Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Environ Res ; 192: 106225, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866974

ABSTRACT

The Cosmonaut Sea is a typical marginal sea in East Antarctica that has not yet been greatly impacted by climate change. As one of the least explored areas in the Southern Ocean, our knowledge regarding its fish taxonomy and diversity has been sparse. eDNA metabarcoding, as an emerging and promising tool for marine biodiversity research and monitoring, has been widely used across taxa and habitats. During the 38th Chinese Antarctic Research Expedition (CHINARE-38), we collected seawater and surface sediment samples from 38 stations in the Cosmonaut Sea and performed the first, to our knowledge, eDNA analysis of fish biodiversity in the Southern Ocean based on the molecular markers of 12S rRNA and 16S rRNA. There were 48 fish species detected by the two markers in total, with 30 and 34 species detected by the 12S rRNA and 16S rRNA marker, respectively. This was more than the trawling results (19 species) and historical survey records (16 species, "BROKE-West" cruise). With some nonsignificant differences between the Gunnerus Ridge and the Oceanic Area of Enderby Land, the Cosmonaut Sea had a richer fish biodiversity in this research compared with previous studies, and its overall composition and distribution patterns were consistent with what we know in East Antarctica. We also found that the eDNA composition of fish in the Cosmonaut Sea might be related to some environmental factors. Our study demonstrated that the use of the eDNA technique for Antarctic fish biodiversity research is likely to yield more information with less sampling effort than traditional methods. In the context of climate change, the eDNA approach will provide a novel and powerful tool that is complementary to traditional methods for polar ecology research.


Subject(s)
DNA, Environmental , Animals , Humans , RNA, Ribosomal, 16S , Astronauts , Fishes , Biodiversity , Ecosystem , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods
2.
Biomedicines ; 10(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35740378

ABSTRACT

This review summarizes the current literature available on joint cartilage alterations in long-duration spaceflight. Evidence from spaceflight participants is currently limited to serum biomarker data in only a few astronauts. Findings from analogue model research, such as bed rest studies, as well as data from animal and cell research in real microgravity indicate that unloading and radiation exposure are associated with joint degeneration in terms of cartilage thinning and changes in cartilage composition. It is currently unknown how much the individual cartilage regions in the different joints of the human body will be affected on long-term missions beyond the Low Earth Orbit. Given the fact that, apart from total joint replacement or joint resurfacing, currently no treatment exists for late-stage osteoarthritis, countermeasures might be needed to avoid cartilage damage during long-duration missions. To plan countermeasures, it is important to know if and how joint cartilage and the adjacent structures, such as the subchondral bone, are affected by long-term unloading, reloading, and radiation. The use of countermeasures that put either load and shear, or other stimuli on the joints, shields them from radiation or helps by supporting cartilage physiology, or by removing oxidative stress possibly help to avoid OA in later life following long-duration space missions. There is a high demand for research on the efficacy of such countermeasures to judge their suitability for their implementation in long-duration missions.

3.
Life Sci Space Res (Amst) ; 33: 7-12, 2022 May.
Article in English | MEDLINE | ID: mdl-35491032

ABSTRACT

The interest in the role of the gravitational factor during landing after long-term space flights (SF) leads to the search for various innovative approaches to assessing the compliance of external changes observed by clinicians. The results of special research methods such as Omics technologies that may reflect physiological responses to the conditions created during landing are of great interest. Our purpose is to compare the blood plasma proteome changes associated with the trauma and endothelial dysfunction processes prior to launch and on the day of landing, as well as the groups of cosmonauts with and without the secondary hemorrhagic purpura. In our study, the concentrations of 125 plasma proteins in 18 Russian cosmonauts, measured using targeted proteomic analysis based on liquid chromatography and tandem mass spectrometry were analyzed. The results reveal the trends of 12 proteins participating in the processes that trigger hemorrhagic purpura under the effect of re-entry g-forces. Exposure to intense g-forces and return to the gravity are the key factors for external manifestations of changes in the body systems induced by a long-term stay in space microgravity. Our results may be useful for further research to experts in gravitational physiology, aviation and space medicine.


Subject(s)
Astronauts , Purpura , Humans , Plasma/chemistry , Proteome/analysis , Proteomics
4.
FASEB J ; 34(12): 16144-16162, 2020 12.
Article in English | MEDLINE | ID: mdl-33047384

ABSTRACT

Immune dysregulation is among the main adverse outcomes of spaceflight. Despite the crucial role of the antibody repertoire in host protection, the effects of spaceflight on the human antibody repertoire are unknown. Consequently, using high-throughput sequencing, we examined the IgM repertoire of five cosmonauts 25 days before launch, after 64 ± 11 and 129 ± 20 days spent on the International Space Station (ISS), and at 1, 7, and 30 days after landing. This is the first study of this kind in humans. Our data revealed that the IgM repertoire of the cosmonauts was different from that of control subjects (n = 4) prior to launch and that two out the five analyzed cosmonauts presented significant changes in their IgM repertoire during the mission. These modifications persisted up to 30 days after landing, likely affected the specificities of IgM binding sites, correlated with changes in the V(D)J recombination process responsible for creating antibody genes, and coincided with a higher stress response. These data confirm that the immune system of approximately half of the astronauts who spent 6 months on the ISS is sensitive to spaceflight conditions, and reveal individual responses indicating that personalized approaches should be implemented during future deep-space exploration missions that will be of unprecedented durations.


Subject(s)
Immunoglobulin M/immunology , Adult , Astronauts , Humans , Longitudinal Studies , Male , Space Flight/methods , Time Factors , Weightlessness
5.
Front Physiol ; 10: 1115, 2019.
Article in English | MEDLINE | ID: mdl-31572205

ABSTRACT

The effects of long-duration spaceflight on crewmember neck musculature have not been adequately studied. The purpose of this study was to evaluate the changes in the neck musculature on pre-flight and post-flight magnetic resonance imaging (MRI) examinations of six crewmembers on 4- to 6-month missions equipped with the advanced resistive exercise device (aRED). The MRI images were resliced to remove variations in spinal curvature, the cross-sectional area (CSA), and muscle fat infiltration (MFI) of neck musculature at the C1-C2, C4-C5, C7-T1, and T1-T2 intervertebral disc levels were measured bilaterally. Percent changes in the neck muscle CSA and fatty infiltration following spaceflight were calculated, and mixed models were used to assess significance of these changes. Crewmembers on missions equipped with the aRED experienced an average 25.1% increase in CSA for the trapezius muscle at C6-C7, an average 11.5% increase in CSA for the semispinalis capitis muscle at C4-C5, an average 9.0% increase in CSA for the sternocleidomastoid muscle at C4-C5, and an average 23.1% increase in CSA for the rhomboid minor at T1-T2. There were no significant changes in the CSA of the levator scapulae, splenius capitis, rectus capitis posterior major, scalenus anterior, scalenus posterior, scalenus medius, longissimus capitis, or obliquus capitis inferior muscles at the locations measured. None of the muscles analyzed experienced statistically significant changes in fatty infiltration with spaceflight. Our study indicates that long-duration spaceflight conditions are associated with preservation of CSA in most neck muscles and significant increases in the CSAs of the trapezius, semispinalis capitis, sternocleidomastoid, and rhomboid minor muscles. This may indicate that cervical muscles are not subjected to the same degradative effects microgravity imparts on the majority of muscles.

6.
Front Physiol ; 10: 627, 2019.
Article in English | MEDLINE | ID: mdl-31164840

ABSTRACT

Long-duration spaceflight has been shown to negatively affect the lumbopelvic muscles of crewmembers. Through analysis of computed tomography scans of crewmembers on 4- to 6-month missions equipped with the interim resistive exercise device, the structural deterioration of the psoas, quadratus lumborum, and paraspinal muscles was assessed. Computed tomography scans of 16 crewmembers were collected before and after long-duration spaceflight. The volume and attenuation of lumbar musculature at the L2 vertebral level were measured. Percent changes in the lumbopelvic muscle volume and attenuation (indicative of myosteatosis, or intermuscular fat infiltration) following spaceflight were calculated. Due to historical studies demonstrating only decreases in the muscles assessed, a one-sample t test was performed to determine if these decreases persist in more recent flight conditions. Crewmembers on interim resistive exercise device-equipped missions experienced an average 9.5% (2.0% SE) decrease in volume and 6.0% (1.5% SE) decrease in attenuation in the quadratus lumborum muscles and an average 5.3% (1.0% SE) decrease in volume and 5.3% (1.6% SE) decrease in attenuation in the paraspinal muscles. Crewmembers experienced no significant changes in psoas muscle volume or attenuation. No significant changes in intermuscular adipose tissue volume or attenuation were found in any muscles. Long-duration spaceflight was associated with preservation of psoas muscle volume and attenuation and significant decreases in quadratus lumborum and paraspinal muscle volume and attenuation.

SELECTION OF CITATIONS
SEARCH DETAIL