Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 13: 988322, 2022.
Article in English | MEDLINE | ID: mdl-36051292

ABSTRACT

Leaf rust of barley causes significant losses in crops of susceptible cultivars. Deploying host resistance is the most cost-effective and eco-sustainable strategy to protect the harvest. However, most known leaf rust resistance genes have been overcome by the pathogen due to the pathogen's evolution and adaptation. The discovery of novel sources of genetic resistance is vital to keep fighting against pathogen evolution. In this study, we investigated the genetic basis of resistance in barley breeding line GID 5779743 (GID) from ICARDA, found to carry high levels of seedling resistance to prevalent Australian pathotypes of Puccinia hordei. Multipathotype tests, genotyping, and marker-trait associations revealed that the resistance in GID is conferred by two independent genes. The first gene, Rph3, was detected using a linked CAPS marker and QTL analysis. The second gene was detected by QTL analysis and mapped to the same location as that of the Rph5 locus on the telomeric region of chromosome 3HS. The segregating ratio in F2 (conforming to 9 resistant: 7 susceptible genetic ratio; p > 0.8) and F3 (1 resistant: 8 segregating: 7 susceptible; p > 0.19) generations of the GID × Gus population, when challenged with pathotype 5477 P- (virulent on Rph3 and Rph5) suggested the interaction of two genes in a complementary fashion. This study demonstrated that Rph3 interacts with Rph5 or an additional locus closely linked to Rph5 (tentatively designated RphGID) in GID to produce an incompatible response when challenged with a pathotype virulent on Rph3+Rph5.

2.
J Integr Plant Biol ; 63(8): 1521-1537, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34038040

ABSTRACT

Trichomes function in plant defenses against biotic and abiotic stresses; examination of glabrous lines, which lack trichomes, has revealed key aspects of trichome development and function. Tests of allelism in 51 glabrous rice (Oryza sativa) accessions collected worldwide identified OsSPL10 and OsWOX3B as regulators of trichome development in rice. Here, we report that OsSPL10 acts as a transcriptional regulator controlling trichome development. Haplotype and transient expression analyses revealed that variation in the approximately 700-bp OsSPL10 promoter region is the primary cause of the glabrous phenotype in the indica cultivar WD-17993. Disruption of OsSPL10 by genome editing decreased leaf trichome density and length in the NIL-HL6 background. Plants with genotype OsSPL10WD-17993 /HL6 generated by crossing WD-17993 with NIL-HL6 also had fewer trichomes in the glumes. HAIRY LEAF6 (HL6) encodes another transcription factor that regulates trichome initiation and elongation, and OsSPL10 directly binds to the HL6 promoter to regulate its expression. Moreover, the transcript levels of auxin-related genes, such as OsYUCCA5 and OsPIN-FORMED1b, were altered in OsSPL10 overexpression and RNAi transgenic lines. Feeding tests using locusts (Locusta migratoria) demonstrated that non-glandular trichomes affect feeding by this herbivore. Our findings provide a molecular framework for trichome development and an ecological perspective on trichome functions.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Oryza/genetics , Plant Proteins/genetics , Trichomes/growth & development , Animals , Base Sequence , Genetic Loci , Genotype , Grasshoppers/physiology , Oryza/parasitology , Oryza/ultrastructure , Phenotype , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Signal Transduction , Trans-Activators/metabolism , Trichomes/ultrastructure
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1800): 20190260, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32306884

ABSTRACT

The major histocompatibility complex (MHC) is a core part of the adaptive immune system. As in other vertebrate taxa, it may also affect human chemical communication via odour-based mate preferences, with greater attraction towards MHC-dissimilar partners. However, despite some well-known findings, the available evidence is equivocal and made complicated by varied approaches to quantifying human mate choice. To address this, we here conduct comprehensive meta-analyses focusing on studies assessing: (i) genomic mate selection, (ii) relationship satisfaction, (iii) odour preference, and (iv) all studies combined. Analysis of genomic studies reveals no association between MHC-dissimilarity and mate choice in actual couples; however, MHC effects appear to be independent of the genomic background. The effect of MHC-dissimilarity on relationship satisfaction was not significant, and we found evidence for publication bias in studies on this area. There was also no significant association between MHC-dissimilarity and odour preferences. Finally, combining effect sizes from all genomic, relationship satisfaction, odour preference and previous mate choice studies into an overall estimate showed no overall significant effect of MHC-similarity on human mate selection. Based on these findings, we make a set of recommendations for future studies, focusing both on aspects that should be implemented immediately and those that lurk on the far horizon. We need larger samples with greater geographical and cultural diversity that control for genome-wide similarity. We also need more focus on mechanisms of MHC-associated odour preferences and on MHC-associated pregnancy loss. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.


Subject(s)
Major Histocompatibility Complex/physiology , Marriage , Odorants , Olfactory Perception , Smell , Female , Humans , Male
4.
Front Plant Sci ; 10: 1493, 2019.
Article in English | MEDLINE | ID: mdl-31921223

ABSTRACT

Fruit bitterness is a serious problem threatening the bottle gourd (Lagenaria siceraria [Mol.] Standl.) industry worldwide. Previous genetic studies indicated that fruit bitterness in the bottle gourd was controlled by a pair of complementary genes. In this study, based on two non-bitter landraces "Hangzhou Gourd" and "Puxian Gourd," each of which carries a single bitterness gene, and their derived segregation populations, we mapped the complementary genes causing fruit bitterness. Quantitative trait locus (QTL) scanning based on an F2 population detected two QTLs, which was QBt.1 locating in a 17.62-cM interval on linkage group (LG)2 corresponding to a 1.6-Mb region on chromosome 6, and QBt.2 mapped to a 8.44-cM interval on LG9 corresponding to a 1.9-Mb region on chromosome 7. An advanced bulked segregant analysis (A-BSA) well validated the QTL mapping results. Sequence-based comparative analysis showed no syntenic relationship between QBt.1/QBt.2 and the known bitterness genes in cucumber, melon, and watermelon, suggesting that causal genes underlying QBt.1 and QBt.2 were not direct orthologs of the reported cucurbit bitterness genes. Our results shed light on the molecular genetic mechanisms underlying fruit bitterness in the bottle gourd and is useful to guide breeders to properly select parental lines to avoid the occurrence of bitter fruits in breeding programs.

5.
J Evol Biol ; 28(3): 642-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25661713

ABSTRACT

Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen-binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types.


Subject(s)
Genes, MHC Class I , Mating Preference, Animal/physiology , Passeriformes/genetics , Animals , England , Female , Genetics, Population , Male , Molecular Sequence Data , Passeriformes/physiology , Reproduction/genetics
6.
Breed Sci ; 62(4): 310-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23341744

ABSTRACT

Heading date in rice (Oryza sativa L.) is a critical agronomic trait with a complex inheritance. To investigate the genetic basis and mechanism of gene interaction in heading date, we conducted genetic analysis on segregation populations derived from crosses among the indica cultivars Bo B, Yuefeng B and Baoxuan 2. A set of dominant complementary genes controlling late heading, designated LH1 and LH2, were detected by molecular marker mapping. Genetic analysis revealed that Baoxuan 2 contains both dominant genes, while Bo B and Yuefeng B each possess either LH1 or LH2. Using larger populations with segregant ratios of 3 : 1, we fine-mapped LH1 to a 63-kb region near the centromere of chromosome 7 flanked by markers RM5436 and RM8034, and LH2 to a 177-kb region on the short arm of chromosome 8 between flanking markers Indel22468-3 and RM25. Some candidate genes were identified through sequencing of Bo B and Yuefeng B in these target regions. Our work provides a solid foundation for further study on gene interaction in heading date and has application in marker-assisted breeding of photosensitive hybrid rice in China.

SELECTION OF CITATIONS
SEARCH DETAIL