Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 13(9)2020 May 03.
Article in English | MEDLINE | ID: mdl-32375247

ABSTRACT

The gallium-based eutectic liquid metal alloys exhibit unique properties of deformability, excellent electrical conductivity and low vapour pressure. The liquid metal-based circuits' element or actuator have drawn considerable attention in stretchable electronics and microelectromechanical (MEMS) actuators. Yet, the motion of the liquid metal within the electrolyte needs to be precisely regulated to satisfy application requirements. Herein, we investigated the locomotion of liquid metal within the alkaline aqueous solution under electrostatic actuation. The relationship between the travelling speed of the liquid metal slug and the relative influential parameters, such as the voltage amplitude and frequencies of the applied electric field, electrolyte concentration, electrodes distance and the liquid metal volume, were experimentally characterized. A travelling speed up to 20.33 mm/s was obtained at the applied voltage of 4 Vpp at 150 Hz at 6 V DC offset. Finally, the frequency-dependent liquid metal marble movements were demonstrated, namely oscillation and forward locomotion while oscillating. The oscillation frequency was determined by the frequency of the applied alternate current (AC) signal. The remarkable transportation and oscillating characteristic of the liquid metal marble under the electrostatic actuation may present potentials towards the development of flexible electronics and reconfigurable structures.

2.
ACS Appl Mater Interfaces ; 6(24): 22467-73, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25469554

ABSTRACT

Eutectic gallium indium (EGaIn) is a promising liquid metal for a variety of electrical and optical applications that take advantage of its soft and fluid properties. The presence of a rapidly forming oxide skin on the surface of the metal causes it to stick to many surfaces, which limits the ability to easily reconfigure its shape on demand. This paper shows that water can provide an interfacial slip layer between EGaIn and other surfaces, which allows the metal to flow smoothly through capillaries and across surfaces without sticking. Rheological and surface characterization shows that the presence of water also changes the chemical composition of the oxide skin and weakens its mechanical strength, although not enough to allow the metal to flow freely in microchannels without the slip layer. The slip layer provides new opportunities to control and actuate liquid metal plugs in microchannels-including the use of continuous electrowetting-enabling new possibilities for shape reconfigurable electronics, sensors, actuators, and antennas.

SELECTION OF CITATIONS
SEARCH DETAIL