Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Am J Bot ; 111(8): e16350, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825760

ABSTRACT

PREMISE: The Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole-genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. METHODS: We constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. RESULTS: The ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4-56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants in Colobanthus and Eremogone, along with other functional annotations. CONCLUSIONS: Gene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep-time evolutionary patterns in plants.


Subject(s)
Caryophyllaceae , Cold Temperature , Gene Duplication , Genome, Plant , Phylogeny , Caryophyllaceae/genetics , Adaptation, Physiological/genetics , Transcriptome , Acclimatization/genetics , Evolution, Molecular
3.
PhytoKeys ; 189: 9-28, 2022.
Article in English | MEDLINE | ID: mdl-35115879

ABSTRACT

The new genus and species Pulvinatusiaxuegulaensis (Brassicaceae) are described and illustrated. The species is a cushion plant collected from Xuegu La, Xizang, China. Its vegetative parts are most similar to those of Arenariabryophylla (Caryophyllaceae) co-occurring in the same region, while its leaves and fruits closely resemble those of Xerodrabapatagonica (Brassicaceae) from Patagonian Argentina and Chile. Family-level phylogenetic analyses based on both nuclear ITS and plastome revealed that it is a member of the tribe Crucihimalayeae, but the infra-/intergeneric relationships within the tribe are yet to be resolved.

4.
J Theor Biol ; 494: 110238, 2020 06 07.
Article in English | MEDLINE | ID: mdl-32151620

ABSTRACT

When a nurse species facilitates the density of more than one species, strong indirect interactions can occur between the facilitated, or beneficiary, species, and these could lead to cascading interactive effects on community dynamics. In this context, negative effects of beneficiaries on the growth or reproduction of nurses are much more common than positive effects. This suggests beneficiaries frequently act as parasites of their nurses, and the consequences of this are largely unexplored. Our general aim is to analyze whether competition between parasitic beneficiaries can lead to indirect facilitation to nurse species and how this influences nurse-beneficiary systems. We explored potential outcomes of such reciprocal interactions in the general case of one facilitator and two facultative parasitic beneficiary species with different strategies for competing for space, one having a high carrying capacity but low maximum intrinsic growth rate (K-species), and the other having low carrying capacity but a higher intrinsic growth rate (r-species). These are defined in terms of the logistic equation, and reflect the abundances they can reach when growing alone. By considering a set of ordinary differential equations for the abundances of the nurse and the two parasitic beneficiaries in the mean-field approximation (where spatial correlations do not play a role), we first show analytically that coexistence of the three species is only possible when the r-species beneficiary is, at the same time, more harmful than the K-species and receives more benefit from the nurse. We then show that only the K-species can indirectly facilitate the nurse in such system. These are general, analytic results, independent of particular values of the parameters. We then explore these results using a 2-D lattice model informed by cushion plants in alpine ecosystems, and their interactions with beneficiaries with r and K strategies. Interesting spatial effects emerge in this case, such as a seeding effect: facilitation by the nurse increases beneficiary abundances also outside nurse patches. These in turn generate a negative feedback to the nurse, due to local competition for space near its edge. Spatial distribution effects are also crucial for relaxing the conditions for the survival of the r-species, allowing an r-strategist with weaker parasitic effects to indirectly facilitate the nurse through suppression of a more harmful K-species. Unexpectedly, this also has an indirect positive effect on the K species because of increased abundance of nurses. In the case of the r-species representing a ruderal invader, our lattice results would suggest that invaders have the potential to benefit both nurse and native beneficiary species via indirect facilitation. More generally, our results indicate that facilitation of more than one other species varying in competitive ability and which act as parasites on a nurse, can in turn promote indirect facilitation effects. This form of indirect facilitation has not been explicitly studied before, although it may create substantial conditionality in the outcomes of interactions among multiple species and the dynamics of nurse-beneficiary systems.


Subject(s)
Host-Parasite Interactions , Models, Biological , Parasites , Plants , Animals , Ecosystem , Host-Parasite Interactions/physiology , Plants/parasitology
5.
Ecol Evol ; 9(9): 5501-5511, 2019 May.
Article in English | MEDLINE | ID: mdl-31110698

ABSTRACT

Variation in size may influence the abundance of visitors and reproductive allocation for cushion plants in the extreme alpine environments. To assess effects of plant size on the abundance of main visitors and reproductive allocation in Thylacospermum caespitosum populations at two altitudes, the abundance of the visitors, visiting frequency, total number of flowers, number of fruits, number of unseeded flowers, and reproductive allocation were investigated during the period of reproductive growth. Concurrently, the effects of plant size on the visitors' contributions to fruit setting rate were assessed by a bagging experiment. Our results showed that flies (Musca domestica and Dasyphora asiatica) were the main pollinating insects of T. caespitosum, and they could obvious facilitate (p < 0.05) the fruit setting rate of this cushion plant. Seed set and floral visitation were significantly influenced (p < 0.001) by plant size. Moreover, the reproductive allocation and fruit setting rate of T. caespitosum was influenced (p < 0.001) by plant size. More biomass was allocated to reproduction in plants of greater diameter. There is an increase in reproductive success (increases of fruit number with increase in plant size) in relation to plant size. In conclusion, the extent of M. domestica and D. asiatica to facilitate the fruit setting rate mainly depended on the size of T. caespitosum. Size-dependent reproductive allocation occurred in T. caespitosum and was the chief factor affecting the contribution of flies to fruit setting rate. These traits reflect reproductive fitness of T. caespitosum related to plant size in extreme alpine environments.

6.
PeerJ ; 7: e6244, 2019.
Article in English | MEDLINE | ID: mdl-30671303

ABSTRACT

Astelia pumila (G.Forst.) Gaudich. (Asteliaceae, Asparagales) is a major element of West Patagonian cushion peat bog vegetation. With the aim to identify appropriate chloroplast markers for the use in a phylogeographic study, the complete chloroplast genomes of five A. pumila accessions from almost the entire geographical range of the species were assembled and screened for variable positions. The chloroplast genome sequence was obtained via a mapping approach, using Eustrephus latifolius (Asparagaceae) as a reference. The chloroplast genome of A. pumila varies in length from 158,215 bp to 158,221 bp, containing a large single copy region of 85,981-85,983 bp, a small single copy region of 18,182-18,186 bp and two inverted repeats of 27,026 bp. Genome annotation predicted a total of 113 genes, including 30 tRNA and four rRNA genes. Sequence comparisons revealed a very low degree of intraspecific genetic variability, as only 37 variable sites (18 indels, 18 single nucleotide polymorphisms, one 3-bp mutation)-most of them autapomorphies-were found among the five assembled chloroplast genomes. A Maximum Likelihood analysis, based on whole chloroplast genome sequences of several Asparagales accessions representing six of the currently recognized 14 families (sensu APG IV), confirmed the phylogenetic position of A. pumila. The chloroplast genome of A. pumila is the first to be reported for a member of the astelioid clade (14 genera with c. 215 species), a basally branching group within Asparagales.

7.
PhytoKeys ; (64): 1-57, 2016.
Article in English | MEDLINE | ID: mdl-27489483

ABSTRACT

A herbarium-based revision is provided for Paepalanthus pilosus and allies, five commonly confused species of cushion plants native to Andean paramo. These are placed in the recircumscribed Paepalanthus subsect. Cryptanthella Suess. The group includes Paepalanthus pilosus, Paepalanthus dendroides, and Paepalanthus lodiculoides. An additional two species and one variety are newly described: Paepalanthus caryonauta, Paepalanthus huancabambensis, and Paepalanthus pilosus var. leoniae. The latter two are Peruvian endemics, while Paepalanthus caryonauta is known from four countries, and has long been confused with other species. An additional, possibly undescribed taxon is noted from the Serrania de Perijá, Colombia. Five new synonyms and three lectotypes are proposed, and the common misapplication of some names is noted. Within the Paepalanthus pilosus complex, species differences were found in timing of peduncle elongation, sex ratio, and leaf, perianth, diaspore and nectary morphology. Ecological differences are suggested by specimen data and a review of ecological literature. Descriptions, photographs and maps are provided for all species, as is a key to the groups of eriocaulaceous cushion plants from Andean South America.

8.
Front Plant Sci ; 5: 387, 2014.
Article in English | MEDLINE | ID: mdl-25161660

ABSTRACT

While there is a large consensus that plant-plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change.

9.
PeerJ ; 2: e265, 2014.
Article in English | MEDLINE | ID: mdl-24688848

ABSTRACT

Nurse plant facilitation is a commonly reported plant-plant interaction and is an important factor influencing community structure in stressful environments. Cushion plants are an example of alpine nurse plants that modify microclimatic conditions within their canopies to create favourable environments for other plants. In this meta-analysis, the facilitative effects of cushion plants was expanded from previous syntheses of the topic and the relative strength of facilitation for other plants and for arthropods were compared globally.The abundance, diversity, and species presence/absence effect size estimates were tested as plant responses to nurse plants and a composite measure was tested for arthropods. The strength of facilitation was on average three times greater for arthropods relative to all plant responses to cushions. Plant species presence, i.e., frequency of occurrence, was not enhanced by nurse-plants. Cushion plants nonetheless acted as nurse plants for both plants and arthropods in most alpine contexts globally, and although responses by other plant species currently dominate the facilitation literature, preliminary synthesis of the evidence suggests that the potential impacts of nurses may be even greater for other trophic levels.

10.
J Biogeogr ; 40(10): 1874-1886, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24790287

ABSTRACT

AIM: We still have limited understanding of the contingent and deterministic factors that have fostered the evolutionary success of some species lineages over others. We investigated how the interplay of intercontinental migration and key innovations promoted diversification of the genus Androsace. LOCATION: Mountain ranges and cold steppes of the Northern Hemisphere. METHODS: We reconstructed ancestral biogeographical ranges at regional and continental scales by means of a dispersal-extinction-cladogenesis analysis using dated Bayesian phylogenies and contrasting two migration scenarios. Based on diversification analyses under two frameworks, we tested the influence of life form on speciation rates and whether diversification has been diversity-dependent. RESULTS: We found that three radiations occurred in this genus, at different periods and on different continents, and that life form played a critical role in the history of Androsace. Short-lived ancestors first facilitated the expansion of the genus' range from Asia to Europe, while cushions, which appeared independently in Asia and Europe, enhanced species diversification in alpine regions. One long-distance dispersal event from Europe to North America led to the diversification of the nested genus Douglasia. We found support for a model in which speciation of the North American-European clade is diversity-dependent and close to its carrying capacity, and that the diversification dynamics of the North American subclade are uncoupled from this and follow a pure birth process. MAIN CONCLUSIONS: The contingency of past biogeographical connections combined with the evolutionary determinism of convergent key innovations may have led to replicated radiations of Androsace in three mountain regions of the world. The repeated emergence of the cushion life form was a convergent key innovation that fostered radiation into alpine habitats. Given the large ecological similarity of Androsace species, allopatry may have been the main mode of speciation.

11.
Oecologia ; 95(1): 140-144, 1993 Mar.
Article in English | MEDLINE | ID: mdl-28313322

ABSTRACT

Climatic variations over the two last centuries are well known for the northern hemisphere, but very little information is available for subantarctic islands. In this paper, we combined geomorphological observations and a new biological dating technique to propose a reconstruction of the cool and warm events in the Kerguelen Islands during the last two centuries. The usual dating methods, such as dendrochonology or C14 dating, are not applicable on Kerguelen. Therefore, the radial growth ofAzorella selago Hook., a cushion-forming Umbelliferae species, was used to estimate the absolute age of deglaciated areas. Glacial margins in the vicinity of the Glacier Ampère constitute the most complete chronosequence studied in this part of the world and illustrate seven warming-cooling cycles. This new dating technique is validated by the close relationship between the calculated ages of these climatic events and the results of several studies in other circumantarctic regions. The Glacier Ampère reached its maximum extent at the end of the eighteenth century. Since 1799, two discrete phases may be distinguished: the first period (1799-1965) is characterized by small glacier fluctuations (1 km retreat overall) whereas in the second period (1966 to the present), the retreat is much more rapid (about 3 km). It seems that the current dramatic glacial retreat on Kerguelen is related to a major change in the climate and could illustrate a more general southern hemispheric pattern of glacial fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL