Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124865, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39053117

ABSTRACT

The trans-cis photoisomerization processes of 4,4'-azopyridine upon S1 and S2 excitations have been investigated by nonadiabatic dynamics simulations based on multi-reference CASSCF calculations. 119 sampling trajectories were simulated starting from the trans form excited to the S1 (S2) state and the cis-isomer quantum yield is evaluated to be (3 ± 2)% ((18 ± 4)%), which is qualitatively in agreement with the recent experimental results in ethanol. We found that rotation around the central N-N bond accompanied by the N-N-C symmetrical bending vibrations is the main mechanism in photoisomerization of the target molecule excited to the S1 and S2 states. Upon S1 excitation, S1-S0 transition occurs earlier along the C-N-N-C torsional coordinate, leading to a low cis-isomer quantum yield. Upon S2 excitation, half of the simulated trajectories are trapped in a potential well on the S2 state, from which the twisted conical intersections are more easily reached in the internal conversion, resulting in a higher cis-isomer quantum yield.

2.
Proc Natl Acad Sci U S A ; 121(12): e2318996121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38478688

ABSTRACT

Bestrhodopsins constitute a class of light-regulated pentameric ion channels that consist of one or two rhodopsins in tandem fused with bestrophin ion channel domains. Here, we report on the isomerization dynamics in the rhodopsin tandem domains of Phaeocystis antarctica bestrhodopsin, which binds all-trans retinal Schiff-base (RSB) absorbing at 661 nm and, upon illumination, converts to the meta-stable P540 state with an unusual 11-cis RSB. The primary photoproduct P682 corresponds to a mixture of highly distorted 11-cis and 13-cis RSB directly formed from the excited state in 1.4 ps. P673 evolves from P682 in 500 ps and contains highly distorted 13-cis RSB, indicating that the 11-cis fraction in P682 converts to 13-cis. Next, P673 establishes an equilibrium with P595 in 1.2 µs, during which RSB converts to 11-cis and then further proceeds to P560 in 48 µs and P540 in 1.0 ms while remaining 11-cis. Hence, extensive isomeric switching occurs on the early ground state potential energy surface (PES) on the hundreds of ps to µs timescale before finally settling on a metastable 11-cis photoproduct. We propose that P682 and P673 are trapped high up on the ground-state PES after passing through either of two closely located conical intersections that result in 11-cis and 13-cis RSB. Co-rotation of C11=C12 and C13=C14 bonds results in a constricted conformational landscape that allows thermal switching between 11-cis and 13-cis species of highly strained RSB chromophores. Protein relaxation may release RSB strain, allowing it to evolve to a stable 11-cis isomeric configuration in microseconds.


Subject(s)
Diterpenes , Retinaldehyde , Rhodopsin , Isomerism , Protein Conformation , Rhodopsin/metabolism , Retinaldehyde/chemistry
3.
Photochem Photobiol ; 100(2): 380-392, 2024.
Article in English | MEDLINE | ID: mdl-38041414

ABSTRACT

We have employed the highly accurate multistate complete active space second-order perturbation theory (MS-CASPT2) method to investigate the photoinduced excited state relaxation properties of one unnatural base, namely Z. Upon excitation to the S2 state of Z, the internal conversion to the S1 state would be dominant. From the S1 state, two intersystem crossing paths leading to the T2 and T1 states and one internal conversion path to the S0 state are possible. However, considering the large barrier to access the S1 /S0 conical intersection and the strong spin-orbit coupling between S1 and T2 states (>40 cm-1 ), the intersystem crossing to the triplet manifolds is predicted to be more preferred. Arriving at the T2 state, the internal conversion to the T1 state and the intersystem crossing back to the S1 state are both possible considering the S1 /T2 /T1 three-state intersection near the T2 minimum. Upon arrival at the T1 state, the deactivation to S0 can be efficient after overcoming a small barrier to access T1 /S0 crossing point, where the spin-orbit coupling (SOC) is as large as 39.7 cm-1 . Our present work not only provides in-depth insights into the photoinduced process of unnatural base Z, but can also help the future design of novel unnatural bases with better photostability.

4.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686167

ABSTRACT

Photophysical properties of a series of bis(arylydene)cycloalkanone dyes with various donor substituents are studied using quantum chemistry. Their capacity for luminescence and nonradiative relaxation through trans-cis isomerization is related to their structure, in particular, to the donor capacity of the substituents and the degree of conjugation due to the central cycloalkanone moiety. It is shown that cyclohexanone central moiety introduces distortions and disrupts the conjugation, thus leading to a nonmonotonic change in their properties. The increasing donor capacity of the substituents causes increase in the HOMO energy (rise in the oxidation potential) and decrease in the HOMO-LUMO gap, which results in the red shift of the absorption spectra. The ability of the excited dye to relax through fluorescence or through trans-cis isomerization is governed by the height of the barrier between the Franck-Condon and S1-S0 conical intersection regions on the potential energy surface of the lowest π-π* excited state. This barrier also correlates with the donor capacity of the substituents and the degree of conjugation between the central and donor moieties. The calculated fluorescence and trans-cis isomerization rates are in good agreement with the observed fluorescence quantum yields.


Subject(s)
Coloring Agents , Luminescence , Humans , Relaxation , Tissue Donors , Models, Theoretical
5.
Chemphyschem ; 24(13): e202300048, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37040088

ABSTRACT

The photochemical reaction mechanism underlying the intramolecular H-transfer of the H2 C3 O+ ⋅ radical cation to the H2 CCCO+ ⋅ methylene ketene cation was elucidated using time-dependent density functional theory and high-level ab initio methods. Once the D1 state of H2 C3 O+ ⋅ is populated, the reaction proceeds to form an intermediate (IM) in the D1 state (IM4D1 ). The molecular structure of the conical intersection (CI) was optimized using a multiconfigurational ab initio method. The CI is readily accessible because it lies slightly above the IM4D1 in energy. In addition, the gradient difference vector of the CI is almost parallel to the intramolecular H-transfer reaction coordinate. Once the vibration mode of IM4D1 which is parallel to the reaction coordinate is populated, the degeneracy of the CI is readily lifted and H2 CCCO+ ⋅ was formed via a relaxation pathway in the D0 state. Our calculated results clearly describe the photochemical intramolecular H transfer reaction reported in a recent study.

6.
Chemphyschem ; 24(15): e202200909, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36919772

ABSTRACT

The multi state triply paired coupled adiabatic electronic states of X 3 A ' ' ${X\,^3 A^{\prime \prime } }$ 1 3 A ' ' ${1\,^3 A^{\prime \prime } }$ , 2 3 A ' ' ${2\,^3 A^{\prime \prime } }$ symmetries for the title ion have been modelled using the triply paired coupled eigen valued functions with the principal aim of getting a set of well optimized triply paired coupled functions, capable of explaining all the microscopic topograhical features present in the chosen coupled electronic states. The high quality size truncated dynamically correlated points at the limit of complete basis set (CBS) were utilized for this purpose. The proposed model function are presented in an "easy to understand" linear form with respect to the pre-defined variables which are directly dependent on the diabatic potentials and coupling strengths found in the diabatic matrix. Its most important feature (an essential criterion to be selected for modelling the triply degenerate seam pathway) is the ability to predict the existence of an uniquely defined triply degenerate iso-energetic geometry among the chosen coupled states in addition to the prediction of the existence of many doubly degenerate iso-energetic geometries in those states and hence can be adaptable to any general molecular system where such triply or doubly degenerate geometries are believed to occur. The title ion is one among them where many doubly iso-energetic geometries were located but not the triply degenerate one as it is a three atomic system unlike the polyatomic case where the triply degenerate geometry will most likely to be found. To do this work, one requires the knowledge of four asymptotic diatomic curves upon atom+diatom dissociation whose correct correlated spectroscopic states are O2 + ( X 2 Π g ) ${(X\,^2 {\rm{\Pi }}_g )}$ , O2 ( X 3 Σ g - ) ${(X\,^3 {\rm{\Sigma }}_g^ - )}$ , O2 + ( a 4 Π u ) ${(a\,^4 {\rm{\Pi }}_u )}$ , OH+ ( X 3 Σ - ) ${(X\,^3 {\rm{\Sigma }}^ - )}$ . The quality and the characteristics of analytical surface of the ion is discussed well in detail.

7.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769227

ABSTRACT

The equilibrium and conical intersection geometries of the benzene dimer were computed in the framework of the conventional, linear-response time-dependent and spin-flipped time-dependent density functional theories (known as DFT, TDDFT and SF-TDDFT) as well as using the multiconfigurational complete active space self-consistent field (CASSCF) method considering the minimally augmented def2-TZVPP and the 6-31G(d,p) basis sets. It was found that the stacking distance between the benzene monomers decreases by about 0.5 Å in the first electronic excited state, due to the stronger intermolecular interaction energy, bringing the two monomers closer together. Intermolecular-type conical intersection (CI) geometries can be formed between the two benzene molecules, when (i) both monomer rings show planar deformation and (ii) weaker (approximately 1.6-1.8 Å long) C-C bonds are formed between the two monomers, with parallel and antiparallel orientation with respect to the monomer. These intermolecular-type CIs look energetically more favorable than dimeric CIs containing only one deformed monomer. The validity of the dimer-type CI geometries obtained by SF-TDDFT was confirmed by the CASSCF method. The nudged elastic band method used for finding the optimal relaxation path has confirmed both the accessibility of these intermolecular-type CIs and the possibility of the radiationless deactivation of the electronic excited states through these CI geometries. Although not as energetically favorable as the previous two CI geometries, there are other CI geometries characterized by the relative rotation of monomers at different angles around a vertical C-C axis.


Subject(s)
Benzene , Quantum Theory , Benzene/chemistry , Polymers
8.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677562

ABSTRACT

We report the results of a computational study of the mechanism of the light-induced chemical reaction of chromophore hydration in the fluorescent protein Dreiklang, responsible for its switching from the fluorescent ON-state to the dark OFF-state. We explore the relief of the charge-transfer excited-state potential energy surface in the ON-state to locate minimum energy conical intersection points with the ground-state energy surface. Simulations of the further evolution of model systems allow us to characterize the ground-state reaction intermediate tentatively suggested in the femtosecond studies of the light-induced dynamics in Dreiklang and finally to arrive at the reaction product. The obtained results clarify the details of the photoswitching mechanism in Dreiklang, which is governed by the chemical modification of its chromophore.


Subject(s)
Luminescent Proteins , Luminescent Proteins/chemistry , Green Fluorescent Proteins/chemistry
9.
Chemphyschem ; 24(3): e202200727, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36281900

ABSTRACT

The conical intersection (CI) governs the ultra-fast relaxation of excited states in a radiationless manner and are observed mainly in photochemical processes. In the current work, we investigated the effects of substituents on the reaction dynamics for the conversion of gauche-1,3-butadiene to bicyclobutane via photochemical electrocyclization. We incorporated both electron withdrawing (-F) and donating (-CH3 ) groups in the conjugated system. In our study, we optimized the minimum energy conical intersection (MECI) geometries using the multi-configurational state-averaged CASSCF approach, whereas, to study the ground state reaction pathways for the substituted derivatives, dispersion corrected, B3LYP-D3 functional was used. The non-adiabatic surface hopping molecular dynamics simulations were performed to observe the behaviour of electronic states involved throughout the photoconversion process. The results obtained from the multi-reference second-order perturbation correction of energy at the XMS-CASPT2 level of theory, topography analysis, and non-adiabatic dynamics suggest that the -CH3 substituted derivatives can undergo faster thermal conversion to the product in the ground state with a smaller activation energy barrier compared to -F substituted derivative. Our study also reveals that the GBUT to BIBUT conversion follows both conrotatory and disrotatory pathways, whereas, on substitution with -F or -CH3 , the conversion proceeds via the conrotatory pathway.

10.
Int J Mol Sci ; 23(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36233082

ABSTRACT

Molecular photothermal conversion materials are recently attracting increasing attention for phototherapy applications. Herein we investigate the excitation and de-excitation processes of a photothermal molecule (C1TI) that is among the recently developed class of small-molecule-based photothermal imines with superb photothermal conversion efficiencies (PTCEs) up to 90% and a molecule (M2) that is constructed by replacing the amino group of C1TI with an H atom, via excited-state dynamics simulations based on the time-dependent density functional theory (TD-DFT). The simulations reveal fast (<150 fs of average time) nonradiative decays of the lowest excited singlet (S1) state to a conical intersection (CI) with the ground (S0) state in high yields (C1TI: 93.9% and M2: 87.1%). The fast decays, driven by C=N bond rotation to a perpendicular structural configuration, are found to be barrierless. The slight structural difference between C1TI and M2 leads to drastically different S0-S1 energy surfaces, especially M2 features a relatively much lower CI (0.8 eV in energy) and much more decay energy (1.0 eV) to approach the CI. This work provides insights into the de-excitation mechanisms and the performance tuning of C=N enabled photothermal materials.


Subject(s)
Imines , Density Functional Theory
11.
Angew Chem Int Ed Engl ; 61(17): e202117218, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35075763

ABSTRACT

Fungal infections caused by Candida species are among the most prevalent in hospitalized patients. However, current methods for the detection of Candida fungal cells in clinical samples rely on time-consuming assays that hamper rapid and reliable diagnosis. Herein, we describe the rational development of new Phe-BODIPY amino acids as small fluorogenic building blocks and their application to generate fluorescent antimicrobial peptides for rapid labelling of Candida cells in urine. We have used computational methods to analyse the fluorogenic behaviour of BODIPY-substituted aromatic amino acids and performed bioactivity and confocal microscopy experiments in different strains to confirm the utility and versatility of peptides incorporating Phe-BODIPYs. Finally, we have designed a simple and sensitive fluorescence-based assay for the detection of Candida albicans in human urine samples.


Subject(s)
Candidiasis , Urinary Tract , Amino Acids , Boron Compounds , Candida , Candidiasis/diagnosis , Humans , Peptides/chemistry
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119949, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34023551

ABSTRACT

In this work, the nonadiabatic energy relaxation mechanism of hemicyanines for UV photoprotection were investigated by using the density functional theory (DFT) and time-dependent density functional theory (TDDFT) method for the first time. The absorption spectra and potential energy surfaces (PESs) of four hemicyanines with different positions of substituents were presented. The maximum absorption peaks of the four hemicyanines are located in the UVA region. In addition, all these hemicyanine molecules also have light absorption in both the UVB and UVC regions. At the same time, we found that the trans-cis photoisomerization PESs of all these hemicyanines have a significant conical intersection (CI) point between the first excited state and the ground state. Herein, it was first demonstrated that the UV energy absorbed by the hemicyanines could be dissipated nonadiabatically through the CI point by using the trans-cis photoisomerization dynamics mechanism. This work proves that hemicyanines have the possibility to be applied for UV photoabsorbers, and provides important basis for designing new type of hemicyanines for UV photoprotection.

13.
Int J Mol Sci ; 22(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924097

ABSTRACT

The non-adiabatic dynamics of furan excited in the ππ* state (S2 in the Franck-Condon geometry) was studied using non-adiabatic molecular dynamics simulations in connection with an ensemble density functional method. The time-resolved photoelectron spectra were theoretically simulated in a wide range of electron binding energies that covered the valence as well as the core electrons. The dynamics of the decay (rise) of the photoelectron signal were compared with the excited-state population dynamics. It was observed that the photoelectron signal decay parameters at certain electron binding energies displayed a good correlation with the events occurring during the excited-state dynamics. Thus, the time profile of the photoelectron intensity of the K-shell electrons of oxygen (decay constant of 34 ± 3 fs) showed a reasonable correlation with the time of passage through conical intersections with the ground state (47 ± 2 fs). The ground-state recovery constant of the photoelectron signal (121 ± 30 fs) was in good agreement with the theoretically obtained excited-state lifetime (93 ± 9 fs), as well as with the experimentally estimated recovery time constant (ca. 110 fs). Hence, it is proposed to complement the traditional TRPES observations with the trXPS (or trNEXAFS) measurements to obtain more reliable estimates of the most mechanistically important events during the excited-state dynamics.


Subject(s)
Furans/chemistry , Photoelectron Spectroscopy , Algorithms , Density Functional Theory , Models, Molecular , Models, Theoretical , Molecular Conformation
14.
Front Bioeng Biotechnol ; 9: 806415, 2021.
Article in English | MEDLINE | ID: mdl-35111737

ABSTRACT

Low-lying electronic excited states and their relaxation pathways as well as energetics of the crosslinking reaction between uracil as a model system for pyrimidine-type building blocks of DNA and RNA and benzene as a model system for aromatic groups of tyrosine (Tyr) and phenylalanine (Phe) amino acids have been studied in the framework of density functional theory. The equilibrium geometries of the ground and electronic excited states as well as the crossing points between the potential energy surfaces of the uracil-benzene complex were computed. Based on these results, different relaxation pathways of the electronic excited states that lead to either back to the initial geometry configuration or the dimerization between the six-membered rings of the uracil-benzene complex have been identified, and the energetic conditions for their occurrence are discussed. It can be concluded that the DNA-protein crosslinking reaction can be induced by the external electromagnetic field via the dimerization reaction between the six-membered rings of the uracil-benzene pair at the electronic excited-state level of the complex. In the case of the uracil-phenol complex, the configuration of the cyclic adduct (dimerized) conformation is less likely to be formed.

15.
Proc Natl Acad Sci U S A ; 117(33): 19731-19736, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32759207

ABSTRACT

Cyanobacteriochromes are photoreceptors in cyanobacteria that exhibit a wide spectral coverage and unique photophysical properties from the photoinduced isomerization of a linear tetrapyrrole chromophore. Here, we integrate femtosecond-resolved fluorescence and transient-absorption methods and unambiguously showed the significant solvation dynamics occurring at the active site from a few to hundreds of picoseconds. These motions of local water molecules and polar side chains are continuously convoluted with the isomerization reaction, leading to a nonequilibrium processes with continuous active-site motions. By mutations of critical residues at the active site, the modified local structures become looser, resulting in faster solvation relaxations and isomerization reaction. The observation of solvation dynamics is significant and critical to the correct interpretation of often-observed multiphasic dynamic behaviors, and thus the previously invoked ground-state heterogeneity may not be relevant to the excited-state isomerization reaction.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Photoreceptors, Microbial/chemistry , Bacterial Proteins/genetics , Catalytic Domain , Cyanobacteria/chemistry , Cyanobacteria/genetics , Isomerism , Kinetics , Photoreceptors, Microbial/genetics , Photoreceptors, Microbial/metabolism
16.
Chemistry ; 26(64): 14724-14729, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-32692427

ABSTRACT

Azoheteroarenes are the most recent derivatives targeted to further improve the properties of azo-based photoswitches. Their light-induced mechanism for trans-cis isomerization is assumed to be very similar to that of the parent azobenzene. As such, they inherited the controversy about the dominant isomerization pathway (rotation vs. inversion) depending on the excited state (nπ* vs. ππ*). Although the controversy seems settled in azobenzene, the extent to which the same conclusions apply to the more structurally diverse family of azoheteroarenes is unclear. Here, by means of non-adiabatic molecular dynamics, the photoisomerization mechanism of three prototypical phenyl-azoheteroarenes with increasing push-pull character is unraveled. The evolution of the rotational and inversion conical intersection energies, the preferred pathway, and the associated kinetics upon both nπ* and ππ* excitations can be linked directly with the push-pull substitution effects. Overall, the working conditions of this family of azo-dyes is clarified and a possibility to exploit push-pull substituents to tune their photoisomerization mechanism is identified, with potential impact on their quantum yield.

17.
Chemphyschem ; 21(14): 1571-1577, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32400097

ABSTRACT

Photochromic dimethyldihydropyrenes substituted with electron-withdrawing pyridinium groups have shown an increase of photo-induced ring-opening efficiency and a light sensitivity that is red shifted relative to the unsubstituted compound. However, a recently synthesized tetrapyridinium derivative showed a considerable decrease of the photo-isomerization quantum yield relative to the monopyridinium and bispyridinium derivatives. We provide a rationale for this unexpected photochemical behavior based on the comparative theoretical investigations of the relevant excited states of these systems. In particular, we found that the nature and order of the lowest two excited states depend on the number of pyridinium groups and on the symmetry of the system. While the lowest S1 excited state is photo-active in the monopyridinium and bispyridinium derivatives, the photo-isomerizing state is S2 in the reference unsubstituted compound and both S1 and S2 lead to isomerization in the tetrapyridinium derivative, albeit with a low efficiency. In the latter derivative, the photo-isomerization is hindered by the particular S1 /S2 conical intersection topology.

18.
Molecules ; 25(9)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397393

ABSTRACT

Multi-state n-electron valence state second order perturbation theory (MS-NEVPT2) was utilized to reveal the photorelaxation pathways of 4-(N,N-dimethylamino)-4'-nitrostilbene (DANS) upon S1 excitation. Within the interwoven networks of five S1/S0 and three T2/T1 conical intersections (CIs), and three S1/T2, one S1/T1 and one S0/T1 intersystem crossings (ISCs), those competing nonadiabatic decay pathways play different roles in trans-to-cis and cis-to-trans processes, respectively. After being excited to the Franck-Condon (FC) region of the S1 state, trans-S1-FC firstly encounters an ultrafast conversion to quinoid form. Subsequently, the relaxation mainly proceeds along the triplet pathway, trans-S1-FC → ISC-S1/T2-trans → CI-T2/T1-trans → ISC-S0/T1-twist → trans- or cis-S0. The singlet relaxation pathway mediated by CI-S1/S0-twist-c is hindered by the prominent energy barrier on S1 surface and by the reason that CI-S1/S0-trans and CI-S1/S0-twist-t are both not energetically accessible upon S1 excitation. On the other hand, the cis-S1-FC lies at the top of steeply decreasing potential energy surfaces (PESs) towards the CI-S1/S0-twist-c and CI-S1/S0-DHP regions; therefore, the initial twisting directions of DN and DAP moieties determine the branching ratio between αC=C twisting (cis-S1-FC → CI-S1/S0-twist-c → trans- or cis-S0) and DHP formation relaxation pathways (cis-S1-FC → CI-S1/S0-DHP → DHP-S0) on the S1 surface. Moreover, the DHP formation could also take place via the triplet relaxation pathway, cis-S1-FC → ISC-S1/T1-cis → DHP-T1 → DHP-S0, however, which may be hindered by insufficient spin-orbit coupling (SOC) strength. The other triplet pathways for cis-S1-FC mediated by ISC-S1/T2-cis are negligible due to the energy or geometry incompatibility of possible consecutive stepwise S1 → T2 → T1 or S1 → T2 → S1 processes. The present study reveals photoisomerization dynamic pathways via conical intersection and intersystem crossing networks and provides nice physical insight into experimental investigation of DANS.


Subject(s)
Stilbenes/chemistry , Isomerism , Molecular Structure , Photochemical Processes
19.
Angew Chem Int Ed Engl ; 59(25): 9856-9867, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32154630

ABSTRACT

Twenty years ago, the concept of aggregation-induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10-bis(N,N-dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non-radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non-fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples.

20.
J Comput Chem ; 41(16): 1538-1548, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32220108

ABSTRACT

A spin-flip time-dependent density functional tight-binding (SF-TDDFTB) method is developed that describes target states as spin-flipping excitation from a high-spin reference state obtained by the spin-restricted open shell treatment. Furthermore, the SF-TDDFTB formulation is extended to long-range correction (LC), denoted as SF-TDLCDFTB. The LC technique corrects the overdelocalization of electron density in systems such as charge-transfer systems, which is typically found in conventional DFTB calculations as well as density functional theory calculations using pure functionals. The numerical assessment of the SF-TDDFTB method shows smooth potential curves for the bond dissociation of hydrogen fluoride and the double-bond rotation of ethylene and the double-cone shape of H3 as the simplest degenerate systems. In addition, numerical assessments of SF-TDDFTB and SF-TDLCDFTB for 39 S0 /S1 minimum energy conical intersection (MECI) structures are performed. The SF-TDDFTB and SF-TDLCDFTB methods drastically reduce the computational cost with accuracy for MECI structures compared with SF-TDDFT.

SELECTION OF CITATIONS
SEARCH DETAIL