Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(29): 8887-8893, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38984749

ABSTRACT

The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu3N nanorods (NRs). It is found that the trace oxygen (O2) plays an important role in the synthesis process. And a new mechanism for the formation of Cu3N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu3N-Cu2O heteronanostructures (HNs) can be prepared. The Cu3N NRs and Cu3N-Cu2O HNs were evaluated as precursor electrocatalysts for the CO2 reduction reaction (CO2RR). The Cu3N-Cu2O HNs demonstrate remarkable selectivity and stability with ethylene (C2H4) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu3N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.

2.
Small ; : e2402613, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850186

ABSTRACT

Methanol is not only a promising liquid hydrogen carrier but also an important feedstock chemical for chemical synthesis. Catalyst design is vital for enabling the reactions to occur under ambient conditions. This study reports a new class of van der Waals heterojunction photocatalyst, which is synthesized by hot-injection method, whereby carbon dots (CDs) are grown in situ on ZnSe nanoplatelets (NPLs), i.e., metal chalcogenide quantum wells. The resultant organic-inorganic hybrid nanoparticles, CD-NPLs, are able to perform methanol dehydrogenation through CH splitting. The heterostructure has enabled light-induced charge transfer from the CDs into the NPLs occurring on a sub-nanosecond timescale, with charges remaining separated across the CD-NPLs heterostructure for longer than 500 ns. This resulted in significantly heightened H2 production rate of 107 µmole·g-1·h-1 and enhanced photocurrent density up to 34 µA cm-2 at 1 V bias potential. EPR and NMR analyses confirmed the occurrence of α-CH splitting and CC coupling. The novel CD-based organic-inorganic semiconductor heterojunction is poised to enable the discovery of a host of new nano-hybrid photocatalysts with full tunability in the band structure, charge transfer, and divergent surface chemistry for guiding photoredox pathways and accelerating reaction rates.

3.
Chemistry ; 30(41): e202400833, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38781011

ABSTRACT

It remains a challenge to accomplish colloidal synthesis of noble-metal nanocrystals marked by high quality, large quantity, and batch-to-batch consistency. Here we report a self-airtight setup for achieving robust, reproducible, and scalable production of Ag nanocubes with uniform and controlled sizes from 18 to 60 nm. Different from the conventional open-to-air setup, the self-airtight system makes it practical to stabilize the reaction condition by minimizing the loss of volatile reagents. The new setup also allows us to easily optimize the amount of O2 (from air) trapped in the system, ensuring burst nucleation of single-crystal seeds, followed by their slow growth into nanocubes. Most significantly, the new setup allows for the production of Ag nanocubes at gram quantities without sacrificing uniformity, corner/edge sharpness, controlled size, and high purity across different batches. The availability of high-quality Ag nanocubes in such a large quantity is anticipated to substantially boost their use in applications related to plasmonics, catalysis, and biomedicine.

4.
Materials (Basel) ; 17(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38204090

ABSTRACT

Chiral semiconductor nanostructures and nanoparticles are promising materials for applications in biological sensing, enantioselective separation, photonics, and spin-polarized devices. Here, we studied the induction of chirality in atomically thin only two-monolayer-thick CdSe nanoplatelets (NPLs) grown using a colloidal method and exchanged with L-alanine and L-phenylalanine as model thiol-free chiral ligands. We have developed a novel two-step approach to completely exchange the native oleic acid ligands for chiral amino acids at the basal planes of NPLs. We performed an analysis of the optical and chiroptical properties of the chiral CdSe nanoplatelets with amino acids, which was supplemented by an analysis of the composition and coordination of ligands. After the exchange, the nanoplatelets retained heavy-hole, light-hole, and spin-orbit split-off exciton absorbance and bright heavy-hole exciton luminescence. Capping with thiol-free enantiomer amino acid ligands induced the pronounced chirality of excitons in the nanoplatelets, as proven by circular dichroism spectroscopy, with a high dissymmetry g-factor of up to 3.4 × 10-3 achieved for heavy-hole excitons in the case of L-phenylalanine.

5.
Heliyon ; 10(1): e23837, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38205302

ABSTRACT

Chemical precursors for nanomaterials synthesis have become essential to tune particle size, composition, morphology, and unique properties. New inexpensive precursors investigation that precisely controls these characteristics is highly relevant. We studied new Se precursors, the acid selenites (R-O-SeOOH), to synthesize CdSe quantum dots (QDs). They were produced at room temperature by the Image 1 reaction with alcohols having different alkyl chains and were characterized by 1H NMR confirming their structures. This unprecedented precursor generates high-quality CdSe nanocrystals with narrow size distribution in the zinc-blend structure showing controlled optical properties. Advanced characterization detailed the CdSe structure showing stacking fault defects and its dependence on the used R-O-SeOOH. The QDs formation was examined using a time-dependent growth kinetics model. Differences in the nanoparticle surface structure influenced the optical properties, and they were correlated to the Se-precursor nature. Small alkyl chain acid selenites generally lead to more controlled QDs morphology, while the bigger alkyl chain leads to slightly upper quantum yields. Acid selenites can potentially replace Se-precursors at competitive costs in the metallic chalcogenide nanoparticles. Image 1 is chemically stable, and alcohols are cheap and less toxic than the reactants used today, making acid selenites a more sustainable Se precursor.

6.
ChemistryOpen ; 13(2): e202300055, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37874015

ABSTRACT

This work mainly focuses on synthesizing and evaluating the efficiency of methylammonium lead halide-based perovskite (MAPbX3 ; X=Cl, Br, I) solar cells. We used the colloidal Hot-injection method (HIM) to synthesize MAPbX3 (X=Cl, Br, I) perovskites using the specific precursors and organic solvents under ambient conditions. We studied the structural, morphological and optical properties of MAPbX3 perovskites using XRD, FESEM, TEM, UV-Vis, PL and TRPL (time-resolved photoluminescence) characterization techniques. The particle size and morphology of these perovskites vary with respect to the halide variation. The MAPbI3 perovskite possesses a low band gap and low carrier lifetime but delivers the highest PCE among other halide perovskite samples, making it a promising candidate for solar cell technology. To further enrich the investigations, the conversion efficiency of the MAPbX3 perovskites has been evaluated through extensive device simulations. Here, the optical constants, band gap energy and carrier lifetime of MAPbX3 were used for simulating three different perovskite solar cells, namely I, Cl or Br halide-based perovskite solar cells. MAPbI3 , MAPbBr3 and MAPbCl3 absorber layer-based devices showed ~13.7 %, 6.9 % and 5.0 % conversion efficiency. The correlation between the experimental and SCAPS simulation data for HIM-synthesized MAPBX3 -based perovskites has been reported for the first time.

7.
J Fluoresc ; 34(2): 667-673, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37341927

ABSTRACT

Defects in ZnSe quantum dots are responsible for increasing the trap states, which can lead to the drastic reduction of their fluorescence output, being one of the major drawbacks of these materials. As surface atoms become more relevant in these nanoscale structures, energy traps due to surface vacancies, play a very definite role in the final emission quantum yield. In the present study, we report the use of photoactivation procedures to decrease surface defects of ZnSe QDs stabilized with mercaptosuccinic acid (MSA), in order to improve the radiative pathways. We applied the colloidal precipitation procedure in a hydrophilic medium and evaluated the role of Zn/Se molar ratios as well as the Zn2+ precursors (nitrate and chloride salts) on their optical properties. Best results (i.e. increment of 400% of the final fluorescence intensity) were obtained for nitrate precursor and a Zn/Se = 1.2 ratio. Thus, we suggest that the chloride ions may compete more efficiently than nitrate ions with MSA molecules decreasing the passivation capability of this molecule. The improvement in ZnSe QDs fluorescence can potentialize their use for biomedical applications.

8.
ACS Appl Mater Interfaces ; 15(48): 55745-55752, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38011599

ABSTRACT

In this study, the one-dimensional (1D) material V2Se9 was successfully synthesized using a colloidal method with VO(acac)2 and Se powder as precursors in a 1-octadecene solvent. The obtained colloidally synthesized V2Se9 (C-V2Se9) has an ultrathin nanobelt shape and a 4.5 times higher surface area compared with the bulk V2Se9, which is synthesized in a solid-state reaction as previously reported. In addition, all surfaces of C-V2Se9 are exposed to Se atoms, which is advantageous for storing Li through the conversion reaction into the Li2Se phase. Herein, the electrochemical performance of the C-V2Se9 anode material is evaluated; thus, the novelty of C-V2Se9 as a Se-rich 1D anode material is verified. The C-V2Se9 electrode exhibits a reversible capacity of 893.21 mA h g-1 and a Coulombic efficiency of 97.82% at the 100th cycle and excellent structural stability. Compared with the bulk V2Se9 electrode, the outstanding electrochemical performance of C-V2Se9 is attributed to its ultrathin nanobelt shape, high surface area, shorter Li diffusion length, and more electrochemically active sites. This work indicates the great potential of the Se-rich 1D material, C-V2Se9, as a post-transition metal dichalcogenide material for high-performance LIBs.

9.
Discov Nano ; 18(1): 44, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37382716

ABSTRACT

High-quality transition metal tellurides, especially for WTe2, have been demonstrated to be necessarily synthesized under close environments and high temperatures, which are restricted by the low formation Gibbs free energy, thus limiting the electrochemical reaction mechanism and application studies. Here, we report a low-temperature colloidal synthesis of few-layer WTe2 nanostructures with lateral sizes around hundreds of nanometers, which could be tuned the aggregation state to obtain the nanoflowers or nanosheets by using different surfactant agents. The crystal phase and chemical composition of WTe2 nanostructures were analyzed by combining the characterization of X-ray diffraction and high-resolution transmission electron microscopy imaging and elements mapping. The as-synthesized WTe2 nanostructures and its hybrid catalysts were found to show an excellent HER performance with low overpotential and small Tafel slope. The carbon-based WTe2-GO and WTe2-CNT hybrid catalysts also have been synthesized by the similar strategy to study the electrochemical interface. The energy diagram and microreactor devices have been used to reveal the interface contribution to electrochemical performance, which shows the identical performance results with as-synthesized WTe2-carbon hybrid catalysts. These results summarize the interface design principle for semimetallic or metallic catalysts and also confirm the possible electrochemical applications of two-dimensional transition metal tellurides.

10.
Heliyon ; 9(5): e16037, 2023 May.
Article in English | MEDLINE | ID: mdl-37206011

ABSTRACT

The method of affordable colloidal synthesis of nanocrystalline Cu2ZnSnS4 (CZTS) is developed, which is suitable for obtaining bare CZTS nanocrystals (NCs), cation substituted CZTS NCs, and CZTS-based hetero-NCs. For the hetero-NCs, the synthesized in advance NCs of another material are introduced into the reaction solution so that the formation of CZTS takes place preferably on these "seed" NCs. Raman spectroscopy is used as the primary method of structural characterization of the NCs in this work because it is very sensitive to the CZTS structure and allows to probe NCs both in solutions and films. Raman data are corroborated by optical absorption measurements and transmission electron microscopy on selected samples. The CdTe and Ag NCs are found to be good seed NCs, resulting in a comparable or even better quality of the CZTS compound compared to bare CZTS NCs. For Au NCs, on the contrary, no hetero-NCs could be obtained under the given condition. Partial substitution of Zn for Ba during the synthesis of bare CZTS NCs results in a superior structural quality of NCs, while the introduction of Ag for partial substitution of Cu deteriorates the structural quality of the NCs.

11.
Nano Lett ; 23(8): 3259-3266, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37053582

ABSTRACT

Sub-1-nm structures are attractive for diverse applications owing to their unique properties compared to those of conventional nanomaterials. Transition-metal hydroxides are promising catalysts for oxygen evolution reaction (OER), yet there remains difficulty in directly fabricating these materials within the sub-1-nm regime, and the realization of their composition and phase tuning is even more challenging. Here we define a binary-soft-template-mediated colloidal synthesis of phase-selective Ni(OH)2 ultrathin nanosheets (UNSs) with 0.9 nm thickness induced by Mn incorporation. The synergistic interplay between binary components of the soft template is crucial to their formation. The unsaturated coordination environment and favorable electronic structures of these UNSs, together with in situ phase transition and active site evolution confined by the ultrathin framework, enable efficient and robust OER electrocatalysis. They exhibit a low overpotential of 309 mV at 100 mA cm-2 as well as remarkable long-term stability, representing one of the most high-performance noble-metal-free catalysts.

12.
ACS Appl Mater Interfaces ; 15(10): 13439-13448, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36877093

ABSTRACT

Temperature is a fundamental physical quantity important to the physical and biological sciences. Measurement of temperature within an optically inaccessible three-dimensional (3D) volume at microscale resolution is currently limited. Thermal magnetic particle imaging (T-MPI), a temperature variant of magnetic particle imaging (MPI), hopes to solve this deficiency. For this thermometry technique, magnetic nano-objects (MNOs) with strong temperature-dependent magnetization (thermosensitivity) around the temperature of interest are required; here, we focus between 200 K and 310 K. We demonstrate that thermosensitivity can be amplified in MNOs consisting of ferrimagnetic (FiM) iron oxide (ferrite) and antiferromagnetic (AFM) cobalt oxide (CoO) through interface effects. The FiM/AFM MNOs are characterized by X-ray diffraction (XRD), (scanning) transmission electron microscopy (STEM/TEM), dynamic light scattering (DLS), and Raman spectroscopy. Thermosensitivity is evaluated and quantified by temperature-dependent magnetic measurements. The FiM/AFM exchange coupling is confirmed by field-cooled (FC) hysteresis loops measured at 100 K. Magnetic particle spectroscopy (MPS) measurements were performed at room temperature to evaluate the MNOs MPI response. This initial study shows that FiM/AFM interfacial magnetic coupling is a viable method to increase thermosensitivity in MNOs for T-MPI.

13.
ACS Nano ; 17(6): 5663-5672, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36917747

ABSTRACT

The surfactant used during a colloidal synthesis is known to control the size and shape of metallic nanoparticles. However, its influence on the nanoparticle (NP) structure is still not well understood. In this study, we show that the surfactant can significantly modify the lattice parameter of a crystalline particle. First, our electron diffraction measurements reveals that NiPt nanoparticles around 4 nm in diameter covered by a mixture of oleylamine and oleic acid (50:50) display a lattice parameter expansion around 2% when compared to the same particles without surfactant. Using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX) techniques, we show that this expansion can not be explained by crystal defects, twinning, oxidation, or atoms insertion. Then, using covered NPs in the 4-22 nm size range, we show that the lattice parameter evolves linearly with the inverse of the NP size, as it is expected when a surface stress is present. Finally, the study is extended to pure nickel and pure platinum NPs, with different sizes, coated by different surfactants (oleylamine, trioctylphosphine, polyvinylpyrrolidone). The surfactants induce lattice parameter variations, whose magnitude could be related to the charge transfer between the surfactant and the particle surface.

14.
Nanomicro Lett ; 15(1): 83, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37002489

ABSTRACT

To achieve environmentally benign energy conversion with the carbon neutrality target via electrochemical reactions, the innovation of electrocatalysts plays a vital role in the enablement of renewable resources. Nowadays, Pt-based nanocrystals (NCs) have been identified as one class of the most promising candidates to efficiently catalyze both the half-reactions in hydrogen- and hydrocarbon-based fuel cells. Here, we thoroughly discuss the key achievement in developing shape-controlled Pt and Pt-based NCs, and their electrochemical applications in fuel cells. We begin with a mechanistic discussion on how the morphology can be precisely controlled in a colloidal system, followed by highlighting the advanced development of shape-controlled Pt, Pt-alloy, Pt-based core@shell NCs, Pt-based nanocages, and Pt-based intermetallic compounds. We then select some case studies on models of typical reactions (oxygen reduction reaction at the cathode and small molecular oxidation reaction at the anode) that are enhanced by the shape-controlled Pt-based nanocatalysts. Finally, we provide an outlook on the potential challenges of shape-controlled nanocatalysts and envision their perspective with suggestions.

15.
J Colloid Interface Sci ; 637: 372-388, 2023 May.
Article in English | MEDLINE | ID: mdl-36724662

ABSTRACT

HYPOTHESIS: High nitrogen containing resins such as poly(melamine-co-formaldehyde) (PMF) are known for their very good adsorption properties. Until now, using an ecofriendly hard-templating approach with SiO2 nanospheres in water for synthesis, only yielded either highly porous particles with diameters up to 1 µm or non-porous particles with diameters above 1 µm. Small particles cannot be used as fixed bed adsorbents in columns because of the very high pressure occurring. EXPERIMENTS: To yield particles with high porosity and larger diameters for the use as fixed bed adsorbent, we investigated the influence of several synthesis parameters on porosity and particle morphology. FINDINGS: From all variations, we proposed a mechanism for the complex interplay between the PMF prepolymer and resin species with SiO2 nanoparticles acting both as Pickering-like surfactant and template particle. With this knowledge we were able to produce a suitable column material with high specific surface area up to 260 m2/g. We then proved the application of this material for aqueous dichromate adsorption in batch, yielding a maximum capacity of 138 mg/g with recyclability. In column experiments, the contamination of 5 mg/L dichromate in water was reduced to drinking water safe levels for an influent volume equal to over 160 bed volumes.

16.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36500786

ABSTRACT

The current need to accelerate the adoption of photovoltaic (PV) systems has increased the need to explore new nanomaterials that can harvest and convert solar energy into electricity. Transition metal dichalcogenides (TMDCs) are good candidates because of their tunable physical and chemical properties. CuCrS2 has shown good electrical and thermoelectrical properties; however, its optical and photoconductivity properties remain unexplored. In this study, we synthesized CuCrS2 nanosheets with average dimensions of 43.6 ± 6.7 nm in length and 25.6 ± 4.1 nm in width using a heat-up synthesis approach and fabricated films by the spray-coating method to probe their photoresponse. This method yielded CuCrS2 nanosheets with an optical bandgap of ~1.21 eV. The fabricated film had an average thickness of ~570 nm, exhibiting a net current conversion efficiency of ~11.3%. These results demonstrate the potential use of CuCrS2 as an absorber layer in solar cells.

17.
Natl Sci Rev ; 9(10): nwac025, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36415320

ABSTRACT

Beyond the state-of-the-art Cd-containing quantum wires (QWs), heavy-metal-free semiconductor QWs, such as ZnSe, are of great interest for next-generation environmental-benign applications. Unfortunately, simultaneous, on-demand manipulation of their radial and axial sizes-that allows strong quantum confinement in the blue-light region-has so far been challenging. Here we present a two-step catalyzed growth strategy that enables independent, high-precision and wide-range controls over the diameter and length of ZnSe QWs. We find that a new epitaxial orientation between the cubic-phase Ag2Se solid catalyst and wurtzite ZnSe QWs kinetically favors the formation of defect-free ultrathin QWs. Thanks to their high uniformity, the resulting blue-light-active, phase-pure ZnSe QWs exhibit well-defined excitonic absorption with the 1Se-1Sh transition linewidth as narrow as sub-13 nm. Combining the transient absorption spectroscopy, we further show that surface electron traps in these ZnSe QWs can be eliminated by thiol passivation, which results in long-lived charge carriers and high-efficiency solar-to-hydrogen conversion.

18.
Nano Lett ; 22(20): 8168-8173, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36215299

ABSTRACT

Lead halide perovskite (LHP) quantum dots (QDs), with their bright and narrow emission, are promising candidates for LEDs, lasers, and quantum light sources. However, current methods to synthesize monodisperse CsPb(Cl:Br)3 and CsPbCl3 QDs exhibiting multiple sharp absorption resonances are not as well developed compared to CsPbBr3. Furthermore, both quantum confinement and the halide ratio in CsPb(Cl:Br)3 QDs strongly influence the bandgap, making it impossible to optically determine their size. In this work, monodisperse spheroidal CsPb(Cl:Br)3 QDs are synthesized in the 4-10 nm range, at any Cl:Br ratio, with up to five excitonic absorption transitions. Furthermore, in situ spectroscopy was used to cross-correlate the size and composition of these QDs directly to the energy of the first two excitonic absorption transitions. This work therefore provides not only a method for monodisperse CsPb(Cl:Br)3 QDs but also a protocol to determine their size, concentration, and halide ratio, circumventing conventional expensive and time-consuming techniques.

19.
Small ; 18(38): e2202109, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35957527

ABSTRACT

The design and synthesis of advanced semiconductors is crucial for the full utilization of solar energy. Herein, colloidal selective-epitaxial hybrid of tripartite semiconducting sulfides CuInS2 Cd(In)SMoS2 heteronanostructures (HNs) via lateral- and vertical-epitaxial growths, followed by cation exchange reactions, are reported. The lateral-epitaxial CuInS2 and Cd(In)S enable effective visible to near-infrared (NIR) solar spectrum absorption, and the vertical-epitaxial ultrathin MoS2 offer sufficient edge sulfur sites for the hydrogen evolution reaction (HER). Furthermore, the integrated structures exhibit unique epitaxial-staggered type II band alignments for continuous charge separation. They achieve the H2 evolution rate up to 8 mmol h-1 g-1 , which is ≈35 times higher than bare CdS and show no deactivation after long-term cycling, representing one of the most efficient and robust noble-metal-free photocatalysts. This design principle and transformation protocol open a new way for creating all-in-one multifunctional catalysts in a predictable manner.

20.
Article in English | MEDLINE | ID: mdl-35848081

ABSTRACT

Advances in the synthesis and characterization of colloidal magnetic nanoparticles (NPs) have yielded great gains in the understanding of their complex magnetic behavior, with implications for numerous applications. Recent work using Ni NPs as a model soft ferromagnetic system, for example, achieved quantitative understanding of the superparamagnetic blocking temperature-particle diameter relationship. This hinged, however, on the critical assumption of a ferromagnetic NP volume lower than the chemical volume due to a non-ferromagnetic dead shell indirectly deduced from magnetometry. Here, we determine both the chemical and magnetic average internal structures of Ni NP ensembles via unpolarized, half-polarized, and fully polarized small-angle neutron scattering (SANS) measurements and analyses coupled with X-ray diffraction and magnetometry. The postulated nanometric magnetic dead shell is not only detected but conclusively identified as a non-ferromagnetic Ni phosphide derived from the trioctylphosphine commonly used in hot-injection colloidal NP syntheses. The phosphide shell thickness is tunable via synthesis temperature, falling to as little as 0.5 nm at 170 °C. Temperature- and magnetic field-dependent polarized SANS measurements additionally reveal essentially bulk-like ferromagnetism in the Ni core and negligible interparticle magnetic interactions, quantitatively supporting prior modeling of superparamagnetism. These findings advance the understanding of synthesis-structure-property relationships in metallic magnetic NPs, point to a simple potential route to ligand-free stabilization, and highlight the power of the currently available suite of polarized SANS measurement and analysis capabilities for magnetic NP science and technology.

SELECTION OF CITATIONS
SEARCH DETAIL