Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nano Lett ; 24(18): 5543-5549, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652819

ABSTRACT

It is technically challenging to quantitatively apply strains to tune catalysis because most heterogeneous catalysts are nanoparticles, and lattice strains can only be applied indirectly via core-shell structures or crystal defects. Herein, we report quantitative relations between macroscopic strains and hydrogen evolution reaction (HER) activities of dealloyed nanoporous gold (NPG) by directly applying macroscopic strains upon bulk NPG. It was found that macroscopic compressive strains lead to a decrease, while macroscopic tensile strains improve the HER activity of NPG, which is in line with the d-band center model. The overpotential and onset potential of HER display approximately a linear relation with applied macroscopic strains, revealing an ∼2.9 meV decrease of the binding energy per 0.1% lattice strains from compressive to tensile. The methodology with the high strain sensitivity of electrocatalysis, developed in this study, paves a new way to investigate the insights of strain-dependent electrocatalysis with high precision.

2.
Surf Sci ; 7162022 Feb.
Article in English | MEDLINE | ID: mdl-34737461

ABSTRACT

We have used density functional theory calculations to study the atomic structure of single-layer nanoislands of metal M (M=Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au) supported on M(111) and Au(111) surfaces. Nanoislands of Cu, Pd, Ag, Pt, and Au have planar structures on Au(111), while nanoislands of Ni, Rh, and Ir are nonplanar. The calculations also show that nanoislands of Cu, Pd, Pt, and Au on Au(111) with a diameter below 3 nm can have one of several atomic structures. Two of these structures have atoms at the edges of the nanoislands located near bridge sites on Au(111), and the other structures have atoms at the edges and center of the nanoislands located near bridge sites. The relative stability of these atomic structures depends on the size and nature of the Au-supported nanoparticles. Our findings provided computational support for the work of Liao and Ya [J. Phys. Chem. C. 121 (2017) 19218-19225] reporting the formation of two phases of Pt nanoislands on Au(111). These findings also reveal the rich and complex atomic structures of small single-layer metal nanoislands supported on metal surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL