed (EdiPhage) was successful in maintaining lytic phage viability while preventing the contamination of foodstuff with the aforementioned bacterial pathogen.

12.
Foods ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38540812

ABSTRACT

The selection of appropriate probiotic strains is vital for their successful inclusion in foods. These strains must withstand processing to reach consumers with ≥106 CFU/g, ensuring effective probiotic function. Achieving this in commercial products is challenging due to sensitivity to temperature during processing. In this work, Lactobacillus reuteri DSM 17938 was microencapsulated by ionic gelation (with alginate or pectin) followed by polymeric coating (with whey protein concentrate or chitosan). Then, such microcapsules were incorporated into a strawberry puree, which was subsequently dehydrated at three temperatures (40 °C, 45 °C, and 50 °C) by Refractance Window®. The ultimate aim was to demonstrate the efficacy of the proposed methods from a technological point of view. Kinetic curves of the probiotic's viability showed a high cell loading (>109 CFU/g). Additionally, an average encapsulation efficiency of 91% and a particle size of roughly 200 µm were found. A decrease in the viability of the microorganism was observed as drying temperature and time increased. As a demonstration of the above, in a particular case, drying at 45 °C and 50 °C, viable cells were found up to 165 min and 90 min, respectively; meanwhile, drying at 40 °C, viable cells were reported even after 240 min. The greatest viability preservation was achieved with Refractance Window® drying at 40 °C for 240 min when microcapsules coated with whey protein concentrate were incorporated into puree; this procedure showed great potential to produce dehydrated strawberry snacks with moisture (15%), water activity (aw < 0.6), and viability (≥106 CFU/g) suitable for functional foods. The membrane-stabilizing properties of whey protein concentrate could prevent cell damage. In contrast, probiotics in chitosan-coated capsules showed reduced viability, potentially due to antimicrobial properties and the formation of cracks. These findings signify a breakthrough in the production of dehydrated snacks with the addition of probiotics, addressing challenges in preserving the viability of these probiotics during processing; thus, opening the possibility for the development of a probiotic strawberry snack.

13.
Biofouling ; 40(2): 209-222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38500010

ABSTRACT

This study explores the potential of geranium essential oil as a natural solution for combating marine biofouling, addressing the environmental concerns associated with commercial antifouling coatings. Compounds with bactericidal activities were identified by 13Carbon nuclear magnetic resonance (13C NMR). Thermogravimetric analysis (TGA) revealed minimal impact on film thermal stability, maintaining suitability for antifouling applications. The addition of essential oil induced changes in the morphology of the film and Fourier transform infrared spectroscopy (FTIR) analysis indicated that oil remained within the film. Optical microscopy showed an increase in coating porosity after immersion in a marine environment. A total of 18 bacterial colonies were isolated, with Psychrobacter adeliensis and Shewanella algidipiscicola being the predominant biofilm-forming species. The geranium essential oil-based coating demonstrated the ability to reduce the formation of Psychrobacter adeliensis biofilms and effectively inhibit macrofouling adhesion for a duration of 11 months.


Subject(s)
Biofouling , Geranium , Oils, Volatile , Psychrobacter , Biofilms , Biofouling/prevention & control , Oils, Volatile/pharmacology , Silicone Oils/pharmacology , Silicones
14.
Int J Biol Macromol ; 263(Pt 1): 130611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447837

ABSTRACT

The increase of bacterial resistance to antibiotics is a growing concern worldwide and the search for new therapies could cost billions of dollars and countless lives. Inert surfaces are major sources of contamination due to easier adhesion and formation of bacterial biofilms, hindering the disinfection process. Therefore, the objective of this study was to develop a photoactivatable and anti-adhesive kappa-carrageenan coating using proanthocyanidin as a photosensitizer. The complete reduction (>5-log10 CFU/cm3) of culturable cells of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa pathogens was achieved after 30 min of exposure to visible light (420 nm; 30 mW/cm2) with 5 % (w/v) of the photosensitizer. Cell membrane damage was confirmed by measuring potassium leakage, epifluorescence microscopy and bacterial motility analysis. Overall, visible light irradiation on coated solid surfaces mediated by proanthocyanidin showed no cytotoxicity and inactivated clinically important pathogens through the generation of reactive oxygen species, inhibiting bacterial initial adhesion. The developed coating is a promising alternative for a wide range of applications related to surface disinfection and food biopreservation.


Subject(s)
Photosensitizing Agents , Proanthocyanidins , Carrageenan/pharmacology , Photosensitizing Agents/pharmacology , Proanthocyanidins/pharmacology , Light , Biofilms , Escherichia coli , Bacteria
15.
Odontol. sanmarquina (Impr.) ; 27(1): e26334, ene.-mar.2024.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1556349

ABSTRACT

Objetivo. Evaluar la influencia de diferentes marcas de revestimientos dentales en la adaptación marginal e interna de las cofias metálicas. Método. La investigación fue in vitro, analítico, experimental y transversal; para ello, se confeccionaron 48 cofias metálicas, las cuales fueron cementadas en dientes humanos previamente tallados, luego las cofias fueron cortadas mesio-distalmente para evaluar su adaptación. La adaptación fue evaluada usando un estereomicroscopio Leica DM6000M. Para determinar si hay diferencia en la adaptación marginal e interna se empleó el análisis de varianza, la prueba de comparación múltiple y la prueba de Duncan. Adicionalmente, la prueba de Fisher, se utilizó para evaluar la adaptación total. Resultados. La mejor adaptación marginal e interna de las cofias metálicas lo presenta el revestimiento Fórmula 1 (Whipmix), seguido del Castorit súper C (Dentaurum) y Bellasun (Bego). Conclusión. Los revestimientos dentales no mostraron influencia en la adaptación marginal; sin embargo, si mostraron influencia en la adaptación interna.


Objective. To evaluate the influence of different brands of dental investments on the marginal and internal adaptation of metal copings. Method. The research was in vitro, analytical, experimental and transversal. For this, 48 metal copings were made, which were cemented on previously carved human teeth, then the copings were cut mesio-distally to evaluate their adaptation. The adaptation was evaluated using a Leica DM6000M stereomicroscope. To determine if there is a difference between marginal and internal adaptation; the analysis of variance, the multiple comparison test and the Duncan test were used. Furthermore, Fisher's exact test was used to evaluate the total adaptation. Results. The best marginal and internal adaptation of metal copings is presented by the Formula 1 coating (Whipmix), followed by Castorit super C (Dentaurum) and Bellasun (Bego). Conclusion. Dental investments did not show influence on marginal adaptation; however, they did show influence on internal adaptation.

16.
Polymers (Basel) ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337224

ABSTRACT

Strawberries (Fragaria xannanasa) are susceptible to mechanical, physical, and physiological damage, which increases their incidence of rot during storage. Therefore, a method of protection is necessary in order to minimize quality losses. One way to achieve this is by applying polymer coatings. In this study, multisystem coatings were created based on polymer nanocapsules loaded with Lippia graveolens essential oil, and it was found to have excellent optical, mechanical, and water vapor barrier properties compared to the control (coating formed with alginate and with nanoparticles without the essential oil). As for the strawberries coated with the multisystem formed from the polymer nanocapsules loaded with the essential oil of Lippia graveolens, these did not present microbial growth and only had a loss of firmness of 17.02% after 10 days of storage compared to their initial value. This study demonstrated that the multisystem coating formed from the polymer nanocapsules loaded with the essential oil of Lippia graveolens could be a viable alternative to preserve horticultural products for longer storage periods.

17.
J Microencapsul ; 41(2): 112-126, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38345078

ABSTRACT

This study aimed to produce spray dried acerola juice microparticles with different protein carriers to be incorporated into edible starch films. The microparticles were evaluated for solids recovery, polyphenol retention, solubility, hygroscopicity, particle size distribution, X-ray diffraction, phytochemical compounds and antioxidant activity. Acerola microparticles produced with WPI/hydrolysed collagen carriers (AWC) with higher solids recovery (53.5 ± 0.34% w/w), polyphenol retention (74.4 ± 0.44% w/w), high solubility in water (85.2 ± 0.4% w/w), total polyphenol content (128.45 ± 2.44 mg GAE/g) and good storage stability were selected to produce starch-based films by casting. As a result, cassava films with water vapour permeability of 0.29 ± 0.07 g mm/m2 h KPa, polyphenol content of 10.15 ± 0.22 mg GAE/g film and DPPH radical scavenging activity of 6.57 ± 0.13 µM TE/g film, with greater migration of polyphenol to water (6.30 ± 0.52 mg GAE/g film) were obtained. Our results show that the incorporation of phytochemical-rich fruit microparticles is a promising strategy to create biodegradable edible films.


Whey/collagen protein blend AWC was the best wall material for acerola encapsulation.Spray dried protein-acerola particles were used to formulate edible films.Water soluble phenolic-rich AWC films with antioxidant properties were produced.Acerola phenolics from starch films migrated more to water than to acid media.


Subject(s)
Edible Films , Ascorbic Acid , Phytochemicals , Polyphenols , Starch
18.
Polymers (Basel) ; 16(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399867

ABSTRACT

The accumulation of microorganisms, plants, algae, or small animals on wet surfaces that have a mechanical function causes biofouling, which can result in structural or other functional deficiencies. The maritime shipping industry must constantly manage biofouling to optimize operational performance, which is a common and long-lasting problem. It can occur on any metal structure in contact with or submerged in ocean water, which represents additional costs in terms of repairs and maintenance. This study is focused on the production of antifouling coatings, made with nanoparticles of copper selenide (CuSe NPs) modified with gum arabic, within a water-base acrylic polymeric matrix. During the curing of the acrylic resin, the CuSe NPs remain embedded in the resin, but this does not prevent the release of ions. The coatings released copper and selenium ions for up to 80 days, and selenium was the element that was released the most. The adhesion of film coatings to metallic substrates showed good adhesion, scale 5B (ASTM D3359 standard). Antimicrobial activity tests show that the coatings have an inhibitory effect on Escherichia coli and Candida albicans. The effect is more noticeable when the coating is detached from the substrate and placed on a growing medium, compared to the coating on a substrate. Scanning electron microscopy (SEM) observations show that nanostructured CuSe coatings are made up of rod-shaped and spherical particles with an average particle size of 101.6 nm and 50 nm, respectively. The energy dispersive X-ray spectroscopy (EDS) studies showed that the ratio of selenium nanoparticles is greater than that of copper and that their distribution is homogeneous.

19.
J Virol Methods ; 325: 114886, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246564

ABSTRACT

Watermelon crinkle leaf-associated virus 1 (WCLaV-1) and WCLaV-2, both belonging to the genus Coguvirus (family Phenuiviridae), have been identified in watermelon plants in Brazil. To study tissue tropism and the potential for seed transmission of these viruses, we initially planned to produce specific antibodies. However, difficulties in isolating and propagating the virus in host plants hindered the purified virus preparations. To overcome this problem, the nucleocapsid (N) proteins of WCLaV-1 and -2 were produced using the pepper ringspot virus vector. The N protein genes and the vector backbone were prepared by (RT-)PCR and ligated by Gibson assembly. The constructs were agro-infiltrated in Nicotiana benthamiana plants. The expressed N proteins were purified and used for polyclonal antibody production. The specificity of both antibodies was confirmed by antigen-coating ELISA, tissue-blot immunobinding assay and Western blot. By antigen-coating ELISA demonstrated that WCLaV-1 showed 93.1% of seed-transmission, while WCLaV-2 showed only 17.8%. The N protein of WCLaV-1 was detected in the cytoplasm of the seed tissues. It was also found in the nuclei of the radicle, as confirmed by confocal microscopy. We concluded that the antibodies exhibited both a high titer and sufficient specificity for use in ELISA-based diagnostics and for subcellular localization study.


Subject(s)
Citrullus , Antibody Formation , Antibodies , Recombinant Proteins , Seeds
20.
Food Res Int ; 177: 113898, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225118

ABSTRACT

Anthocyanins extracted with deep eutectic solvent (NADES) (chlorine-chloride: xylitol, 5:2) were used to produce polyethylene oxide (PEO) composites through electrospinning technique, analyzing their microscopic and physical characteristics. The coated anthocyanins were then subjected to in vitro gastrointestinal digestion to evaluate their bioaccessibility compared to lyophilized jussara pulp. The remaining total anthocyanin content (TAC) after intestinal in vitro digestion did not change significantly among the assessed samples, and both showed around 30% recovery. The TAC recovery after the gastric phase, on the other hand, showed a major difference (70.84% vs. 48.13%), revealing that the composites fabricated by the electrospinning technique can significantly maintain anthocyanins NADES-extracted stability during the gastric phase of digestion, potentially allowing better absorption trough stomach wall. The results can be considered a first step to applying anthocyanins-encapsulated in foodstuff as a natural pigment.


Subject(s)
Anthocyanins , Deep Eutectic Solvents , Polyethylene Glycols , Plant Extracts , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL