Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39123897

ABSTRACT

In this work, a two-parameter inversion problem is analyzed, related to surface crack widths for measuring depths of normal surface notches, based on a laser-based ultrasonic measurement method in the time domain. In determining the depth measurement formulas, the main technique is the time delay between reflected and scattered waves. Scattered waves are generated by two reflections along the bottom and three mode transformations at the surface of the crack tips. Moreover, the scattering angle of the mode-conversion waves is 30°. These two key factors lead to corrected item "2wß" in the depth measurement formula. A laser-based ultrasonic experimental platform is built to generate and receive surface waves in a non-contact manner on aluminum and steel specimens with surface cracks. The depth measurement method proposed in this paper has been validated through theoretical, simulation, and experimental methods. Finally, in this paper, an effective approach for quantitatively measuring crack depths, based on laser ultrasound, using the time-domain properties of surface wave propagation is provided.

2.
Materials (Basel) ; 17(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998325

ABSTRACT

The KR resistance curve for hydraulic crack propagation in a concrete beam was determined and discussed. A semi-analytical method was introduced to calculate the hydraulic crack propagation in concrete. A series of concrete beams with various hydraulic pressures and initial crack depths were tested, and the hydraulic crack propagation in these beams was calculated. The calculated P-CMOD curves were first verified, and then the calculated KR resistance curve for hydraulic crack propagation was determined. Based on the test results and calculation results, the following conclusions can be drawn: The proposed analysis method can accurately predict the hydraulic crack propagation process in concrete. The KR resistance to hydraulic crack propagation in concrete decreases with the increase in hydraulic pressure but is less influenced by the initial crack depth of the test beams. In addition, the concrete beams collapse immediately under hydraulic fracturing once the KIw curve reaches the KR resistance curve. This indicates that the failure of concrete structures under hydraulic fracturing occurs immediately once the driving force of crack propagation, dominated by the hydraulic pressure in the crack, becomes significant.

3.
Materials (Basel) ; 17(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255523

ABSTRACT

In the modern theory of compressed concrete elements, the most attention is paid to longitudinal deformations, whereas transverse ones are rarely considered and just within Poisson's coefficient limits (i.e., elastic concrete behavior in the transverse direction). However, transverse deformations significantly develop beyond the limits corresponding to Poisson's coefficient, where they lead to longitudinal crack initiation and development. In-depth experimental and numerical investigations of transverse deformations in the inelastic stage showed that it is necessary to consider crack propagation. The present study proposes simultaneous consideration of longitudinal and transverse deformations, as well as the appearance of cracks and their widths and depths. This allowed us to obtain a complete compressed concrete element behavior pattern at all performance stages in two types of limit states (based on longitudinal and transverse deformations). Consequently, new ultimate limit states by the depth and width of cracks caused by transverse deformations are proposed to be included in modern design practices and codes.

4.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049325

ABSTRACT

The crack propagation mechanism of Cu nanowires is investigated by using molecular dynamics methods. The microstructural evolution of crack propagation at different strain rates and crack depths is analyzed. Meanwhile, the stress intensity factor at the crack tip during crack propagation is calculated to describe the crack propagation process of Cu nanowires under each condition. The simulation results show that the competition between lattice recovery and dislocation multiplication determines the crack propagation mode. Lattice recovery dominates the plastic deformation of Cu nanowires at low strain rates, and the crack propagation mode is shear fracture. With the increase in strain rate, the plastic deformation mechanism gradually changes from lattice recovery to dislocation multiplication, which makes the crack propagation change from shear fracture to ductile fracture. Interestingly, the crack propagation mechanism varies with crack depth. The deeper the preset crack of Cu nanowires, the weaker the deformation resistance, and the more likely the crack propagation is accompanied.

5.
Materials (Basel) ; 15(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36431646

ABSTRACT

In order to estimate the crack depth in concrete using time-of-flight, finite element analysis and experiments were performed on non-cracked concrete blocks and 45 mm and 70 mm vertical cracks. As a result of measuring the time-of-flight change by changing the positions of the transmitter and receiver, it was confirmed that the finite element analysis results agreed with the experimental results, and high accuracy was confirmed by various formulas for calculating the depth of defects using the obtained experimental measurements for comparison. In addition to the verification of the simulation and experimental theory, research was conducted through actual field cases, and methodologies for crack detection and depth evaluation for concrete structures were presented, and furthermore, the expected effects of improving the soundness and safety of structures were shown.

6.
Materials (Basel) ; 14(22)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34832470

ABSTRACT

The robustness and stability of the system depend on structural integrity. This stability is, however, compromised by aging, wear and tear, overloads, and environmental factors. A study of vibration and fatigue cracking for structural health monitoring is one of the core research areas in recent times. In this paper, the structural dynamics and fatigue crack propagation behavior when subjected to thermal and mechanical loads were studied. It investigates the modal parameters of uncracked and various cracked specimens under uniform and non-uniform temperature conditions. The analytical model was validated by experimental and numerical approaches. The analysis was evaluated by considering different heating rates to attain the required temperatures. The heating rates were controlled by a proportional-integral-derivative (PID) temperature controller. It showed that a slow heating rate required an ample amount of time but more accurate results than quick heating. This suggested that the heating rate can cause variation in the structural response, especially at elevated temperatures. A small variation in modal parameters was also observed when the applied uniform temperatures were changed to non-uniform temperatures. This study substantiates the fatigue crack propagation behavior of pre-seeded cracks. The results show that propagated cracking depends on applied temperatures and associated mass. The appearance of double crack fronts and multiple cracks were observed. The appearance of multiple cracks seems to be due to the selection of the pre-seeded crack shape. Hence, the real cracks and pre-seeded cracks are distinct and need careful consideration in fatigue crack propagation analysis.

7.
Materials (Basel) ; 14(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34683543

ABSTRACT

The depth of cracks propagating inside reinforcement concrete (RC) components is barely able to be detected by visual inspection. Without any help from facilities, crack width can provide us with a proper way to explore the depth of cracks developing. Therefore, this paper tried to explore the correlation between crack width on the surface and crack depth. A static loading test was conducted on eight RC beams, considering the variation of concrete strength, cover, and reinforcement ratio. The test results indicate that concrete strength has a certain impact on cracking load and the propagation of cracks is mainly related to reinforcement ratio. The linear changes in load and crack width can be found. Originally, crack depth markedly increased with loading, but when restricted by compression zone of concrete and the height of beams, crack depth stopped extending finally. The correlation between crack width and crack depth was analyzed by studying work phases of a cross-section and experimental data. The fitting function achieved in this paper was determined to be a good agreement between the theoretical and the experimental relationship.

8.
Ann N Y Acad Sci ; 1475(1): 52-63, 2020 09.
Article in English | MEDLINE | ID: mdl-32519363

ABSTRACT

Cracked teeth are the third most common cause of tooth loss, but there is no reliable imaging tool for the diagnosis of cracks. Here, we demonstrate the feasibility of indocyanine green near-infrared fluorescence (ICG-NIRF) dental imaging for the detection of enamel cracks and enamel-dentin cracks in vitro in the first (ICG-NIRF-I, 700-950 nm) and second (ICG-NIRF-II, 950-1700 nm) imaging windows with transmission excitation light, and compared ICG-NIRF with conventional NIR illumination-II (NIRi-II) and X-ray imaging. Dentin cracks were detected by CT scan, while most enamel cracks, undetectable under X-ray imaging, were clearly visible in NIR images. We found that ICG-NIRF-II detected cracks more effectively than NIRi-II, and that light orientation is an important factor for crack detection: an angled exposure obtained better image contrast of cracks than parallel exposure, as it created a shadow under the crack. Crack depth could be evaluated from the crack shadow in ICG-NIRF and NIRi-II images; from this shadow we could determine crack depth and discriminate enamel-dentin cracks from craze lines. Cracks could be observed clearly from ICG-NIRF images with 1-min ICG tooth immersion, although longer ICG immersion produced images with greater contrast. Overall, our data show that ICG-NIRF dental imaging is a useful tool for diagnosing cracked teeth at an early stage.


Subject(s)
Dental Enamel/diagnostic imaging , Dental Enamel/pathology , Indocyanine Green/chemistry , Spectroscopy, Near-Infrared , Dentin/diagnostic imaging , Dentin/pathology , Fluorescence , Humans , Lasers , X-Rays
9.
Sensors (Basel) ; 18(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149576

ABSTRACT

In this paper, we propose an accurate and practical model for the estimation of surface-breaking discontinuity (i.e., crack) depth in concrete through quantitative characterization of surface-wave transmission across the discontinuity. The effects of three different mixture types (mortar, normal strength concrete, and high strength concrete) and four different simulated crack depths on surface-wave transmission were examined through experiments carried out on lab-scale concrete specimens. The crack depth estimation model is based on a surface-wave spectral energy approach that is capable of taking into account a wide range of wave frequencies. The accuracy of the proposed crack depth estimation model is validated by root mean square error analysis of data from repeated spectral energy transmission ratio measurements for each specimen.

10.
Data Brief ; 13: 723-730, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28748207

ABSTRACT

This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].

11.
Adv Mater ; 28(37): 8130-8137, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27396592

ABSTRACT

The sensitivity of a nanoscale crack-based sensor is enhanced markedly by modulating the crack depth. The crack-depth-propagated sensor exhibits ≈16 000 gauge factor at 2% strain and a superior signal-to-noise ratio of ≈35, which facilitates detection of target signals for voice-pattern recognition.

12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-478564

ABSTRACT

Objective:To observe the clinical effect of endodontic therapy and full crown restoration in the treatment of cracked teeth. Methods:The trace and depth of 50 cracked teeth were carefully examined under root canal microscope.According to the depth and scope of the cracks,the cracked teeth were classficated into the degree of Ⅰ,Ⅱ and Ⅲ,treated endodontically and restored with full crown.Results:During 1 year follow-up,34 cases showed successful effect,5 progressive,1 1 failure.The general effectiveness rate was 78.0%.The effectiveness rate of group Ⅰ,Ⅱ and Ⅲ was 93.3%,82.1 % and 28.6% respectively.Group Ⅰand Ⅱ vs Ⅲ,P 0.05.Conclusion:The treatment effect of cracked teeth is closely related to the depth and scope of cracks.

SELECTION OF CITATIONS
SEARCH DETAIL