Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893363

ABSTRACT

Zeta potential refers to the electrokinetic potential present in colloidal systems, exerting significant influence on the diverse properties of nano-drug delivery systems. The impact of the dielectric constant on the zeta potential and charge inversion of highly charged colloidal particles immersed in a variety of solvents spanning from polar, such as water, to nonpolar solvents and in the presence of multivalent salts was investigated through primitive Monte Carlo (MC) model simulations. Zeta potential, ξ, is decreased with the decreasing dielectric constant of the solvent and upon further increase in the salinity and the valency of the salt. At elevated levels of salt, the colloidal particles become overcharged in all solvents. As a result, their apparent charge becomes opposite in sign to the stoichiometric charge. This reversal of charge intensifies until reaching a saturation point with further increase in salinity.

2.
J Colloid Interface Sci ; 672: 814-823, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38878623

ABSTRACT

HYPOTHESIS: Particle surface chemistry and internal softness are two fundamental parameters in governing the mechanical properties of dense colloidal suspensions, dictating structure and flow, therefore of interest from materials fabrication to processing. EXPERIMENTS: Here, we modulate softness by tuning the crosslinker content of poly(N-isopropylacrylamide) microgels, and we adjust their surface properties by co-polymerization with polyethylene glycol chains, controlling adhesion, friction and fuzziness. We investigate the distinct effects of these parameters on the entire mechanical response from restructuring to complete fluidization of jammed samples at varying packing fractions under large-amplitude oscillatory shear experiments, and we complement rheological data with colloidal-probe atomic force microscopy to unravel variations in the particles' surface properties. FINDINGS: Our results indicate that surface properties play a fundamental role at smaller packings; decreasing adhesion and friction at contact causes the samples to yield and fluidify in a lower deformation range. Instead, increasing softness or fuzziness has a similar effect at ultra-high densities, making suspensions able to better adapt to the applied shear and reach complete fluidization over a larger deformation range. These findings shed new light on the single-particle parameters governing the mechanical response of dense suspensions subjected to deformation, offering synthetic approaches to design materials with tailored mechanical properties.

3.
Int J Biol Macromol ; 265(Pt 1): 130760, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462097

ABSTRACT

Bilayer pouches were fabricated with chitosan (CS)-fish gelatin (FG) mixture containing epigallocatechin gallate (EGCG) deposited over the poly lactic acid (PLA) film through solvent casting and electrospinning techniques. Pickering emulsions (PE) of Asian seabass depot fat oil stabilized by zein colloidal particles were packed in bilayer pouches and stored at 28 ± 2 °C. The PE packed in pouch containing EGCG had higher emulsion and oxidative stability after 30 days of storage as witnessed by the smaller droplet size and lower values of thiobarbituric acid reactive substances, peroxide, conjugated diene and volatile compounds in comparison with control (PE packed in monolayer PLA pouch) (P < 0.05). EGCG incorporated pouch retained more linoleic acid (C18:2 n-6) and linolenic acid (C18:3 n-9) in emulsion than PLA pouch. Therefore, pouch from bilayer PLA/CS-FG films comprising EGCG could serve as active packaging and extended the shelf life of Pickering emulsion.


Subject(s)
Catechin/analogs & derivatives , Chitosan , Animals , Solvents , Gelatin , Emulsions , Water , Polyesters , Lactic Acid , Particle Size
4.
Pharmaceutics ; 16(3)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38543250

ABSTRACT

In the field of preparing cosmetic formulations, recent advances recommend the usage of excipients derived from biocompatible materials. In this context, the present study aimed to prepare and characterize the curcumin-loaded Pickering emulsion for possible applications in cosmetic formulation. The coconut oil which is often the component of skin care formulations is used as the oily phase. Curcumin, which is well known for absorbing solar radiation, is expected to work synergistically with coconut oil towards improving the sun protection factor (SPF) of the formulation. Additionally, curcumin can also protect the intracellular components through its well-known antioxidant mechanisms. The Pickering emulsion of coconut oil into water was prepared using the composite colloidal particles derived from ß-carboxymethyl chitosan (CMC) and Gelatin-A (GA) as the emulsifying agent. The reaction conditions in terms of the weight ratios of CMC and GA, the pH of the reaction medium, the oil volume fraction, and the homogenization speed were optimized to obtain the most stable Pickering emulsion. The obtained systems were physico-chemically characterized by dynamic light scattering, zeta potential, optical microscopy, and rheometric measurements. The final CMC-GA-stabilized emulsion demonstrated an oil droplet size of 100 µm and a SPFspectrophotometric (290-320 nm) value of 8.5 at a curcumin loading of 4 mg/mL. Additionally, the final formulation facilitated the uptake of curcumin into fibroblast (WI26) cells under in vitro conditions. Together, the investigation demonstrates a bio-inspired approach to prepare a curcumin-loaded green Pickering emulsion using biocompatible pharmaceutical grade excipients, which may find utility in cosmetic applications.

5.
Small ; 20(26): e2310769, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38263803

ABSTRACT

Inspired by natural swarms, various methods are developed to create artificial magnetic microrobotic collectives. However, these magnetic collectives typically receive identical control inputs from a common external magnetic field, limiting their ability to operate independently. And they often rely on interfaces or boundaries for controlled movement, posing challenges for independent, three-dimensional(3D) navigation of multiple magnetic collectives. To address this challenge, self-assembled microrobotic collectives are proposed that can be selectively actuated in a combination of external magnetic and optical fields. By harnessing both actuation methods, the constraints of single actuation approaches are overcome. The magnetic field excites the self-assembly of colloids and maintains the self-assembled microrobotic collectives without disassembly, while the optical field drives selected microrobotic collectives to perform different tasks. The proposed magnetic-photo microrobotic collectives can achieve independent position and path control in the two-dimensional (2D) plane and 3D space. With this selective control strategy, the microrobotic collectives can cooperate in convection and mixing the dye in a confined space. The results present a systematic approach for realizing selective control of multiple microrobotic collectives, which can address multitasking requirements in complex environments.

6.
ACS Appl Mater Interfaces ; 16(9): 12007-12017, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38271190

ABSTRACT

Entering an era of miniaturization prompted scientists to explore strategies to assemble colloidal crystals for numerous applications, including photonics. However, wet methods are intrinsically less versatile than dry methods, whereas the manual rubbing method of dry powders has been demonstrated only on sticky elastomeric layers, hindering particle transfer in printing applications and applicability in analytical screening. To address this clear impetus of broad applicability, we explore here the assembly on nonelastomeric, rigid substrates by utilizing the manual rubbing method to rapidly (≈20 s) attain monolayers comprising hexagonal closely packed (HCP) crystals of monodisperse dry powder spherical particles with a diameter ranging from 500 nm to 10 µm using a PDMS stamp. Our findings elucidate that the tribocharging-induced electrostatic attraction, particularly on relatively stiff substrates, and contact mechanics force between particles and substrates are critical contributors to attain large-scale HCP structures on conductive and insulating substrates. The best performance was obtained with polystyrene and PMMA powder, while silica was assembled only in HCP structures on fluorocarbon-coated substrates under zero-humidity conditions. Finally, we successfully demonstrated the assembly of tunable crystal patterns on a wafer-scale with great control on fluorocarbon-coated wafers, which is promising in microelectronics, bead-based assays, sensing, and anticounterfeiting applications.

7.
Int J Biol Macromol ; 254(Pt 3): 127948, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951432

ABSTRACT

Colloidal lignin particles (CLPs) have sparked various intriguing insights toward bio-polymeric materials and triggered many lignin-featured innovative applications. Here, we report a multi-solvent sequential fractionation methodology integrating green solvents of acetone, 1-butanol, and ethanol to fractionate industrial lignin for CLPs fabrication. Through a rationally designed fractionation strategy, multigrade lignin fractions with variable hydroxyl group contents, molecular weights, and high purity were obtained without altering their original chemical structures. CLPs with well-defined morphology, narrow size distribution, excellent thermal stability, and long-term colloidal stability can be obtained by rational selection of lignin fractions. We further elucidated that trace elements (S, N) were reorganized onto the near-surface area of CLPs from lignin fractions during the formation process in the form of -SO42- and -NH2. This work provides a sustainable and efficient strategy for refining industrial lignin into high-quality fractions and an in-depth insight into the CLPs formation process, holding great promise for enriching the existing libraries of colloidal materials.


Subject(s)
Ethanol , Lignin , Solvents/chemistry , Lignin/chemistry , Acetone , Chemical Fractionation/methods
8.
ACS Nano ; 17(21): 21030-21043, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37847543

ABSTRACT

Single-particle catalysis aims at determining factors that dictate the nanoparticle activity and selectivity. Existing methods often use fluorescent model reactions at low reactant concentrations, operate at low pressures, or rely on plasmonic enhancement effects. Hence, methods to measure single-nanoparticle activity under technically relevant conditions and without fluorescence or other enhancement mechanisms are still lacking. Here, we introduce nanofluidic scattering microscopy of catalytic reactions on single colloidal nanoparticles trapped inside nanofluidic channels to fill this gap. By detecting minuscule refractive index changes in a liquid flushed trough a nanochannel, we demonstrate that local H2O2 concentration changes in water can be accurately measured. Applying this principle, we analyze the H2O2 concentration profiles adjacent to single colloidal Pt nanoparticles during catalytic H2O2 decomposition into O2 and H2O and derive the particles' individual turnover frequencies from the growth rate of the O2 gas bubbles formed in their respective nanochannel during reaction.

9.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4394-4401, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802865

ABSTRACT

This study focused on the separation, characterization, content determination, and antiviral efficacy research on colloidal particles with different sizes in Maxing Shigan Decoction(MXSG). The mixed colloidal phase of MXSG was initially separated into small colloidal particle segment(S), medium colloidal particle segment(M), and big colloidal particle segment(B) using ultrafiltration. Further fine separation was performed using size-exclusion chromatography. Dynamic light scattering(DLS) and transmission electron microscopy(TEM) were employed to characterize the size and morphology of the separated colloidal particles. UPLC-MS/MS was used to determine the content of ephedrine, amygdalin, glycyrrhizic acid, and the EDTA complexometric titration was used to measure the calcium(Ca~(2+)) content in different colloidal phases. Finally, a respiratory syncytial virus(RSV) infection mouse model was established using intranasal administration. The experimental groups included a blank group, a model group, a ribavirin group, an MXSG group, an S group, an M group, and a B group. Oral administration was given for treatment, and pathological changes in mouse lung tissue and organ indices were evaluated. The results of the study showed that the distribution of ephedrine, amygdalin, glycyrrhizic acid, and Ca~(2+) content was not uniform among different colloidal segments. Among them, the B segment had the highest proportions of the three components, except for Ca~(2+), accounting for 46.35%, 53.72%, and 92.36%, respectively. Size-exclusion chromatography separated colloidal particles with uniform morphology in the size range of 100-500 nm. Compared to the S and M segments, the B segment showed an increased lung index inhibition rate(38.31%), spleen index, and thymus index in RSV-infected mice, and it improved the infiltration of inflammatory cells and lung injury in the lung tissue of mice. The complex components in MXSG form colloidal particles of various sizes and morphologies through heating, and small-molecule active components such as ephedrine, amygdalin, glycyrrhizic acid, and Ca~(2+) participate in the assembly to varying degrees. The main material basis for the antiviral effect of MXSG is the colloidal particles with certain particle sizes formed by the assembly of active components during the heating process.


Subject(s)
Amygdalin , Drugs, Chinese Herbal , Mice , Animals , Amygdalin/chemistry , Drugs, Chinese Herbal/chemistry , Glycyrrhizic Acid/analysis , Ephedrine/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Antiviral Agents/pharmacology
10.
Plants (Basel) ; 12(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687335

ABSTRACT

The aim of the study was to obtain untreated and treated betulin colloidal particles and assess their effect on the viability, morphology, proliferation and cytokine secretion of human dermal fibroblasts. To improve bioavailability, betulin treatment was performed by an antisolvent precipitation technique. The average particle size after treatment in the aqueous dispersion decreased from 552.9 ± 11.3 to 278.2 ± 1.6 nm. Treated betulin colloidal particles showed no cytotoxicity up to a concentration of 400 µg·mL-1 in the colorimetric tetrazolium salt viability test (CCK-8). Moreover, the cell morphology was not changed in the presence of betulin colloidal particles at a concentration range from 0.78 to 400 µg·mL-1. The obtained results also show that betulin particles induce the secretion of the proinflammatory and angiogenesis-stimulating cytokine IL-8. However, further studies would be required to clarify the mechanism of IL-8 secretion induction.

11.
Membranes (Basel) ; 13(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37623751

ABSTRACT

Moving bed biofilm reactor combined with membrane bioreactor (MBBR-MBR) constitute a highly effective wastewater treatment technology. The aim of this research work was to study the effect of commercial K1 biocarriers (MBBR-MBR K1 unit) and 3D-printed biocarriers fabricated from 13X and Halloysite (MBBR-MBR 13X-H unit), on the efficiency and the fouling rate of an MBBR-MBR unit during wastewater treatment. Various physicochemical parameters and trans-membrane pressure were measured. It was observed that in the MBBR-MBR K1 unit, membrane filtration improved reaching total membrane fouling at 43d, while in the MBBR-MBR 13X-H and in the control MBBR-MBR total fouling took place at about 32d. This is attributed to the large production of soluble microbial products (SMP) in the MBBR-MBR 13X-H, which resulted from a large amount of biofilm created in the 13X-H biocarriers. An optimal biodegradation of the organic load was concluded, and nitrification and denitrification processes were improved at the MBBR-MBR K1 and MBBR-MBR 13X-H units. The dry mass produced on the 13X-H biocarriers ranged at 4980-5711 mg, three orders of magnitude larger than that produced on the K1, which ranged at 2.9-4.6 mg. Finally, it was observed that mostly extracellular polymeric substances were produced in the biofilm of K1 biocarriers while in 13X-H mostly SMP.

12.
Adv Colloid Interface Sci ; 319: 102968, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37582302

ABSTRACT

Nanozymes are synthetic compounds with enzyme-like tunable catalytic properties. The success of nanozymes for catalytic applications can be attributed to their small dimensions, cost-effective synthesis, appreciable stability, and scalability to molecular dimensions. The emergence of single atom nanozymes (SANzymes) has opened up new possibilities in bioanalytical applications. In this regard, this review outlines enzyme-mimicking features of SANzymes for food safety applications in relation to the key variables controlling their catalytic performance. The discussion is extended further to cover the applications of SANzymes for the monitoring of various compounds/biomaterials of significance with respect to food safety (e.g., pesticides, veterinary drug residues, foodborne pathogenic bacteria, mycotoxins/bacterial endotoxin, antioxidant residues, hydrogen peroxide residues, and heavy metal ions). Furthermore, the performance of SANzymes is evaluated in terms of various performance metrics such as limit of detection (LOD), linear dynamic range, and figure of merit (FoM). The challenges and future road map for the applications of SANzymes are also addressed along with their upscaling in the area of food safety.


Subject(s)
Food Contamination , Food Inspection , Nanoparticles , Nanoparticles/chemistry , Food Safety , Food Inspection/methods , Metals, Heavy/analysis , Biosensing Techniques/methods , Enzymes/chemistry
13.
Adv Sci (Weinh) ; 10(28): e2303404, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541434

ABSTRACT

The encapsulation of a rigid core within a soft polymeric shell allows obtaining composite colloidal particles that retain functional properties, e.g., optical or mechanical. At the same time, it favors their adsorption at fluid interfaces with a tunable interaction potential to realize tailored two-dimensional (2D) materials. Although they have already been employed for 2D assembly, the conformation of single particles, which is essential to define the monolayer properties, has been largely inferred via indirect or ex situ techniques. Here, by means of in situ atomic force microscopy experiments, the authors uncover the interfacial morphology of hard-core soft-shell microgels, integrating the data with numerical simulations to elucidate the role of the core properties, of the shell thicknesses, and that of the grafting density. They identify that the hard core can influence the conformation of the polymer shells. In particular, for the case of small shell thickness, low grafting density, or poor core affinity for water, the core protrudes more into the organic phase, and the authors observe a decrease in-plane stretching of the network at the interface. By rationalizing their general wetting behavior, such composite particles can be designed to exhibit specific inter-particle interactions of importance both for the stabilization of interfaces and for the fabrication of 2D materials with tailored functional properties.

14.
Gels ; 9(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37504408

ABSTRACT

The assembly of colloidal hyaluronic acid (HyA, as a polysaccharide) based hydrogel particles in an aqueous medium is characterized in the present paper, with an emphasis on the particular case of nanohydrogels formed by surfactant-neutralized polysaccharide networks. The structural changes and particle formation process of polysaccharide- and cationic-surfactant-containing systems were induced by the charge neutralization ability and the hydrophobic interactions of cetyltrimethylammonium bromide (CTAB) under different conditions. Based on the rheological, light scattering, ζ-potential, turbidity, and charge titration measurements, it can be concluded that the preparation of the HyA-CTAB particles can be greatly controlled. The results indicate that more available negative charges can be detected on the polymer chain at smaller initial amounts of HyA (cHyA < 0.10 mg/mL), where a molecular solution can be formed. The change in the pH has a negligible effect on the formation process (particle aggregation appears at nCTAB/nHyA,monomer~1.0 in every case), while the temperature dependence of the critical micelle concentration (c.m.c.) of CTAB determines the complete neutralization of the forming nanohydrogels. The results of our measurements confirm that after the appearance of stable colloidal particles, a structural change and aggregation of the polymer particles take place, and finally the complete charge neutralization of the system occurs.

15.
Phys Biol ; 20(5)2023 07 26.
Article in English | MEDLINE | ID: mdl-37442118

ABSTRACT

Interphase chromosomes are known to organize non-randomly in the micron-sized eukaryotic cell nucleus and occupy certain fraction of nuclear volume, often without mixing. Using extensive coarse-grained simulations, we model such chromosome structures as colloidal particles whose surfaces are grafted by cyclic polymers. This model system is known as Rosetta. The cyclic polymers, with varying polymerization degrees, mimic chromatin loops present in interphase chromosomes, while the rigid core models the chromocenter section of the chromosome. Our simulations show that the colloidal chromosome model provides a well-separated particle distribution without specific attraction between the chain monomers. As the polymerization degree of the grafted cyclic chains decreases while maintaining the total chromosomal length (e.g. the more potent activity of condensin-family proteins), the average chromosomal volume becomes smaller, inter-chromosomal contacts decrease, and chromocenters organize in a quasi-crystalline order reminiscent of a glassy state. This order weakens for polymer chains with a characteristic size on the order of the confinement radius. Notably, linear-polymer grafted particles also provide the same chromocenter organization scheme. However, unlike linear chains, cyclic chains result in less contact between the polymer layers of neighboring chromosome particles, demonstrating the effect of DNA breaks in altering genome-wide contacts. Our simulations show that polymer-grafted colloidal systems could help decipher 3D genome architecture along with the fractal globular and loop-extrusion models.


Subject(s)
Chromosome Structures , Polymers/chemistry , Cyclization , Colloids/chemistry , Chromosome Structures/chemistry , Molecular Dynamics Simulation
16.
Gels ; 9(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37367163

ABSTRACT

Alginates are a family of natural polysaccharides with promising potential in biomedical applications and tissue regeneration. The design of versatile alginate-based structures or hydrogels and their stability and functionality depend on the polymer's physicochemical characteristics. The main features of alginate chains that determine their bioactive properties are the molar ratio of mannuronic and glucuronic residues (M/G ratio) and their distribution along the polymer chain (MM-, GG-, and MG blocks). The present study is focused on investigating the influence of the physicochemical characteristics of alginate (sodium salt) on the electrical properties and stability of the dispersion of polymer-coated colloidal particles. Ultrapure and well-characterized biomedical-grade alginate samples were used in the investigation. The dynamics of counterion charge near the vicinity of adsorbed polyion is studied via electrokinetic spectroscopy. The results show that the experimental values of the frequency of relaxation of the electro-optical effect are higher compared to the theoretical ones. Therefore, it was supposed that polarization of the condensed Na+ counterions occurs at specific distances according to the molecular structure (G-, M-, or MG-blocks). In the presence of Ca2+, the electro-optical behavior of the particles with adsorbed alginate molecules almost does not depend on the polymer characteristics but was affected by the presence of divalent ions in the polymer layer.

17.
Small ; 19(36): e2302115, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37116105

ABSTRACT

Diffusion of biological macromolecules in the cytoplasm is a paradigm of colloidal diffusion in an environment characterized by a strong restriction of the accessible volume. This makes of the understanding of the physical rules governing colloidal diffusion under conditions mimicking the reduction in accessible volume occurring in the cell cytoplasm, a problem of a paramount importance. This work aims to study how the thermal motion of spherical colloidal beads in the inner cavity of giant unilamellar vesicles (GUVs) is modified by strong confinement conditions, and the viscoelastic character of the medium. Using single particle tracking, it is found that both the confinement and the environmental viscoelasticity lead to the emergence of anomalous motion pathways for colloidal microbeads encapsulated in the aqueous inner cavity of GUVs. This anomalous diffusion is strongly dependent on the ratio between the volume of the colloidal particle and that of the GUV under consideration as well as on the viscosity of the particle's liquid environment. Therefore, the results evidence that the reduction of the free volume accessible to colloidal motion pushes the diffusion far from a standard Brownian pathway as a result of the change in the hydrodynamic boundary conditions driving the particle motion.

18.
J Colloid Interface Sci ; 642: 373-379, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37018962

ABSTRACT

Wax molecules crystallize at ambient temperature, causing the crude oil to become a dispersed system, which poses challenges in the flow assurance of pipelines. Improving the cold flowability of crude oil is the fundamental solution to tackle these problems. Applying an electric field to waxy oil may markedly improve its cold flowability. The adhesion of charged particles on wax particles' surface under the electric field has been demonstrated as the essential mechanism of the electrorheological effect. However, the correlation between the accumulated charged particles and the induced viscosity reduction has not been explored quantitatively. In this study, the viscosity and impedance of four crude oils before and after electric treatment were measured. The conductivity changes of the oils' continuous phase were obtained by an equivalent circuit model. And then, the charged particles' concentration before and after electric treatment was calculated by the Stokes equation. The results showed there is a positive correlation between viscosity reduction and charged particle concentration reduction in the continuous phase. Importantly, this correlation is also quantitatively applicable to the results of ten different waxy oils which has been published. This study provides a quantitative basis for the mechanism of electrorheological behavior of waxy oils.

19.
Foods ; 12(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36900509

ABSTRACT

Double emulsions are complex emulsion systems with a wide range of applications across different fields, such as pharmaceutics, food and beverage, materials sciences, personal care, and dietary supplements. Conventionally, surfactants are required for the stabilization of double emulsions. However, due to the emerging need for more robust emulsion systems and the growing trends for biocompatible and biodegradable materials, Pickering double emulsions have attracted increasing interest. In comparison to double emulsions stabilized solely by surfactants, Pickering double emulsions possess enhanced stability due to the irreversible adsorption of colloidal particles at the oil/water interface, while adopting desired environmental-friendly properties. Such advantages have made Pickering double emulsions rigid templates for the preparation of various hierarchical structures and as potential encapsulation systems for the delivery of bioactive compounds. This article aims to provide an evaluation of the recent advances in Pickering double emulsions, with a special focus on the colloidal particles employed and the corresponding stabilization strategies. Emphasis is then devoted to the applications of Pickering double emulsions, from encapsulation and co-encapsulation of a wide range of active compounds to templates for the fabrication of hierarchical structures. The tailorable properties and the proposed applications of such hierarchical structures are also discussed. It is hoped that this perspective paper will serve as a useful reference on Pickering double emulsions and will provide insights toward future studies in the fabrication and applications of Pickering double emulsions.

20.
J Colloid Interface Sci ; 640: 1015-1028, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36921382

ABSTRACT

HYPOTHESIS: Recently, it has become possible to synthesize hollow polyelectrolyte nano- and microgels. The shell permeability can be controlled by external stimuli, while the cavity can serve as a storage place for guest molecules. However, there is a lack of a detailed understanding at the molecular level regarding the role of the network topology, inhomogeneities of the distribution of cross-links, and the impact of the electrostatics on the structural response of hollow microgel to external stimuli. To bridge these gaps, molecular dynamics (MD) of computer simulations are used. EXPERIMENTS: Here, we propose a fresh methodology to create realistic hollow microgel particles in silico. The technique involves a gradual change in the average local length of subchains depending on the distance to the center of mass of the microgel particles resulting in the microgels with a non-uniform distribution of cross-linking species. In particular, a series of microgels with (i) a highly cross-linked inner part of the shell and gradually decreased cross-linker concentration towards the periphery, (ii) microgels with loosely cross-linked inner and outer parts, as well as (iii) microgels with a more-or-less homogeneous structure, have been created and validated. Counterions and salt ions are taken into account explicitly, and electrostatic interactions are described by the Coulomb potential. FINDINGS: Our studies reveal a strong dependence of the microgel swelling response on the network topology. Simple redistribution of cross-links plays a significant role in the structure of the microgels, including cavity size, microgel size, fuzziness, and extension of the inner and outer parts of the microgels. Our results indicate the possibilities of qualitative justification of the structure of the hollow microgels in the experiments by measuring the relative change in the size of the sacrificial core to the size of the cavity and by estimation of a power law function, [Formula: see text] , of the hydrodynamic radius of the hollow microgels as a function of added salt concentration.

SELECTION OF CITATIONS
SEARCH DETAIL