Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(27): e2302253, 2023 09.
Article in English | MEDLINE | ID: mdl-37485817

ABSTRACT

Bioconjugation of proteins can substantially expand the opportunities in biopharmaceutical development, however, applications are limited for the gene editing machinery despite its tremendous therapeutic potential. Here, a self-delivered nanomedicine platform based on bioorthogonal CRISPR/Cas9 conjugates, which can be armed with a chemotherapeutic drug for combinatorial therapy is introduced. It is demonstrated that multi-functionalized Cas9 with a drug and polymer can form self-condensed nanocomplexes, and induce significant gene editing upon delivery while avoiding the use of a conventional carrier formulation. It is shown that the nanomedicine platform can be applied for combinatorial therapy by incorporating the anti-cancer drug olaparib and targeting the RAD52 gene, leading to significant anti-tumor effects in BRCA-mutant cancer. The current development provides a versatile nanomedicine platform for combination treatment of human diseases such as cancer.


Subject(s)
CRISPR-Cas Systems , Gene Transfer Techniques , Humans , CRISPR-Cas Systems/genetics , Pharmaceutical Preparations , Nanomedicine , Gene Editing
2.
Curr Mol Med ; 23(9): 876-888, 2023.
Article in English | MEDLINE | ID: mdl-35986537

ABSTRACT

Breast cancer is the most commonly diagnosed type of cancer and ranks second among cancer that leads to death. From becoming the foremost reason for global concern, this multifactorial disease is being treated by conventional chemotherapies that are associated with severe side effects, with chemoresistance being the ruling reason. Exemestane, an aromatase inhibitor that has been approved by the US FDA for the treatment of breast cancer in post-menopausal women, acts by inhibiting the aromatase enzyme, in turn, inhibiting the production of estrogen. However, the clinical application of exemestane remains limited due to its poor aqueous solubility and low oral bioavailability. Furthermore, the treatment regimen of exemestane often leads to thinning of bone mineral density. Thymoquinone, a natural compound derived from the oil of the seeds of Nigella sativa Linn, possesses the dual property of being a chemosensitizer and chemotherapeutic agent. In addition, it has been found to exhibit potent bone protection properties, as evidenced by several studies. To mitigate the limitations associated with exemestane and to deliver to the cancerous cells overcoming chemoresistance, the present hypothesis has been put forth, wherein a natural chemosensitizer and chemotherapeutic agent thymoquinone will be incorporated into a lipid nanocarrier along with exemestane for combinatorial delivery to cancer cells. Additionally, thymoquinone being bone protecting will help in ousting the untoward effect of exemestane at the same time delivering it to the required malignant cells, safeguarding the healthy cells, reducing the offsite toxicity, and providing potent synergistic action.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Nanomedicine , Aromatase Inhibitors/adverse effects , Benzoquinones/pharmacology , Benzoquinones/therapeutic use
3.
Drug Dev Ind Pharm ; 42(12): 1938-1944, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27142812

ABSTRACT

CONTEXT: Combination therapies provide a potential solution to address the tumor heterogeneity and drug resistance issues by taking advantage of distinct mechanisms of action of the multiple therapeutics. OBJECTIVE: To design arginine-glycineaspartic acid (RGD) modified lipid-coated nanoparticles (NPs) for the co-delivery of the hydrophobic drugs against hepatocellular carcinoma (HCC). MATERIALS AND METHODS: RGD modified lipid-coated PLGA NPs were developed for the targeted delivery of both sorafenib (SRF) and quercetin (QT) (RGD-SRF-QT NPs). Chemical-physical characteristics and release profiles were evaluated. In vitro cell viability assays were carried out on HCC cells. In vivo antitumor efficacies were evaluated in HCC animal model. RESULTS AND DISCUSSION: The combination of SRF and QT formulations was more effective than the single drug formulations in both NPs and solution groups. RGD-SRF-QT NPs achieved the most significant tumor growth inhibition effect in vitro and in vivo. CONCLUSION: The resulting NPs could provide a promising platform for co-delivery of multiple anticancer drugs for achievement of combinational therapy and could offer potential for enhancing the therapeutic efficacy on HCC.

SELECTION OF CITATIONS
SEARCH DETAIL