Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1428240, 2024.
Article in English | MEDLINE | ID: mdl-39319252

ABSTRACT

Introduction: Nonsteroidal anti-inflammatory drugs (NSAIDs) may potentially delay or cause non-union of fractures by inhibiting prostaglandin synthesis. However, studies have shown conflicting results. This systematic review and meta-analysis aim to synthesize current evidence on the potential influence of NSAIDs on bone healing. Methods: We conducted a comprehensive search of PubMed, Embase, and Cochrane CENTRAL databases for studies published up to 25 July 2023. Specific keywords included "NSAID," "nonsteroidal anti-inflammatory drug," "cyclooxygenase-2 inhibitor," "bone healing," "non-union," "pseudoarthrosis," "delayed union," and "atrophic bone." Eligible studies included prospective, retrospective, and case-controlled studies assessing the correlation between NSAID use and bone healing outcomes. The leave-one-out approach was used to test the robustness of the meta-analysis results. Results: A total of 20 studies with 523,240 patients were included in the analysis. The mean patient age ranged from 6.7 to 77.0 years, with follow-up durations from 3 to 67 months. The meta-analysis revealed no significant difference in non-union or delayed union between NSAID users and non-users [pooled adjusted odds ratio (OR) = 1.11; 95% confidence interval (CI): 0.99-1.23]. Initial analysis identified a significant association between NSAID usage and an increased risk of reoperation, but this association became insignificant upon sensitivity analysis (crude OR = 1.42; 95% CI: 0.88-2.28). Discussion: NSAIDs may have a minimal impact on non-union or delayed union risks. However, caution is advised due to the limited number of studies and the absence of a specific focus on NSAID types and dosages. Further research is necessary to better understand the implications of NSAID use on bone healing.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Fracture Healing , Fractures, Ununited , Humans , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Fracture Healing/drug effects , Fractures, Bone
2.
Brain Behav Immun ; 121: 142-154, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39043348

ABSTRACT

BACKGROUND: Sleep deficiencies, such as manifested in short sleep duration or insomnia symptoms, are known to increase the risk for multiple disease conditions involving immunopathology. Inflammation is hypothesized to be a mechanism through which deficient sleep acts as a risk factor for these conditions. Thus, one potential way to mitigate negative health consequences associated with deficient sleep is to target inflammation. Few interventional sleep studies investigated whether improving sleep affects inflammatory processes, but results suggest that complementary approaches may be necessary to target inflammation associated with sleep deficiencies. We investigated whether targeting inflammation through low-dose acetylsalicylic acid (ASA, i.e., aspirin) is able to blunt the inflammatory response to experimental sleep restriction. METHODS: 46 healthy participants (19F/27M, age range 19-63 years) were studied in a double-blind randomized placebo-controlled crossover trial with three protocols each consisting of a 14-day at-home monitoring phase followed by an 11-day (10-night) in-laboratory stay (sleep restriction/ASA, sleep restriction/placebo, control sleep/placebo). In the sleep restriction/ASA condition, participants took low-dose ASA (81 mg/day) daily in the evening (22:00) during the at-home phase and the subsequent in-laboratory stay. In the sleep restriction/placebo and control sleep/placebo conditions, participants took placebo daily. Each in-laboratory stay started with 2 nights with a sleep opportunity of 8 h/night (23:00-07:00) for adaptation and baseline measurements. Under the two sleep restriction conditions, participants were exposed to 5 nights of sleep restricted to a sleep opportunity of 4 h/night (03:00-07:00) followed by 3 nights of recovery sleep with a sleep opportunity of 8 h/night. Under the control sleep condition, participants had a sleep opportunity of 8 h/night throughout the in-laboratory stay. During each in-laboratory stay, participants had 3 days of intensive monitoring (at baseline, 5th day of sleep restriction/control sleep, and 2nd day of recovery sleep). Variables, including pro-inflammatory immune cell function, C-reactive protein (CRP), and actigraphy-estimated measures of sleep, were analyzed using generalized linear mixed models. RESULTS: Low-dose ASA administration reduced the interleukin (IL)-6 expression in LPS-stimulated monocytes (p<0.05 for condition*day) and reduced serum CRP levels (p<0.01 for condition) after 5 nights of sleep restriction compared to placebo administration in the sleep restriction condition. Low-dose ASA also reduced the amount of cyclooxygenase (COX)-1/COX-2 double positive cells among LPS-stimulated monocytes after 2 nights of recovery sleep following 5 nights of sleep restriction compared to placebo (p<0.05 for condition). Low-dose ASA further decreased wake after sleep onset (WASO) and increased sleep efficiency (SE) during the first 2 nights of recovery sleep (p<0.001 for condition and condition*day). Baseline comparisons revealed no differences between conditions for all of the investigated variables (p>0.05 for condition). CONCLUSION: This study shows that inflammatory responses to sleep restriction can be reduced by preemptive administration of low-dose ASA. This finding may open new therapeutic approaches to prevent or control inflammation and its consequences in those experiencing sleep deficiencies. TRIAL REGISTRATION: ClinicalTrials.gov NCT03377543.


Subject(s)
Aspirin , Cross-Over Studies , Inflammation , Sleep Deprivation , Humans , Male , Aspirin/administration & dosage , Aspirin/pharmacology , Adult , Female , Inflammation/metabolism , Double-Blind Method , Middle Aged , Young Adult , Sleep/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , C-Reactive Protein/metabolism , C-Reactive Protein/analysis
3.
Drug Dev Res ; 85(4): e22217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845214

ABSTRACT

As a hybrid weapon, two novel series of pyrazoles, 16a-f and 17a-f, targeting both COX-2 and ACE-1-N-domain, were created and their anti-inflammatory, anti-hypertensive, and anti-fibrotic properties were evaluated. In vitro, 17b and 17f showed COX-2 selectivity (SI = 534.22 and 491.90, respectively) compared to celecoxib (SI = 326.66) and NF-κB (IC50 1.87 and 2.03 µM, respectively). 17b (IC50 0.078 µM) and 17 f (IC50 0.094 µM) inhibited ACE-1 comparable to perindopril (PER) (IC50 0.048 µM). In vivo, 17b decreased systolic blood pressure by 18.6%, 17b and 17f increased serum NO levels by 345.8%, and 183.2%, respectively, increased eNOS expression by 0.97 and 0.52 folds, respectively and reduced NF-κB-p65 and P38-MAPK expression by -0.62, -0.22, -0.53, and -0.24 folds, respectively compared to  l-NAME (-0.34, -0.45 folds decline in NF-κB-p65 and P38-MAPK, respectively). 17b reduced ANG-II expression which significantly reversed the cardiac histological changes induced by L-NAME.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Anti-Inflammatory Agents , Antihypertensive Agents , Cyclooxygenase 2 Inhibitors , Pyrazoles , Tetrazoles , Pyrazoles/pharmacology , Pyrazoles/chemistry , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Antihypertensive Agents/chemical synthesis , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemical synthesis , Tetrazoles/pharmacology , Tetrazoles/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Rats , Drug Design , Male , Antifibrotic Agents/pharmacology , Antifibrotic Agents/chemistry , Cyclooxygenase 2/metabolism , Blood Pressure/drug effects , Humans , Peptidyl-Dipeptidase A/metabolism
4.
Cancer ; 130(17): 2988-2999, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38682652

ABSTRACT

BACKGROUND: Genetic polymorphisms of molecules are known to cause individual differences in the therapeutic efficacy of anticancer drugs. However, to date, germline mutations (but not somatic mutations) for anticancer drugs have not been adequately studied. The objective of this study was to investigate the association between germline polymorphisms of gemcitabine metabolic and transporter genes with carbohydrate antigen 19-9 (CA 19-9) response (decrease ≥50% from the pretreatment level at 8 weeks) and overall survival (OS) in patients with metastatic pancreatic cancer who receive gemcitabine-based chemotherapy. METHODS: This multicenter, prospective, observational study enrolled patients with metastatic pancreatic cancer patients who were receiving gemcitabine monotherapy or gemcitabine plus nanoparticle albumin-bound paclitaxel combination chemotherapy. Thirteen polymorphisms that may be involved in gemcitabine responsiveness were genotyped, and univariate and multivariate logistic regression analyses were used to determine the association of these genotypes with CA 19-9 response and OS. The significance level was set at 5%. RESULTS: In total, 180 patients from 11 hospitals in Japan were registered, and 159 patients whose CA 19-9 response could be assessed were included in the final analysis. Patients who had a CA 19-9 response had significantly longer OS (372 vs. 241 days; p = .007). RRM1 2464A>G and RRM2 175T>G polymorphisms suggested a weak association with CA 19-9 response and OS, but it was not statistically significant. COX-2 -765G>C polymorphism did not significantly correlate with CA 19-9 response but was significantly associated with OS (hazard ratio, 2.031; p = .019). CONCLUSIONS: Genetic polymorphisms from the pharmacokinetics of gemcitabine did not indicate a significant association with efficacy, but COX-2 polymorphisms involved in tumor cell proliferation might affect OS.


Subject(s)
CA-19-9 Antigen , Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Female , Male , Aged , Prospective Studies , Middle Aged , CA-19-9 Antigen/blood , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ribonucleoside Diphosphate Reductase/genetics , Antimetabolites, Antineoplastic/therapeutic use , Aged, 80 and over , Paclitaxel/therapeutic use , Paclitaxel/administration & dosage , Adult , Neoplasm Metastasis , Equilibrative Nucleoside Transporter 1/genetics , Treatment Outcome , Pharmacogenomic Testing , Genotype
5.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38675427

ABSTRACT

Cannabis contains over 500 different compounds, including cannabinoids, terpenoids, and flavonoids. Cannabidiol (CBD) is a non-psychoactive constituent, whereas beta-caryophyllene (BCP) is one of most the well-known terpenoids of Cannabis sativa. In recent years, there has been an emerging idea that the beneficial activities of these compounds are greater when they are combined. The aim of this study was to evaluate the anti-inflammatory effect of CBD and BCP using the in vitro model of lipopolysaccharide (LPS)-stimulated human keratinocytes (HaCaT) cells. The vitality of the cells was quantified using LDH and MTT assays. The levels of the following pro-inflammatory proteins and genes were quantified: IL-1ß, COX-2, and phospho-NF-κB p65 (p-p65) through Western blotting (WB) and interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα) through quantitative real-time polymerase chain reaction (RT-qPCR). When present in the incubation medium, CBD and BCP reduced the increased levels of pro-inflammatory proteins (IL-1ß, COX-2, and p-NF-kB) induced by LPS. The anti-inflammatory effects of CBD were blocked by a PPARγ antagonist, whereas a CB2 antagonist was able to revert the effects of BCP. Selected concentrations of CBD and BCP were able to revert the increases in the expression of pro-inflammatory genes (IL-1ß, IL-6, and TNFα), and these effects were significant when the drugs were used in combination. Our results suggest that CBD and BCP work in concert to produce a major anti-inflammatory effect with good safety profiles.

6.
Mol Ther Oncol ; 32(2): 200783, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38595983

ABSTRACT

Oncolytic adenoviruses (Ads) stand out as a promising strategy for the targeted infection and lysis of tumor cells, with well-established clinical utility across various malignancies. This study delves into the therapeutic potential of oncolytic Ads in the context of neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumors (MPNSTs). Specifically, we evaluate conditionally replicative adenoviruses (CRAds) driven by the cyclooxygenase 2 (COX2) promoter, as selective agents against MPNSTs, demonstrating their preferential targeting of MPNST cells compared with non-malignant Schwann cell control. COX2-driven CRAds, particularly those with modified fiber-knobs exhibit superior binding affinity toward MPNST cells and demonstrate efficient and preferential replication and lysis of MPNST cells, with minimal impact on non-malignant control cells. In vivo experiments involving intratumoral CRAd injections in immunocompromised mice with human MPNST xenografts significantly extend survival and reduce tumor growth rate compared with controls. Moreover, in immunocompetent mouse models with MPNST-like allografts, CRAd injections induce a robust infiltration of CD8+ T cells into the tumor microenvironment (TME), indicating the potential to promote a pro-inflammatory response. These findings underscore oncolytic Ads as promising, selective, and minimally toxic agents for MPNST therapy, warranting further exploration.

7.
Small ; 20(28): e2309882, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342670

ABSTRACT

Negative therapeutic feedback of inflammation would extensively attenuate the antitumor effect of photodynamic therapy (PDT). In this work, tumor homing chimeric peptide rhomboids (designated as NP-Mel) are fabricated to improve photodynamic performance by inhibiting PDT-upregulated cyclooxygenase-2 (COX-2). The hydrophobic photosensitizer of protoporphyrin IX (PpIX) and palmitic acid are conjugated onto the neuropilin receptors (NRPs) targeting peptide motif (CGNKRTR) to obtain tumor homing chimeric peptide (Palmitic-K(PpIX)CGNKRTR), which can encapsulate the COX-2 inhibitor of meloxicam. The well dispersed NP-Mel not only improves the drug stability and reactive oxygen species (ROS) production ability, but also increase the breast cancer targeted drug delivery to intensify the PDT effect. In vitro and in vivo studies verify that NP-Mel will decrease the secretion of prostaglandin E2 (PGE2) after PDT treatment, inducing the downregulation of IL-6 and TNF-α expressions to suppress PDT induced inflammation. Ultimately, an improved PDT performance of NP-Mel is achieved without inducing obvious systemic toxicity, which might inspire the development of sophisticated nanomedicine in consideration of the feedback induced therapeutic resistance.


Subject(s)
Cyclooxygenase 2 , Peptides , Photochemotherapy , Photochemotherapy/methods , Cyclooxygenase 2/metabolism , Peptides/chemistry , Peptides/pharmacology , Animals , Humans , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism , Female , Meloxicam/pharmacology , Meloxicam/therapeutic use , Mice , Protoporphyrins/chemistry , Protoporphyrins/pharmacology , Dinoprostone/metabolism
8.
China Medical Equipment ; (12): 82-86, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1026530

ABSTRACT

Objective:To investigate the diagnostic value of ultrasound elastography combined with serum microRNA-26b-5p(miR-26b-5p)and cyclooxygenase-2(COX-2)detection for early hysteromyoma.Methods:A total of 228 patients with suspected early hysteromyoma who were diagnosed in the 90th Hospital of the Joint Service Support Center from October 2020 to September 2022 were selected as the observation objects.Based on the results of pathological section examination as the"gold standard",all subjects were divided into a positive group(124 cases)and a negative group(104 cases),and ultrasound elasticity imaging examination was performed in both groups.The expression level of miR-26b-5p in serum was detected by real-time fluorescent quantitative polymerase chain reaction(Rt-PCR),and the level of serum COX-2 was detected by enzyme-linked immunosorbent assay(ELISA),and receiver operating characteristic(ROC)curve was applied to analyze the diagnostic values of serum miR-26b-5p and COX-2 for hysteromyoma.The four tables were applied to analyze the diagnostic values of ultrasound elastography and the combination of ultrasound elastography,serum miR-26b-5p and COX-2 for hysteromyoma.Results:The results of pathological examination indicated that 124 cases of 228 patients were positive result of hysteromyoma and 104 cases were negative result.The results of ultrasound elastography showed that 117 cases were positive,and 111 cases were negative,and the diagnostic sensitivity,specificity and accuracy of ultrasound elastography detection were respectively 74.19%,75.96%and 75.00%.Serum miR-26b-5p level of positive group was significantly lower than that of negative group,while the COX-2 level of positive group was significantly higher than that of negative group,and the differences of them between the two groups were statistically significant(t=4.519,5.601,P<0.05),respectively.The area under curve(AUC)value of ROC curve,sensitivity,specificity and the best cut-off value of serum miR-26b-5p were respectively 0.749,95.97%,46.15%and 1.10 in diagnosing hysteromyoma.The above indicators of serum COX-2 were respectively 0.835,66.13%,84.62%and 40.58 mg/L in diagnosing hysteromyoma.The sensitivity,specificity and accuracy of ultrasound elastography combined with serum miR-26b-5p and COX-2 were respectively 93.55%,86.54%and 90.35%,the differences were statistically significant(x2=23.158,17.169,P<0.05),respectively.Conclusion:Ultrasound elastography combined with serum miR-26b-5p and COX-2 has higher effectiveness in diagnosing the early hysteromyoma.

9.
Int J Biol Macromol ; 258(Pt 2): 128898, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141695

ABSTRACT

Cordyceps militaris Link. (C. militaris) is an entomopathogenic fungus that parasitizes the pupa or cocoon of lepidopteran insect larvae, with various bioactive compounds. Cordycepin and ergosterol are the two active components in C. militaris. This study aimed to evaluate the inhibitory activity of cordycepin and ergosterol against xanthine oxidase (XO) and cyclooxygenase-2 (COX-2), as well as investigate the inhibition mechanism. Cordycepin could better inhibit XO (IC50 = 0.014 mg/mL) and COX-2 (IC50 = 0.055 mg/mL) than ergosterol. Additionally, surface hydrophobicity and circular dichroism (CD) spectra results confirmed the conformational changes in enzymes induced by cordycepin and ergosterol. Finally, cordycepin and ergosterol significantly decreased uric acid (UA) and inflammatory factors to normal level in mice with gouty nephropathy (GN). This study could provide theoretical evidence for utilization of C. militaris in hyperuricemia-management functional foods.


Subject(s)
Cordyceps , Deoxyadenosines , Animals , Mice , Cyclooxygenase 2 , Xanthine Oxidase , Ergosterol
10.
Molecules ; 28(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067623

ABSTRACT

This study investigated the in vitro antioxidant and biological properties of ethanol extracts obtained from the fruits of the highbush cranberry. The produced extracts exhibited a high content of polyphenols (1041.9 mg 100 g d.m.-1) and a high antioxidant activity (2271.2 mg TE g 100 d.m.-1 using the DPPH method, 1781.5 mg TE g 100 d.m.-1 using the ABTS method), as well as a substantial amount of vitamin C (418.2 mg 100 g d.m.-1). These extracts also demonstrated significant in vitro biological activity. Studies conducted on the Saccharomyces cerevisiae cellular model revealed the strong antioxidant effects of the extract, attributed to a significant reduction in the levels of reactive oxygen species (ROS) within the cells, confirming the utility of the extracts in mitigating oxidative stress. Moreover, inhibitory properties were demonstrated against factors activating metabolic processes characteristic of inflammatory conditions. It was observed that the cranberry extract inhibits the activity of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) non-selectively. Additionally, the extract was found to be a highly active inhibitor of acetylcholinesterase (AChE), potentially suggesting the applicability of this extract in the prevention of neurodegenerative diseases, including Alzheimer's disease.


Subject(s)
Antioxidants , Vaccinium macrocarpon , Antioxidants/chemistry , Vaccinium macrocarpon/chemistry , Fruit/chemistry , Acetylcholinesterase , Plant Extracts/chemistry
11.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139248

ABSTRACT

Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.


Subject(s)
Arthritis, Rheumatoid , Noncommunicable Diseases , Humans , Cyclooxygenase 2/metabolism , Positron-Emission Tomography/methods , Brain/metabolism , Biomarkers/metabolism , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/pathology , Inflammation/metabolism , Receptors, GABA/metabolism , Carrier Proteins/metabolism
12.
J Pharmacol Sci ; 153(4): 188-196, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973216

ABSTRACT

Human endometrial stromal cells (ESCs) undergo differentiation, known as decidualization, and endometrial epithelial cells mature around the embryo implantation stage. In the uterus, cyclooxygenase 2 (COX2), the rate-limiting enzyme that produces prostaglandin E2, is expressed in endometrial stromal and epithelial cells, and promotes decidualization of the former cells. Our recent study demonstrated that progesterone receptor membrane component 1 (PGRMC1) is downregulated during decidualization and may be involved in cellular senescence associated with decidualization via the transcription factor forkhead box protein O1 (FOXO1). Therefore, we investigated the role of PGRMC1 in COX2 expression during differentiation and maturation of endometrial stromal and epithelial cells. Inhibition or knockdown of PGRMC1 significantly enhanced differentiation stimuli-induced COX2 expression in both cell types. However, this COX2 expression was suppressed by FOXO1 knockdown or nuclear factor-kappa B (NF-κB) inhibition. Silencing of COX2 expression inhibited PGRMC1 knockdown-induced expression of decidual markers in ESCs. Thus, PGRMC1 may be linked to FOXO1- and NF-κB-mediated COX2 expression in endometrial cells. Taken together, our data suggest that downregulation of PGRMC1 expression facilitates differentiation of endometrial cells, i.e., decidualization and glandular maturation, via upregulation of COX2 expression.


Subject(s)
Decidua , NF-kappa B , Female , Humans , Cyclic AMP/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Decidua/metabolism , Endometrium , Membrane Proteins/genetics , Membrane Proteins/metabolism , NF-kappa B/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism
13.
Brain Behav Immun Health ; 33: 100686, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37767237

ABSTRACT

CNS inflammation, including microglial activation, in response to peripheral infections are known to contribute to the pathology of both familial and sporadic neurodegenerative disease. The relationship between Fused-in-Sarcoma Protein (FUS)-mediated disease in the transgenic FUS[1-359] animals and the systemic inflammatory response have not been explored. Here, we investigated microglial activation, inflammatory gene expression and the behavioural responses to lipopolysaccharide-induced (LPS; 0.1 mg/kg) systemic inflammation in the FUS[1-359] transgenic mice. The pathology of these mice recapitulates the key features of mutant FUS-associated familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here, pre-symptomatic 8-week-old mutant or wild type controls were challenged with LPS or with saline and sucrose intake, novel cage exploration, marble burying and swimming behaviours were analyzed. The level of pro-inflammatory gene expression was also determined, and microglial activation was evaluated. In chronic experiments, to discover whether the LPS challenge would affect the onset of ALS-like paralysis, animals were evaluated for clinical signs from 5 to 7 weeks post-injection. Compared to controls, acutely challenged FUS[1-359]-tg mice exhibited decreased sucrose intake and increased floating behaviours. The FUS[1-359]-tg mice exhibited an increase in immunoreactivity for Iba1-positive cells in the prefrontal cortex and ventral horn of the spinal cord, which was accompanied by increased expression of interleukin-1ß, tumour necrosis factor, cyclooxygenase-(COX)-1 and COX-2. However, the single LPS challenge did not alter the time to development of paralysis in the FUS[1-359]-tg mice. Thus, while the acute inflammatory response was enhanced in the FUS mutant animals, it did not have a lasting impact on disease progression.

14.
Curr Alzheimer Res ; 20(7): 515-522, 2023.
Article in English | MEDLINE | ID: mdl-37702232

ABSTRACT

INTRODUCTION: The present study has examined microglial and astrocyte activation in association with neuronal degeneration in an animal model using an injection of amyloid-beta peptide Aß1-42 (Aß42) plus fibrinogen into rat hippocampus. METHODS: The combination of stimuli is suggested as a novel and potent perturbation to induce gliosis and the production of glial-derived neurotoxic factors in an animal model exhibiting a leaky BBB (blood-brain barrier). Specifically, Aß42 + fibrinogen stimulation elevated levels of COX-2 (cyclooxygenase-2) and iNOS (inducible nitric oxide synthase) with a considerable extent of neuronal loss associated with microglia and astrocyte activation. RESULTS: Treatment of injected rats with the broad spectrum anti-inflammatory agent, minocycline or the iNOS inhibitor, 1400 W inhibited gliosis, reduced levels of COX-2 and iNOS, and demonstrated efficacy for neuroprotection. CONCLUSION: The findings suggest the utility of combining amyloid beta peptide plus fibrinogen as a potent and understudied neuroinflammatory stimulus for the induction of glial-derived neurotoxic factors in BBB-compromised AD brain.


Subject(s)
Amyloid beta-Peptides , Gliosis , Rats , Animals , Amyloid beta-Peptides/metabolism , Cyclooxygenase 2/metabolism , Gliosis/drug therapy , Neuroinflammatory Diseases , Microglia/metabolism , Nitric Oxide Synthase Type II/metabolism , Fibrinogen , Hippocampus/metabolism , Peptide Fragments/metabolism
15.
Front Endocrinol (Lausanne) ; 14: 1150125, 2023.
Article in English | MEDLINE | ID: mdl-37547305

ABSTRACT

Introduction: Preterm birth is one of the major causes of neonatal morbidity and mortality across the world. Both term and preterm labour are preceded by inflammatory activation in uterine tissues. This includes increased leukocyte infiltration, and subsequent increase in chemokine and cytokine levels, activation of pro-inflammatory transcription factors as NF-κB and increased prostaglandin synthesis. Prostaglandin F2α (PGF2α) is one of the myometrial activators and stimulators. Methods: Here we investigated the role of PGF2α in pro-inflammatory signalling pathways in human myometrial cells isolated from term non-labouring uterine tissue. Primary myometrial cells were treated with G protein inhibitors, calcium chelators and/or PGF2α. Nuclear extracts were analysed by TranSignal cAMP/Calcium Protein/DNA Array. Whole cell protein lysates were analysed by Western blotting. mRNA levels of target genes were analysed by RT-PCR. Results: The results show that PGF2α increases inflammation in myometrial cells through increased activation of NF-κB and MAP kinases and increased expression of COX-2. PGF2α was found to activate several calcium/cAMP-dependent transcription factors, such as CREB and C/EBP-ß. mRNA levels of NF-κB-regulated cytokines and chemokines were also elevated with PGF2α stimulation. We have shown that the increase in PGF2α-mediated COX-2 expression in myometrial cells requires coupling of the FP receptor to both Gαq and Gαi proteins. Additionally, PGF2α-induced calcium response was also mediated through Gαq and Gαi coupling. Discussion: In summary, our findings suggest that PGF2α-induced inflammation in myometrial cells involves activation of several transcription factors - NF-κB, MAP kinases, CREB and C/EBP-ß. Our results indicate that the FP receptor signals via Gαq and Gαi coupling in myometrium. This work provides insight into PGF2α pro-inflammatory signalling in term myometrium prior to the onset of labour and suggests that PGF2α signalling pathways could be a potential target for management of preterm labour.


Subject(s)
Obstetric Labor, Premature , Premature Birth , Infant, Newborn , Female , Humans , Dinoprost/pharmacology , Dinoprost/metabolism , NF-kappa B/metabolism , Calcium/metabolism , Premature Birth/metabolism , Cyclooxygenase 2/genetics , Myometrium , Inflammation/metabolism , Obstetric Labor, Premature/metabolism , Cytokines/metabolism , RNA, Messenger/metabolism
16.
Cureus ; 15(8): e43317, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37577271

ABSTRACT

BACKGROUND:  Gastric ulcer (GU) is one of the most critical gastrointestinal tract disorders. Garcinol is a polyisoprenylated benzophenone in Garcinia fruit with antioxidant and anti-inflammatory priorities. OBJECTIVES:  We aimed to assess the protective effects of garcinol against GU induced in rats. We investigated garcinol's effects on DNA polymerization via mammalian targets of rapamycin (mTOR) and cyclin D1, cell proliferation via proliferating cell nuclear antigen (PCNA), inflammatory pathway via cyclooxygenase-2 (COX2), TNF-α, and IL-1ß, and anti-inflammatory pathway via IL-4 and IL10. METHODS:  In our study, we administered a single oral dose of 80 mg/kg of indomethacin to rats to induce GU. Some of the rats were given a treatment of 50 mg/kg of garcinol. We examined the expressions of mTOR, cyclin D1, PCNA, COX2, TNF-α, and IL-1ß/4/10 in the gastric tissues. Furthermore, we stained sections of the gastric tissues with Masson trichrome. RESULTS:  The areas of gastric tissues in the GU group showed severe hemorrhage and extensive fibrosis. Treating GU rats with garcinol prevented bleeding and ameliorated the fibrosis caused in gastric cells by GU. Moreover, treatment with garcinol significantly decreased the expression of mTOR, cyclin D1, PCNA, COX2, TNF-α, and IL-1ß associated with elevation of IL-4 and IL-10. CONCLUSION:  Garcinol has been found to provide therapeutic benefits in rats with induced GU. These benefits may be due to its ability to decrease the expression of DNA polymerization markers, cell proliferation markers, and inflammatory markers at the gene and protein levels.

17.
ACS Appl Bio Mater ; 6(7): 2816-2825, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37326439

ABSTRACT

Inflammation activation is accompanied by tumor growth, migration, and differentiation. Photodynamic therapy (PDT) can trigger an inflammatory response to cause negative feedback of tumor inhibition. In this paper, a feedback-elevated antitumor amplifier is developed by constructing self-delivery nanomedicine for PDT and cascade anti-inflammation therapy. Based on the photosensitizer chlorin e6 (Ce6) and COX-2 inhibitor indomethacin (Indo), the nanomedicine is prepared via molecular self-assembly technology without additional drug carriers. It is exciting that the optimized nanomedicine (designated as CeIndo) possesses favorable stability and dispersibility in the aqueous phase. Moreover, the drug delivery efficiency of CeIndo is significantly improved, which could be effectively accumulated at the tumor site and internalized by tumor cells. Importantly, CeIndo not only exhibits a robust PDT efficacy on tumor cells but also drastically decreases the PDT-induced inflammatory response in vivo, resulting in feedback-elevated tumor inhibition. By virtue of the synergistic effect of PDT and cascade inflammation suppression, CeIndo tremendously reduces tumor growth and leads to a low side effect. This study presents a paradigm for the development of codelivery nanomedicine for enhanced tumor therapy through inflammation suppression.


Subject(s)
Photochemotherapy , Humans , Photochemotherapy/adverse effects , Photochemotherapy/methods , Nanomedicine , Feedback , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Inflammation/drug therapy
18.
Front Immunol ; 14: 1177604, 2023.
Article in English | MEDLINE | ID: mdl-37153547

ABSTRACT

Background: Neutrophil extracellular traps (NETs) are crucial in the progression of several cancers. The formation of NETs is closely related to reactive oxygen species (ROS), and the granule proteins involved in nucleosome depolymerization under the action of ROS together with the loosened DNA compose the basic structure of NETs. This study aims to investigate the specific mechanisms of NETs promoting gastric cancer metastasis in order to perfect the existing immunotherapy strategies. Methods: In this study, the cells and tumor tissues of gastric cancer were detected by immunological experiments, real-time polymerase chain reaction and cytology experiments. Besides, bioinformatics analysis was used to analyze the correlation between cyclooxygenase-2 (COX-2) and the immune microenvironment of gastric cancer, as well as its effect on immunotherapy. Results: Examination of clinical specimens showed that NETs were deposited in tumor tissues of patients with gastric cancer and their expression was significantly correlated with tumor staging. Bioinformatics analysis showed that COX-2 was involved in gastric cancer progression and was associated with immune cell infiltration as well as immunotherapy. In vitro experiments, we demonstrated that NETs could activate COX-2 through Toll-like receptor 2 (TLR2) and thus enhance the metastatic ability of gastric cancer cells. In addition, in a liver metastasis model of nude mice we also demonstrated the critical role of NETs and COX-2 in the distant metastasis of gastric cancer. Conclusion: NETs can promote gastric cancer metastasis by initiating COX-2 through TLR2, and COX-2 may become a target for gastric cancer immunotherapy.


Subject(s)
Extracellular Traps , Stomach Neoplasms , Animals , Mice , Cyclooxygenase 2/metabolism , Mice, Nude , Neutrophils , Reactive Oxygen Species/metabolism , Stomach Neoplasms/metabolism , Toll-Like Receptor 2/metabolism , Tumor Microenvironment , Humans
19.
J Funct Biomater ; 14(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37103282

ABSTRACT

Cyclooxygenase-2 (COX-2) is a biomolecule known to be overexpressed in inflammation. Therefore, it has been considered a diagnostically useful marker in numerous studies. In this study, we attempted to assess the correlation between COX-2 expression and the severity of intervertebral disc (IVD) degeneration using a COX-2-targeting fluorescent molecular compound that had not been extensively studied. This compound, indomethacin-adopted benzothiazole-pyranocarbazole (IBPC1), was synthesized by introducing indomethacin-a compound with known selectivity for COX-2-into a phosphor with a benzothiazole-pyranocarbazole structure. IBPC1 exhibited relatively high fluorescence intensity in cells pretreated with lipopolysaccharide, which induces inflammation. Furthermore, we observed significantly higher fluorescence in tissues with artificially damaged discs (modeling IVD degeneration) compared to normal disc tissues. These findings indicate that IBPC1 can meaningfully contribute to the study of the mechanism of IVD degeneration in living cells and tissues and to the development of therapeutic agents.

20.
Life Sci ; 319: 121544, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36871933

ABSTRACT

AIMS: Calcium oxalate (Oxa), constituent of most common kidney stones, damages renal tubular epithelial cells leading to kidney disease. Most in vitro studies designed to evaluate how Oxa exerts its harmful effects were performed in proliferative or confluent non-differentiated renal epithelial cultures; none of them considered physiological hyperosmolarity of renal medullary interstitium. Cyclooxygenase 2 (COX2) has been associated to Oxa deleterious actions; however, up to now, it is not clear how COX2 acts. In this work, we proposed an in vitro experimental system resembling renal differentiated-epithelial cells that compose medullary tubular structures which were grown and maintained in a physiological hyperosmolar environment and evaluated whether COX2 â†’ PGE2 axis (COX2 considered a cytoprotective protein for renal cells) induces Oxa damage or epithelial restitution. MAIN METHODS: MDCK cells were differentiated with NaCl hyperosmolar medium for 72 h where cells acquired the typical apical and basolateral membrane domains and a primary cilium. Then, cultures were treated with 1.5 mM Oxa for 24, 48, and 72 h to evaluate epithelial monolayer restitution dynamics and COX2-PGE2 effect. KEY FINDINGS: Oxa completely turned the differentiated phenotype into mesenchymal one (epithelial-mesenchymal transition). Such effect was partially and totally reverted after 48 and 72 h, respectively. Oxa damage was even deeper when COX2 was blocked by NS398. PGE2 addition restituted the differentiated-epithelial phenotype in a time and concentration dependence. SIGNIFICANCE: This work presents an experimental system that approaches in vitro to in vivo renal epithelial studies and, more important, warns about NSAIDS use in patients suffering from kidney stones.


Subject(s)
Calcium Oxalate , Kidney Calculi , Calcium Oxalate/chemistry , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Epithelial Cells/metabolism , Kidney Calculi/chemistry , Madin Darby Canine Kidney Cells , Animals , Dogs
SELECTION OF CITATIONS
SEARCH DETAIL