Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters











Publication year range
1.
Nano Lett ; 24(32): 9916-9922, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39087720

ABSTRACT

The performance of metal and polymer foams used in inertial confinement fusion (ICF), inertial fusion energy (IFE), and high-energy-density (HED) experiments is currently limited by our understanding of their nanostructure and its variation in bulk material. We utilized an X-ray-free electron laser (XFEL) together with lensless X-ray imaging techniques to probe the 3D morphology of copper foams at nanoscale resolution (28 nm). The observed morphology of the thin shells is more varied than expected from previous characterizations, with a large number of them distorted, merged, or open, and a targeted mass density 14% less than calculated. This nanoscale information can be used to directly inform and improve foam modeling and fabrication methods to create a tailored material response for HED experiments.

3.
bioRxiv ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39149239

ABSTRACT

Significance: Measuring changes in cellular structure and organelles is crucial for understanding disease progression and cellular responses to treatments. A label-free imaging method can aid in advancing biomedical research and therapeutic strategies. Aim: This study introduces a computational darkfield imaging approach named quadrant darkfield (QDF) to separate smaller cellular features from large structures, enabling label-free imaging of cell organelles and structures in living cells. Approach: Using a programmable LED array as illumination source, we vary the direction of illumination to encode additional information about the feature size within cells. This is possible due to the varying level of directional scattering produced by features based on their sizes relative to the wavelength of light used. Results: QDF successfully resolved small cellular features without interference from larger structures. QDF signal is more consistent during cell shape changes than traditional darkfield. QDF signals correlate with flow cytometry side scatter measurements, effectively differentiating cells by organelle content. Conclusions: QDF imaging enhances the study of subcellular structures in living cells, offering improved quantification of organelle content compared to darkfield without labels. This method can be simultaneously performed with other techniques such as quantitative phase imaging to generate a multidimensional picture of living cells in real-time.

4.
Sensors (Basel) ; 24(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39065824

ABSTRACT

Fourier ptychographic microscopy (FPM) is a computational imaging technology that can acquire high-resolution large-area images for applications ranging from biology to microelectronics. In this study, we utilize multifocal plane imaging to enhance the existing FPM technology. Using an RGB light emitting diode (LED) array to illuminate the sample, raw images are captured using a color camera. Then, exploiting the basic optical principle of wavelength-dependent focal length variation, three focal plane images are extracted from the raw image through simple R, G, and B channel separation. Herein, a single aspherical lens with a numerical aperture (NA) of 0.15 was used as the objective lens, and the illumination NA used for FPM image reconstruction was 0.08. Therefore, simultaneous multifocal plane FPM with a synthetic NA of 0.23 was achieved. The multifocal imaging performance of the enhanced FPM system was then evaluated by inspecting a transparent organic light-emitting diode (OLED) sample. The FPM system was able to simultaneously inspect the individual OLED pixels as well as the surface of the encapsulating glass substrate by separating R, G, and B channel images from the raw image, which was taken in one shot.

5.
J Microsc ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012071

ABSTRACT

Super-resolution structured-illumination microscopy (SIM) is a powerful technique that allows one to surpass the diffraction limit by up to a factor two. Yet, its practical use is hampered by its sensitivity to imaging conditions which makes it prone to reconstruction artefacts. In this work, we present FlexSIM, a flexible SIM reconstruction method capable to handle highly challenging data. Specifically, we demonstrate the ability of FlexSIM to deal with the distortion of patterns, the high level of noise encountered in live imaging, as well as out-of-focus fluorescence. Moreover, we show that FlexSIM achieves state-of-the-art performance over a variety of open SIM datasets.

6.
Microsc Microanal ; 30(4): 703-711, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38877858

ABSTRACT

While multislice electron ptychography can provide thermal vibration limited resolution and structural information in 3D, it relies on properly selecting many intertwined acquisition and computational parameters. Here, we outline a methodology for selecting acquisition parameters to enable robust ptychographic reconstructions. We develop two physically informed metrics, areal oversampling and Ronchigram magnification, to describe the selection of these parameters in multislice ptychography. Through simulations, we comprehensively evaluate the validity of these two metrics over a broad range of conditions and show that they accurately guide reconstruction success. Further, we validate these conclusions with experimental ptychographic data and demonstrate close agreement between trends in simulated and experimental data. Using these metrics, we achieve experimental multislice reconstructions at a scan step of 2.1Å/px, enabling large field-of-view, data-efficient reconstructions. These experimental design principles enable the routine and robust use of multislice ptychography for 3D characterization of materials at the atomic scale.

7.
Neuroimage ; 297: 120697, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38908725

ABSTRACT

Quantitative susceptibility mapping (QSM) is a rising MRI-based technology and quite a few QSM-related algorithms have been proposed to reconstruct maps of tissue susceptibility distribution from phase images. In this paper, we develop a comprehensive susceptibility imaging process and analysis studio (SIPAS) that can accomplish reliable QSM processing and offer a standardized evaluation system. Specifically, SIPAS integrates multiple methods for each step, enabling users to select algorithm combinations according to data conditions, and QSM maps could be evaluated by two aspects, including image quality indicators within all voxels and region-of-interest (ROI) analysis. Through a sophisticated design of user-friendly interfaces, the results of each procedure are able to be exhibited in axial, coronal, and sagittal views in real-time, meanwhile ROIs can be displayed in 3D rendering visualization. The accuracy and compatibility of SIPAS are demonstrated by experiments on multiple in vivo human brain datasets acquired from 3T, 5T, and 7T MRI scanners of different manufacturers. We also validate the QSM maps obtained by various algorithm combinations in SIPAS, among which the combination of iRSHARP and SFCR achieves the best results on its evaluation system. SIPAS is a comprehensive, sophisticated, and reliable toolkit that may prompt the QSM application in scientific research and clinical practice.


Subject(s)
Algorithms , Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Brain Mapping/methods , Software
8.
Biomed Phys Eng Express ; 10(4)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38744257

ABSTRACT

Being able to image the microstructure of growth cartilage is important for understanding the onset and progression of diseases such as osteochondrosis and osteoarthritis, as well as for developing new treatments and implants. Studies of cartilage using conventional optical brightfield microscopy rely heavily on histological staining, where the added chemicals provide tissue-specific colours. Other microscopy contrast mechanisms include polarization, phase- and scattering contrast, enabling non-stained or 'label-free' imaging that significantly simplifies the sample preparation, thereby also reducing the risk of artefacts. Traditional high-performance microscopes tend to be both bulky and expensive.Computational imagingdenotes a range of techniques where computers with dedicated algorithms are used as an integral part of the image formation process. Computational imaging offers many advantages like 3D measurements, aberration correction and quantitative phase contrast, often combined with comparably cheap and compact hardware. X-ray microscopy is also progressing rapidly, in certain ways trailing the development of optical microscopy. In this study, we first briefly review the structures of growth cartilage and relevant microscopy characterization techniques, with an emphasis on Fourier ptychographic microscopy (FPM) and advanced x-ray microscopies. We next demonstrate with our own results computational imaging through FPM and compare the images with hematoxylin eosin and saffron (HES)-stained histology. Zernike phase contrast, and the nonlinear optical microscopy techniques of second harmonic generation (SHG) and two-photon excitation fluorescence (TPEF) are explored. Furthermore, X-ray attenuation-, phase- and diffraction-contrast computed tomography (CT) images of the very same sample are presented for comparisons. Future perspectives on the links to artificial intelligence, dynamic studies andin vivopossibilities conclude the article.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Microscopy , Imaging, Three-Dimensional/methods , Humans , Microscopy/methods , Animals , Image Processing, Computer-Assisted/methods , Multimodal Imaging/methods , Fourier Analysis
9.
Sensors (Basel) ; 24(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38676088

ABSTRACT

Large-aperture, lightweight, and high-resolution imaging are hallmarks of major optical systems. To eliminate aberrations, traditional systems are often bulky and complex, whereas the small volume and light weight of diffractive lenses position them as potential substitutes. However, their inherent diffraction mechanism leads to severe dispersion, which limits their application in wide spectral bands. Addressing the dispersion issue in diffractive lenses, we propose a chromatic aberration correction algorithm based on compressed sensing. Utilizing the diffractive lens's focusing ability at the reference wavelength and its degradation performance at other wavelengths, we employ compressed sensing to reconstruct images from incomplete image information. In this work, we design a harmonic diffractive lens with a diffractive order of M=150, an aperture of 40 mm, a focal length f0=320 mm, a reference wavelength λ0=550 nm, a wavelength range of 500-800 nm, and 7 annular zones. Through algorithmic recovery, we achieve clear imaging in the visible spectrum, with a peak signal-to-noise ratio (PSNR) of 22.85 dB, a correlation coefficient of 0.9596, and a root mean square error (RMSE) of 0.02, verifying the algorithm's effectiveness.

10.
Neurophotonics ; 11(Suppl 1): S11510, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38617592

ABSTRACT

The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.

11.
ArXiv ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38562443

ABSTRACT

The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.

12.
J Biomed Opt ; 29(Suppl 2): S22705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584967

ABSTRACT

Significance: Quantitative phase imaging (QPI) offers a label-free approach to non-invasively characterize cellular processes by exploiting their refractive index based intrinsic contrast. QPI captures this contrast by translating refractive index associated phase shifts into intensity-based quantifiable data with nanoscale sensitivity. It holds significant potential for advancing precision cancer medicine by providing quantitative characterization of the biophysical properties of cells and tissue in their natural states. Aim: This perspective aims to discuss the potential of QPI to increase our understanding of cancer development and its response to therapeutics. It also explores new developments in QPI methods towards advancing personalized cancer therapy and early detection. Approach: We begin by detailing the technical advancements of QPI, examining its implementations across transmission and reflection geometries and phase retrieval methods, both interferometric and non-interferometric. The focus then shifts to QPI's applications in cancer research, including dynamic cell mass imaging for drug response assessment, cancer risk stratification, and in-vivo tissue imaging. Results: QPI has emerged as a crucial tool in precision cancer medicine, offering insights into tumor biology and treatment efficacy. Its sensitivity to detecting nanoscale changes holds promise for enhancing cancer diagnostics, risk assessment, and prognostication. The future of QPI is envisioned in its integration with artificial intelligence, morpho-dynamics, and spatial biology, broadening its impact in cancer research. Conclusions: QPI presents significant potential in advancing precision cancer medicine and redefining our approach to cancer diagnosis, monitoring, and treatment. Future directions include harnessing high-throughput dynamic imaging, 3D QPI for realistic tumor models, and combining artificial intelligence with multi-omics data to extend QPI's capabilities. As a result, QPI stands at the forefront of cancer research and clinical application in cancer care.


Subject(s)
Neoplasms , Quantitative Phase Imaging , Humans , Artificial Intelligence , Neoplasms/diagnostic imaging
13.
Neurophotonics ; 11(Suppl 1): S11509, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38450327

ABSTRACT

Advances in imaging tools have always been a pivotal driver for new discoveries in neuroscience. An ability to visualize neurons and subcellular structures deep within the brain of a freely behaving animal is integral to our understanding of the relationship between neural activity and higher cognitive functions. However, fast high-resolution imaging is limited to sub-surface brain regions and generally requires head fixation of the animal under the microscope. Developing new approaches to address these challenges is critical. The last decades have seen rapid progress in minimally invasive endo-microscopy techniques based on bare optical fibers. A single multimode fiber can be used to penetrate deep into the brain without causing significant damage to the overlying structures and provide high-resolution imaging. Here, we discuss how the full potential of high-speed super-resolution fiber endoscopy can be realized by a holistic approach that combines fiber optics, light shaping, and advanced computational algorithms. The recent progress opens up new avenues for minimally invasive deep brain studies in freely behaving mice.

14.
Cells ; 13(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38391937

ABSTRACT

Fourier ptychographic microscopy (FPM) emerged as a prominent imaging technique in 2013, attracting significant interest due to its remarkable features such as precise phase retrieval, expansive field of view (FOV), and superior resolution. Over the past decade, FPM has become an essential tool in microscopy, with applications in metrology, scientific research, biomedicine, and inspection. This achievement arises from its ability to effectively address the persistent challenge of achieving a trade-off between FOV and resolution in imaging systems. It has a wide range of applications, including label-free imaging, drug screening, and digital pathology. In this comprehensive review, we present a concise overview of the fundamental principles of FPM and compare it with similar imaging techniques. In addition, we present a study on achieving colorization of restored photographs and enhancing the speed of FPM. Subsequently, we showcase several FPM applications utilizing the previously described technologies, with a specific focus on digital pathology, drug screening, and three-dimensional imaging. We thoroughly examine the benefits and challenges associated with integrating deep learning and FPM. To summarize, we express our own viewpoints on the technological progress of FPM and explore prospective avenues for its future developments.


Subject(s)
Imaging, Three-Dimensional , Microscopy , Microscopy/methods , Prospective Studies , Fourier Analysis
15.
J Biomed Opt ; 29(Suppl 1): S11524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38292055

ABSTRACT

Significance: Compressed ultrafast photography (CUP) is currently the world's fastest single-shot imaging technique. Through the integration of compressed sensing and streak imaging, CUP can capture a transient event in a single camera exposure with imaging speeds from thousands to trillions of frames per second, at micrometer-level spatial resolutions, and in broad sensing spectral ranges. Aim: This tutorial aims to provide a comprehensive review of CUP in its fundamental methods, system implementations, biomedical applications, and prospect. Approach: A step-by-step guideline to CUP's forward model and representative image reconstruction algorithms is presented with sample codes and illustrations in Matlab and Python. Then, CUP's hardware implementation is described with a focus on the representative techniques, advantages, and limitations of the three key components-the spatial encoder, the temporal shearing unit, and the two-dimensional sensor. Furthermore, four representative biomedical applications enabled by CUP are discussed, followed by the prospect of CUP's technical advancement. Conclusions: CUP has emerged as a state-of-the-art ultrafast imaging technology. Its advanced imaging ability and versatility contribute to unprecedented observations and new applications in biomedicine. CUP holds great promise in improving technical specifications and facilitating the investigation of biomedical processes.


Subject(s)
Image Processing, Computer-Assisted , Photography , Photography/methods , Image Processing, Computer-Assisted/methods , Algorithms
16.
Sensors (Basel) ; 23(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38067824

ABSTRACT

We present a novel architecture for the design of single-photon detecting arrays that captures relative intensity or timing information from a scene, rather than absolute. The proposed method for capturing relative information between pixels or groups of pixels requires very little circuitry, and thus allows for a significantly higher pixel packing factor than is possible with per-pixel TDC approaches. The inherently compressive nature of the differential measurements also reduces data throughput and lends itself to physical implementations of compressed sensing, such as Haar wavelets. We demonstrate this technique for HDR imaging and LiDAR, and describe possible future applications.

17.
Sensors (Basel) ; 23(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37765736

ABSTRACT

For traditional imaging systems, high imaging quality and system miniaturization are often contradictory. In order to meet the requirements of high imaging quality and system miniaturization, this paper proposes a method to correct the aberration of coherent imaging optical systems. The method is based on the idea of phase recovery and the imaging principle of a coherent imaging system to recover the aberrations at the exit pupil of the system. According to the recovered aberrations, conjugate filters are constructed to correct the image quality in the frequency domain. The imaging quality of the system is improved without changing the original optical path, and the simplicity of the system is guaranteed. To solve the pupil frequency domain aberration more accurately, this paper adopts the dual competition and parallel recombination strategy based on the genetic algorithm and introduces the disaster model. The improved genetic algorithm can effectively restrain the appearance of the "precocity" phenomenon. Finally, the paraxial imaging optical path is simulated and verified by experiments. The results show that, after aberration correction, the image sharpness is improved and the edge information is richer, which verifies the feasibility of the coherent imaging system image quality enhancement method proposed in this paper.

18.
Front Bioinform ; 3: 1243663, 2023.
Article in English | MEDLINE | ID: mdl-37564725

ABSTRACT

Traditional staining of biological specimens for microscopic imaging entails time-consuming, laborious, and costly procedures, in addition to producing inconsistent labeling and causing irreversible sample damage. In recent years, computational "virtual" staining using deep learning techniques has evolved into a robust and comprehensive application for streamlining the staining process without typical histochemical staining-related drawbacks. Such virtual staining techniques can also be combined with neural networks designed to correct various microscopy aberrations, such as out-of-focus or motion blur artifacts, and improve upon diffracted-limited resolution. Here, we highlight how such methods lead to a host of new opportunities that can significantly improve both sample preparation and imaging in biomedical microscopy.

19.
J Biophotonics ; 16(10): e202300127, 2023 10.
Article in English | MEDLINE | ID: mdl-37434270

ABSTRACT

Imaging through highly scattering media is a challenging problem with numerous applications in biomedical and remote-sensing fields. Existing methods that use analytical or deep learning tools are limited by simplified forward models or a requirement for prior physical knowledge, resulting in blurry images or a need for large training databases. To address these limitations, we propose a hybrid scheme called Hybrid-DOT that combines analytically derived image estimates with a deep learning network. Our analysis demonstrates that Hybrid-DOT outperforms a state-of-the-art ToF-DOT algorithm by improving the PSNR ratio by 4.6 dB and reducing the resolution by a factor of 2.5. Furthermore, when compared to a deep learning stand-alone model, Hybrid-DOT achieves a 0.8 dB increase in PSNR, 1.5 times the resolution, and a significant reduction in the required dataset size (factor of 1.6-3). The proposed model remains effective at higher depths, providing similar improvements for up to 160 mean-free paths.


Subject(s)
Deep Learning , Diagnostic Imaging , Algorithms , Image Processing, Computer-Assisted/methods
20.
Neoplasia ; 42: 100911, 2023 08.
Article in English | MEDLINE | ID: mdl-37269818

ABSTRACT

Early detection of lung cancer is critical for improvement of patient survival. To address the clinical need for efficacious treatments, genetically engineered mouse models (GEMM) have become integral in identifying and evaluating the molecular underpinnings of this complex disease that may be exploited as therapeutic targets. Assessment of GEMM tumor burden on histopathological sections performed by manual inspection is both time consuming and prone to subjective bias. Therefore, an interplay of needs and challenges exists for computer-aided diagnostic tools, for accurate and efficient analysis of these histopathology images. In this paper, we propose a simple machine learning approach called the graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E). Our method comprises four steps: 1) cascaded graph-based sparse PCA, 2) PCA binary hashing, 3) block-wise histograms, and 4) support vector machine (SVM) classification. In our proposed architecture, graph-based sparse PCA is employed to learn the filter banks of the multiple stages of a convolutional network. This is followed by PCA hashing and block histograms for indexing and pooling. The meaningful features extracted from this GS-PCA are then fed to an SVM classifier. We evaluate the performance of the proposed algorithm on H&E slides obtained from an inducible K-rasG12D lung cancer mouse model using precision/recall rates, Fß-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC) and show that our algorithm is efficient and provides improved detection accuracy compared to existing algorithms.


Subject(s)
Algorithms , Lung Neoplasms , Animals , Mice , Lung Neoplasms/diagnosis , Machine Learning , Treatment Outcome , Lung
SELECTION OF CITATIONS
SEARCH DETAIL