Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 728
Filter
1.
Environ Geochem Health ; 46(8): 281, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963650

ABSTRACT

The interaction between nanoscale copper oxides (nano-CuOs) and soil matrix significantly affects their fate and transport in soils. This study investigates the retention of nano-CuOs and Cu2+ ions in ten typical agricultural soils by employing the Freundlich adsorption model. Retention of nano-CuOs and Cu2+ in soils was well fitted by the Freundlich model. The retention parameters (KD, KF, and N) followed an order of CuO NTs > CuO NPs > Cu2+, highlighting significant impact of nano-CuOs morphology. The KF and N values of CuO NPs/Cu2+ were positively correlated with soil pH and electrical conductivity (EC), but exhibited a weaker correlation for CuO NTs. Soil pH and/or EC could be used to predict KF and N values of CuO NPs or CuO NTs, with additional clay content should be included for Cu2+.The different relationship between retention parameters and soil properties may suggest that CuO NTs retention mainly caused by agglomeration, whereas adsorption and agglomeration were of equal importance to CuO NPs. The amendment of Ca2+ at low and medium concentration promoted retention of nano-CuOs in alkaline soils, but reduced at high concentration. These findings provided critical insights into the fate of nano-CuOs in soil environments, with significant implications for environmental risk assessment and soil remediation strategies.


Subject(s)
Agriculture , Copper , Soil Pollutants , Soil , Copper/chemistry , Soil/chemistry , Soil Pollutants/chemistry , Hydrogen-Ion Concentration , Adsorption , Metal Nanoparticles/chemistry , Electric Conductivity , Particle Size
2.
Nanomaterials (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38998716

ABSTRACT

Two novel samples of nanoparticles based on chitosan were greenly synthesized using pomegranate peel extract. The extract served as a nanoparticle precursor, facilitating the precipitation of nanosized chitosan through the ionic gelation method. Additionally, by mixing the green chitosan nanoparticles with copper ions, a nanoscale composite of chitosan and copper oxide was also produced. Structural and morphological investigations (FTIR, XRD, SEM, EDX, and TGA analyses) were performed for greenly synthesized chitosan nanoparticles and their copper oxide composite to determine all the significant characteristics of those nanoparticles. In addition, both samples were tested using some biological investigations, such as antimicrobial activity and hematological effects. The antimicrobial tests yielded promising results for both the green chitosan nanoparticles and the CuO composite when tested using two bacterial strains and two fungal strains. Moreover, the results showed that using a similar concentration of both green-based chitosan samples resulted in a slightly larger inhibition zone and a lower minimum inhibition concentration (MIC) for the copper oxide chitosan composite compared to the chitosan nanoparticles for all microorganisms included in the test. The mean count of blood components (RBCs and platelets), clotting time, and cholesterol levels in three different blood samples were used to indicate the hematological activity of both greenly synthesized nanoparticles. The results verified a slight reduction in blood component count after the addition of green chitosan nanoparticles, but the chitosan copper oxide composite did not have a noticeable effect on the three blood samples. The chitosan nanoparticles were able to cause a considerable reduction in clotting time and cholesterol levels for all blood samples, thus acting as procoagulants. However, the mixing of CuO with chitosan nanoparticles prolonged the rate of clotting in blood samples from hypercholesteremic individuals, and thus, the mixture acted as an anticoagulant agent.

3.
Nanomaterials (Basel) ; 14(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998750

ABSTRACT

Cathode materials with conversion mechanisms for aqueous zinc-ion batteries (AZIBs) have shown a great potential as next-generation energy storage materials due to their high discharge capacity and high energy density. However, improving their cycling stability has been the biggest challenge plaguing researchers. In this study, CuO microspheres were prepared using a simple hydrothermal reaction, and the morphology and crystallinity of the samples were modulated by controlling the hydrothermal reaction time. The as-synthesized materials were used as cathode materials for AZIBs. The electrochemical experiments showed that the CuO-4h sample, undergoing a hydrothermal reaction for 4 h, had the longest lifecycle and the best rate of capability. A discharge capacity of 131.7 mAh g-1 was still available after 700 cycles at a current density of 500 mA g-1. At a high current density of 1.5 A g-1, the maintained capacity of the cell is 85.4 mA h g-1. The structural evolutions and valence changes in the CuO-4h cathode material were carefully explored by using ex situ XRD and ex situ XPS. CuO was reduced to Cu2O and Cu after the initial discharge, and Cu was oxidized to Cu2O instead of CuO during subsequent charging processes. We believe that these findings could introduce a novel approach to exploring high-performance cathode materials for AZIBs.

4.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999926

ABSTRACT

Advanced Oxidation Processes (AOPs) offer promising methods for disinfection by generating radical species like hydroxyl radicals, superoxide anion radicals, and hydroxy peroxyl, which can induce oxidative stress and deactivate bacterial cells. Photocatalysis, a subset of AOPs, activates a semiconductor using specific electromagnetic wavelengths. A novel material, Cu/Cu2O/CuO nanoparticles (NPs), was synthesized via a laser ablation protocol (using a 1064 nm wavelength laser with water as a solvent, with energy ranges of 25, 50, and 80 mJ for 10 min). The target was sintered from 100 °C to 800 °C at rates of 1.6, 1.1, and 1 °C/min. The composite phases of Cu, CuO, and Cu2O showed enhanced photocatalytic activity under visible-light excitation at 368 nm. The size of Cu/Cu2O/CuO NPs facilitates penetration into microorganisms, thereby improving the disinfection effect. This study contributes to synthesizing mixed copper oxides and exploring their activation as photocatalysts for cleaner surfaces. The electronic and electrochemical properties have potential applications in other fields, such as capacitor materials. The laser ablation method allowed for modification of the band gap absorption and enhancement of the catalytic properties in Cu/Cu2O/CuO NPs compared to precursors. The disinfection of E. coli with Cu/Cu2O/CuO systems serves as a case study demonstrating the methodology's versatility for various applications, including disinfection against different microorganisms, both Gram-positive and Gram-negative.


Subject(s)
Copper , Escherichia coli , Copper/chemistry , Escherichia coli/drug effects , Catalysis , Metal Nanoparticles/chemistry , Lasers , Oxidation-Reduction , Disinfection/methods , Light
5.
Fish Shellfish Immunol ; 151: 109754, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977113

ABSTRACT

Copper (Cu) is a crucial element that plays a vital role in facilitating proper biological activities in living organisms. In this study, copper oxide nanoparticles (CuO NPs) were synthesized using a straightforward precipitation chemical method from a copper nitrate precursor at a temperature of 85 °C. Subsequently, these NPs were coated with the aqueous extract of Sargassum angustifolium algae. The size, morphology, and coating of the NPs were analyzed through various methods, revealing dimensions of approximately 50 nm, a multidimensional shaped structure, and successful algae coating. The antibacterial activity of both coated and uncoated CuO NPs against Vibrio harveyi, a significant pathogen in Litopenaeus vannamei, was investigated. Results indicated that the minimum inhibitory concentration (MIC) for uncoated CuO NPs was 1000 µg/mL, whereas for coated CuO NPs, it was 500 µg/mL. Moreover, the antioxidant activity of the synthesized NPs was assessed. Interestingly, uncoated CuO NPs exhibited superior antioxidant activity (IC50 ≥ 16 µg/mL). The study also explored the cytotoxicity of different concentrations (10-100 µg/mL) of both coated and uncoated CuO NPs. Following 48 h of incubation, cell viability assays on shrimp hemocytes and human lymphocytes were conducted. The findings indicated that CuO NPs coated with alga extract at a concentration of 10 µg/mL increased shrimp hemocyte viability. In contrast, uncoated CuO NPs at a concentration of 25 µg/mL and higher, as well as CuO NPs at a concentration of 50 µg/mL and higher, led to a decrease in shrimp hemocyte survival. Notably, this study represents the first quantitative assessment of the toxicity of CuO NPs on shrimp cells, allowing for a comparative analysis with human cells.

6.
Heliyon ; 10(12): e32208, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984300

ABSTRACT

In photovoltaic systems, only a tiny portion of solar radiation reaches the module's surface and is converted to electrical energy. The remaining solar radiation is wasted, which raises cell temperature and reduces electrical efficiency. This research focused on examining the effects of different factors on nanofluids. In the simulations performed in this thesis, the inlet temperature of the water fluid changes from 5 °C to 30 °C. The radiation intensity equals 600 W per square meter, and the input speed is 0.07452 m per second. The innovation of this article is the use of two nanofluids of aluminum oxide and copper together with a mixture of water to investigate the effect of effective parameters on the electrical, thermal, and overall efficiency of photovoltaic systems, such as the amount of incoming radiation to the surface of the panel, the temperature of the fluid inlet in mountainous areas, the temperature of the absorber. , so that the thermal efficiency of copper and aluminum oxide is investigated and compared. As a result, copper nanofluid can increase the ratio more than aluminum oxide and pure water. There is a direct relationship between the output fluid temperature and the input temperature. With an increase in the input fluid temperature, the output temperature also increases proportionally. Increasing the inlet temperature affects the temperature of the absorber surface, which, in turn, reduces the electrical efficiency of the photovoltaic system. These changes are reduced by adding nanofluids to the photovoltaic system.Although the increase of nanoparticles causes a decrease in the temperature of the absorber plate, and this temperature decrease for copper nanofluid is 10 % higher than that of aluminum oxide and pure water until the volume fraction is reached.

7.
J Pharm Bioallied Sci ; 16(Suppl 2): S1784-S1791, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882773

ABSTRACT

Nano-coating of orthodontic brackets with a combination or hybrid of metals and metal oxides may reduce the streptococcus mutans count and incidence of enamel decalcification seen around brackets in patients undergoing fixed orthodontic treatment. In total, 255 orthodontic brackets (3M Unitek, Monrovia, California, USA) were divided into one control group (group I) of 60 and three experimental groups of 65 each (groups II, III, and IV). The experimental group brackets were coated with a combination of silver-zinc oxide, copper oxide -zinc oxide, and silver-copper oxide nanoparticles using physical vapour deposition method. The two nanoparticles used for each group were mixed in the ratio of 1:1 by weight for providing a uniform hybrid coating. Sixty brackets from each group were used for microbiological evaluation of antibacterial activity against Streptococcus mutans in blood agar medium, and the remaining five brackets from each experimental group were used for SEM analysis to check the uniformity of the coating. Nano-coated brackets demonstrated better antibacterial properties than uncoated brackets. Copper oxide-zinc oxide nanoparticles coated brackets demonstrated better antibacterial properties than the silver-zinc oxide and silver- copper oxide coated brackets.

8.
Materials (Basel) ; 17(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38893928

ABSTRACT

The COVID-19 pandemic has underscored the critical need for effective air filtration systems in healthcare environments to mitigate the spread of viral and bacterial pathogens. This study explores the utilization of copper nanoparticle-coated materials for air filtration, offering both antiviral and antimicrobial properties. Highly uniform spherical copper oxide nanoparticles (~10 nm) were synthesized via a spinning disc reactor and subsequently functionalized with carboxylated ligands to ensure colloidal stability in aqueous solutions. The functionalized copper oxide nanoparticles were applied as antipathogenic coatings on extruded polyethylene and melt-blown polypropylene fibers to assess their efficacy in air filtration applications. Notably, Type IIR medical facemasks incorporating the copper nanoparticle-coated polyethylene fibers demonstrated a >90% reduction in influenza virus and SARS-CoV-2 within 2 h of exposure. Similarly, heating, ventilation, and air conditioning (HVAC) filtration pre- (polyester) and post (polypropylene)-filtration media were functionalised with the copper nanoparticles and exhibited a 99% reduction in various viral and bacterial strains, including SARS-CoV-2, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella enterica, and Escherichia coli. In both cases, this mitigates not only the immediate threat from these pathogens but also the risk of biofouling and secondary risk factors. The assessment of leaching properties confirmed that the copper nanoparticle coatings remained intact on the polymeric fiber surfaces without releasing nanoparticles into the solution or airflow. These findings highlight the potential of nanoparticle-coated materials in developing biocompatible and environmentally friendly air filtration systems for healthcare settings, crucial in combating current and future pandemic threats.

9.
Drug Discov Ther ; 18(3): 167-177, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38945877

ABSTRACT

Synthesis of metal nanoparticles using plant extracts is environmentally friendly and of increasing interest. However, not all plant extracts can meet successfully on the synthesis. Therefore, searching for the high potential extracts that can reduce the metal salt precursor in the synthesis reaction is essential. The present study explores the synthesis of copper oxide nanoparticles (CuONPs) using Caesalpinia sappan heartwood extract. Phytochemical analysis and determination of the total phenolic content of the extract were performed before use as a reducing agent. Under the suitable synthesized condition, a color change in the color of the solutions to brown confirmed the formation of CuONPs. The obtained CuONPs were confirmed using ultraviolet-visible spectroscopy, photon correlation spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, and Fourier transform infrared analysis. The synthesized CuONPs investigated for antioxidant, antiglycation, and antibacterial activities. CuONPs possessed antioxidant activities by quenching free radicals with an IC50 value of 63.35 µg/mL and reducing activity with an EC range of 3.19-10.27 mM/mg. CuONPs also inhibited the formation of advanced glycation end products in the bovine serum albumin/ribose model with an IC50 value of 17.05 µg/mL. In addition, CuONPs showed inhibition of human pathogens, including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, and prevention of biofilm formation and biofilm eradication, with maximum inhibition of approx. 75%. Our findings suggest that C. sappan extract can be used to obtain highly bioactive CuONPs for the development of certain medical devices and therapeutic agents.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Caesalpinia , Copper , Metal Nanoparticles , Plant Extracts , Caesalpinia/chemistry , Copper/chemistry , Copper/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Glycation End Products, Advanced , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Serum Albumin, Bovine/chemistry , Escherichia coli/drug effects
10.
J Environ Manage ; 362: 121327, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824892

ABSTRACT

In this study, nanoscale cupric oxide-decorated activated carbon (nCuO@AC) was synthesized by impregnation-calcination and employed to assist the decomposition of H2O2 for effective sterilization with Escherichia coli as target bacteria. Characteristic technologies demonstrated that copper oxide particles of 50-100 nm were uniformly distributed on AC surface. Owing to electron transfer from hydroxyl and aldehyde to CuO on AC, surface-bonded Cu(II) was partially reduced to Cu(I) in the nCuO matrix. The resultant Cu(I) expedited the decomposition of H2O2 and converted it into ·OH radicals which were identified by quenching experiment and electron paramagnetic resonance test. Due to oxidation attack of generated ·OH, the nCuO@AC-H2O2 system achieved a much higher inactivation rate of 6.0 log within 30 min as compared to those of 2.1 and 1.3 log in the nCuO@AC and nCuO-H2O2 systems. It also exhibited excellent pH adaptability and high inactivation efficiency under neutral conditions. After four cycles, the nCuO@AC-H2O2 system could still inactivate 5.5 log bacteria, indicating excellent stability and reusability of nCuO@AC. Spent nCuO@AC could be regenerated by eluting surficial copper oxides with hydrochloric acid, and re-coating nCuO particles through impregnation-calcination with a regeneration rate of 96.6%. Our results demonstrated that nCuO@AC was an efficient and prospective catalyst to assist the decomposition of H2O2 for effective inactivation of bacteria in water.


Subject(s)
Charcoal , Copper , Escherichia coli , Hydrogen Peroxide , Escherichia coli/drug effects , Hydrogen Peroxide/chemistry , Copper/chemistry , Charcoal/chemistry , Carbon/chemistry , Oxidation-Reduction
11.
Discov Nano ; 19(1): 107, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913270

ABSTRACT

The imperative development of a cutting-edge environmental gas sensor is essential to proficiently monitor and detect hazardous gases, ensuring comprehensive safety and awareness. Nanostructures developed from metal oxides are emerging as promising candidates for achieving superior performance in gas sensors. NO2 is one of the toxic gases that affects people as well as the environment so its detection is crucial. The present study investigates the gas sensing capability of copper oxide-based sensor for 5 ppm of NO2 gas at 100 °C. The sensing material was synthesized using a facile precipitation method and characterized by XRD, FE-SEM, UV-visible spectroscopy, photoluminescence spectroscopy, XPS and BET techniques. The developed material shows a response equal to 67.1% at optimal temperature towards 5 ppm NO2 gas. The sensor demonstrated an impressive detection limit of 300 ppb, along with a commendable percentage response of 5.2%. Under optimized conditions, the synthesized material demonstrated its high selectivity, as evidenced by the highest percentage response recorded for NO2 gas among NO2, NH3, CO, CO2 and H2S.

12.
Discov Nano ; 19(1): 105, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907852

ABSTRACT

Late blight, caused by Phytophthora infestans, is a major potato disease globally, leading to significant economic losses of $6.7 billion. To address this issue, we evaluated the antifungal activity of ZnO and CuO nanoparticles (NPs) against P. infestans for the first time in laboratory and greenhouse conditions. Nanoparticles were synthesized via a chemical precipitation method and characterized using various techniques. The XRD results revealed that the synthesized ZnO nanoparticles had a pure hexagonal wurtzite crystalline structure, whereas the CuO NPs had a monoclinic crystalline structure. TEM images confirmed the synthesis of quasi-spherical nanoparticles with an average size of 11.5 nm for ZnO NPs and 24.5 nm for CuO NPs. The UV-Vis Spectral Report showed peaks corresponding to ZnO NPs at 364 nm and 252 nm for CuO NPs.In an in vitro study, both ZnO and CuO NPs significantly (p < 0.05) inhibited the radial growth of P. infestans at all tested concentrations compared to the untreated control. The highest inhibitory effect of 100% was observed with ZnO and CuO NPs at 30 mg/L. A lower inhibition of 60.4% was observed with 10 mg/L CuO NPs. Under greenhouse conditions, 100 mg/L ZnO NPs was the most effective treatment for controlling potato late blight, with an efficacy of 71%. CuO NPs at 100 mg/L followed closely, with an efficacy of 69%. Based on these results, ZnO and CuO NPs are recommended as promising eco-friendly fungicides for the management and control of potato late blight after further research.

13.
Cureus ; 16(4): e57366, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38694645

ABSTRACT

Background Copper and copper oxide nanoparticles synthesized by green methods have attracted considerable attention due to their environmentally friendly properties and potential applications. Green synthesis involves non-hazardous and sustainable techniques used in the production of a wide range of substances, including nanoparticles, pharmaceuticals, and chemicals. These methods often use different organisms, including bacteria, fungi, algae, and plants, each offering different advantages in terms of simplicity, cost-effectiveness, and environmental sustainability. The environmentally friendly nature of these green synthesis methods responds to the growing need for sustainable nanotechnologies. Brown algae have gained popularity due to their distinct morphological characteristics and diverse biochemical composition. This research focuses on the process of synthesizing copper and copper oxide nanoparticles from the brown algae Turbinaria. It emphasizes the natural ability of the bioactive compounds contained in the algae extract to reduce and stabilize the nanoparticles. The green synthesis of copper and copper oxide nanoparticles from brown algae has demonstrated a wide range of applications, including antibacterial activity. Materials and methods Fresh Turbinaria algae were collected from marine environments to ensure that they were free of contaminants. The algae underwent a purification process to remove impurities and were dried. An aqueous extract was prepared by pulverizing the dried algae and mixing them with distilled water. A copper salt solution utilizing copper nitrate was prepared. The algae extract was mixed with the copper salt solution. There are bioactive compounds in the algae extract that help reduce copper ions, which makes copper and copper oxide nanoparticles come together. The reaction mixture was incubated in a controlled environment to facilitate the growth and enhance the stability of the nanoparticles. To separate the nanoparticles from the reaction mixture, centrifugation was employed, or filtration was done with Whatman filter paper (Merck, Burlington, MA). The nanoparticles were dried to yield a stable powder. Results Copper and copper oxide nanoparticles derived from brown algae extract showed antibacterial effects against Streptococcus mutans, Klebsiella sp., and Staphylococcus mutans. The scanning electron microscopy (SEM) analysis verified the irregular shape and elemental content of the synthesized copper and copper oxide nanoparticles. The X-ray diffraction (XRD) analysis indicated that the synthesized nanoparticles exhibited a crystallinity nature and were composed of a mixture of copper and copper oxide species, namely face-centered cubic and monoclinic structures. The transmission electron microscopy (TEM) images showed copper and copper oxide nanoparticles that were evenly distributed and had a rectangular shape. They exhibited substantial antimicrobial activity against both Gram-positive and Gram-negative bacteria. Conclusions This study enhances the field of green synthesis techniques by showcasing the adaptability of Turbinaria brown algae to synthesize copper and copper oxide nanoparticles. It underscores the potential advantages of these nanoparticles in terms of their antibacterial properties.

14.
Mater Today Bio ; 26: 101062, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706729

ABSTRACT

Current therapeutic approaches for skin cancer face significant challenges, including wound infection, delayed skin regeneration, and tumor recurrence. To overcome these challenges, an injectable adhesive near-infrared (NIR)-responsive hydrogel with time-dependent enhancement in viscosity is developed for combined melanoma therapy and antibacterial wound healing acceleration. The multifunctional hydrogel is prepared through the chemical crosslinking between poly(methyl vinyl ether-alt-maleic acid) and gelatin, followed by the incorporation of CuO nanosheets and allantoin. The synergistic inherent antibacterial potential of CuO nanosheets, the regenerative and smoothing effect of allantoin, the extracellular matrix-mimicking effect of gelatin, and the desirable swelling behavior of the hydrogel results in fast wound recovery after photothermal ablation of the tumor. Additionally, the hydrogel can serve as an alternative to sutures owing to its tissue adhesiveness ability, which can further render it the merits for accelerated repair of abdominal lesions while acting as a biocompatible barrier to prevent peritoneal adhesion.

15.
Heliyon ; 10(9): e30178, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726176

ABSTRACT

Developing multifunctional nanomaterials through environmentally friendly and efficient approaches is a pivotal focus in nanotechnology. This study aimed to employ a biogenic method to synthesize multifunctional copper oxide nanoparticles (LI-CuO NPs) with diverse capabilities, including antibacterial, antioxidant, and seed priming properties, as well as photocatalytic organic dye degradation and wastewater treatment potentials using Lagerstroemia indica leaf extract. The synthesized LI-CuO NPs were extensively characterized using UV-vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform-infrared spectroscopy (FT-IR). The colloid displayed surface plasmon resonance peaks at 320 nm, characteristic of LI-CuO NPs. DLS analysis revealed an average particle size of 93.5 nm and a negative zeta potential of -20.3 mV. FTIR and XPS analyses demonstrated that LI-CuO NPs possessed abundant functional groups that acted as stabilizing agents. XRD analysis indicated pure crystalline and spherical LI-CuO NPs measuring 36 nm in size. Antibacterial tests exhibited significant differential activity of LI-CuO NPs against both gram-negative (Escherichia coli, Salmonella typhimurium) and gram-positive (Staphylococcus aureus and Listeria monocytogenes) bacteria. In antioxidant tests, the LI-CuO NPs demonstrated a remarkable radical scavenging activity of 97.6 % at a concentration of 400 µg mL-1. These nanoparticles were also found to enhance mustard seed germination at low concentrations. With a remarkable reusability, LI-CuO NPs exhibited excellent photocatalytic performance, with a degradation efficiency of 97.6 % at 150 µg/mL as well as a 95.6 % reduction in turbidity when applied to wastewater treatment. In conclusion, this study presents environmentally friendly method for the facile synthesis of LI-CuO NPs that could potentially offer promising applications in biomedicine, agriculture, and environmental remediation due to their multifunctional properties.

16.
J Appl Toxicol ; 44(8): 1257-1268, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38700028

ABSTRACT

This study demonstrated that both copper oxide nanoparticles (CuO-NPs) and copper nanoparticles (Cu-NPs) can cause swelling, inflammation, and cause damage to the mitochondria of alveolar type II epithelial cells in mice. Cellular examinations indicated that both CuO-NPs and Cu-NPs can reduce cell viability and harm the mitochondria of human bronchial epithelial cells, particularly Beas-2B cells. However, it is clear that CuO-NPs exhibit a more pronounced detrimental effect compared with Cu-NPs. Using bafilomycin A1 (Bafi A1), an inhibitor of lysosomal acidification, was found to enhance cell viability and alleviate mitochondrial damage caused by CuO-NPs. Additionally, Bafi A1 also reduces the accumulation of dihydrolipoamide S-acetyltransferase (DLAT), a marker for mitochondrial protein toxicity, induced by CuO-NPs. This observation suggests that the toxicity of CuO-NPs depends on the distribution of copper particles within cells, a process facilitated by the acidic environment of lysosomes. The release of copper ions is thought to be triggered by the acidic conditions within lysosomes, which aligns with the lysosomal Trojan horse mechanism. However, this association does not seem to be evident with Cu-NPs.


Subject(s)
Cell Survival , Copper , Lysosomes , Macrolides , Metal Nanoparticles , Mitochondria , Copper/toxicity , Lysosomes/drug effects , Lysosomes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Animals , Humans , Metal Nanoparticles/toxicity , Macrolides/toxicity , Mice , Cell Survival/drug effects , Cell Line , Male
17.
Environ Res ; 252(Pt 3): 119068, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705452

ABSTRACT

Cellulose acetate membranes exhibit a potential to be applied in hemodialysis. However, their performance is limited by membrane fouling and a lack of antibacterial properties. In this research, copper oxide (I) nanoparticles were fabricated in situ into a cellulose acetate matrix in the presence of polyvinylpyrrolidone (pore-forming agent) and sulfobetaine (stabilising agent) to reduce the leakage of copper ions from nano-enhanced membranes. The influence of nanoparticles on the membrane structure and their antibacterial and antifouling properties were investigated. The results showed that incorporating Cu2O NPs imparted significant antibacterial properties against Staphylococcus aureus and fouling resistance under physiological conditions. The Cu2O NPs-modified membrane could pave the way for potential dialysis applications.


Subject(s)
Anti-Bacterial Agents , Biofouling , Cellulose , Copper , Membranes, Artificial , Staphylococcus aureus , Cellulose/analogs & derivatives , Cellulose/chemistry , Cellulose/pharmacology , Copper/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Biofouling/prevention & control , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Povidone/chemistry , Povidone/analogs & derivatives
18.
ACS Appl Mater Interfaces ; 16(22): 28517-28525, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38769473

ABSTRACT

Effective catalytic performance of the transition metal oxide is attributed to high specific surface areas, abundant surface oxygen atoms, and balanced valence ratios. Although the chirality of the transition metal has attracted attention, most studies have focused on optical application. A few chiral transition metal oxides were used as electrocatalysts and photocatalysts. The influence of the chiral catalysts on the thermal catalysis process has been less explored. In this study, Mn-loaded chiral (M/l-CuO and M/d-CuO) and achiral CuO (M/a-CuO) were synthesized and compared in the catalytic oxidization of toluene. Spectrally analyzed Mn was well-dispersed on both chiral and achiral CuO. l-CuO and d-CuO showed nanoflower-like chirality. The angles between each (001) plane of CuO were the source of chirality. The toluene turnover frequency (TOF) of the samples was in the order of Mn/d-CuO (5.6 × 10-5 s-1) > Mn/l-CuO (4.4 × 10-5 s-1) > Mn/a-CuO (3.2 × 10-5 s-1) at 240 °C, consistent with the order of the oxygen replenishment rate. The as-prepared catalysts had similar ratios of lattice oxygen/surface adsorbed oxygen, Mn3+/Mn4+, and Cu+/Cu2+. A higher TOF was attributed to chirality, which increased the lattice oxygen replenishment speed from the gaseous phase to the solid surface. Our study indicates gas-solid catalysis from a structure-activity viewpoint.

19.
ACS Nano ; 18(21): 13714-13725, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38741386

ABSTRACT

The activity, selectivity, and lifetime of nanocatalysts critically depend on parameters such as their morphology, support, chemical composition, and oxidation state. Thus, correlating these parameters with their final catalytic properties is essential. However, heterogeneity across nanoparticles (NPs) is generally expected. Moreover, their nature can also change during catalytic reactions. Therefore, investigating these catalysts in situ at the single-particle level provides insights into how these tunable parameters affect their efficiency. To unravel this question, we applied spectro-microscopy to investigate the thermal reduction of SiO2-supported copper oxide NPs in ultrahigh vacuum. Copper was selected since its oxidation state and morphological transformations strongly impact the product selectivity of many catalytic reactions. Here, the evolution of the NPs' chemical state was monitored in situ during annealing and correlated with their morphology in situ. A reaction front was observed during the reduction of CuO to Cu2O. From the temperature dependence of this front, the activation energy was extracted. Two parameters were found to strongly influence the NP reduction: the initial nanoparticle size and the chemical state of the SiO2. substrate. The CuOx reduction was found to be completed first on smaller NPs and was also favored over partially reduced SiOx regions that resulted from X-ray beam irradiation. This methodology with single-particle level spectro-microscopy resolution provides a way of isolating the influence of diverse morphologic, electronic, and chemical influences on a chemical reaction. The knowledge gained is crucial for the future design of more complex multimetallic catalytic systems.

20.
Heliyon ; 10(10): e31414, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813193

ABSTRACT

Cancer remains a major global health concern, necessitating the development of novel therapeutic approaches. Hypoxia is a common characteristic of solid tumors that plays a critical role in tumor progression, making it a prime target for anticancer therapies. This study aimed to determine the effects of copper oxide nanoparticles (CuONPs) on human gastrointestinal cancer cells in hypoxic condition for the first time. Toxicity of CuONPs was evaluated on human colon and gastric adenocarcinoma cells and normal fibroblasts by alamarBlue assay. Real-time polymerase chain reaction (PCR) was performed to study the effects of CuONPs on genes involved in cell apoptosis. To elucidate the molecular mechanisms underlying the effects of CuONPs in hypoxic condition, molecular docking was conducted on HIF-1α. Results revealed dose- and cell-type-dependent toxic effects of CuONPs, as a more significant (p < 0.0001) decrease in viability of LoVo cells (23 %) was observed compared to MKN-45 and HDF cells. In addition, CuONPs significantly (p < 0.0001) reduced LoVo cell viability down to 30.2 % in hypoxic condition. Gene expression analysis revealed significant (p < 0.0001) overexpression of P53 and BAX but downregulation of BCL-2 and CCND1 after treatment with CuONPs. Molecular docking indicated the preferable binding of CuONPs to the HIF-1α PAS-B domain through interaction with 15 residues with -4.8 kcal/mol binding energy. Our findings open up new possibilities for modulating HIF-1 activity and inhibiting hypoxia-induced tumor progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...