Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 78(8): 1453-1463, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38738664

ABSTRACT

Evolutionary rescue, the process by which populations facing environmental stress avoid extinction through genetic adaptation, is a critical area of study in evolutionary biology. The order in which mutations arise and get established will be relevant to the population's rescue. This study investigates the degree of parallel evolution at the genotypic level between independent populations facing environmental stress and subject to different demographic regimes. Under density regulation, 2 regimes exist: In the first, the population can restore positive growth rates by adjusting its population size or through adaptive mutations, whereas in the second regime, the population is doomed to extinction unless a rescue mutation occurs. Analytical approximations for the likelihood of evolutionary rescue are obtained and contrasted with simulation results. We show that the initial level of maladaptation and the demographic regime significantly affect the level of parallelism. There is an evident transition between these 2 regimes. Whereas in the first regime, parallelism decreases with the level of maladaptation, it displays the opposite behavior in the rescue/extinction regime. These findings have important implications for understanding population persistence and the degree of parallelism in evolutionary responses as they integrate demographic effects and evolutionary processes.


Subject(s)
Biological Evolution , Models, Genetic , Stress, Physiological , Mutation , Extinction, Biological , Adaptation, Physiological/genetics , Adaptation, Biological , Population Density , Environment
2.
Comput Struct Biotechnol J ; 18: 696-704, 2020.
Article in English | MEDLINE | ID: mdl-32257053

ABSTRACT

The density regulated protein (DENR) forms a stable heterodimer with malignant T-cell-amplified sequence 1 (MCT-1). DENR-MCT-1 heterodimer then participates in regulation of non-canonical translation initiation and ribosomal recycling. The N-terminal domain of DENR interacts with MCT-1 and carries a classical tetrahedral zinc ion-binding site, which is crucial for the dimerization. DENR-MCT-1 binds the small (40S) ribosomal subunit through interactions between MCT-1 and helix h24 of the 18S rRNA, and through interactions between the C-terminal domain of DENR and helix h44 of the 18S rRNA. This later interaction occurs in the vicinity of the P site that is also the binding site for canonical translation initiation factor eIF1, which plays the key role in initiation codon selection and scanning. Sequence homology modeling and a low-resolution crystal structure of the DENR-MCT-1 complex with the human 40S subunit suggests that the C-terminal domain of DENR and eIF1 adopt a similar fold. Here we present the crystal structure of the C-terminal domain of DENR determined at 1.74 Å resolution, which confirms its resemblance to eIF1 and advances our understanding of the mechanism by which DENR-MCT-1 regulates non-canonical translation initiation and ribosomal recycling.

3.
Oncol Lett ; 17(1): 141-148, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30655749

ABSTRACT

Previously, certain experiments have suggested that density-regulated re-initiation and release factor (DENR) could serve important roles in cancer, however, to the best of our knowledge, a comprehensive analysis of DENR and its association with cancer patient survival is lacking. The aim of the current study was to investigate the expression of DENR in multiple tumour types and to evaluate the effects of DENR on survival in malignancies. Sample expression profiles were downloaded from the Gene Expression Omnibus database. Association between DENR expression and clinicopathological features was analysed by Chi-square tests. The effects of DENR on survival were evaluated by Kaplan-Meier analysis. The results of the current study demonstrate that DENR expression was upregulated in nine cancer types. High DENR expression indicated poor prognosis of patients. The results of the present study demonstrated that DENR is highly expressed in multiple tumour types and may be used as a potential prognostic marker and therapeutic target.

4.
Cell Rep ; 20(3): 521-528, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28723557

ABSTRACT

The repertoire of the density-regulated protein (DENR) and the malignant T cell-amplified sequence 1 (MCT-1/MCTS1) oncoprotein was recently expanded to include translational control of a specific set of cancer-related mRNAs. DENR and MCT-1 form the heterodimer, which binds to the ribosome and operates at both translation initiation and reinitiation steps, though by a mechanism that is yet unclear. Here, we determined the crystal structure of the human small ribosomal subunit in complex with DENR-MCT-1. The structure reveals the location of the DENR-MCT-1 dimer bound to the small ribosomal subunit. The binding site of the C-terminal domain of DENR on the ribosome has a striking similarity with those of canonical initiation factor 1 (eIF1), which controls the fidelity of translation initiation and scanning. Our findings elucidate how the DENR-MCT-1 dimer interacts with the ribosome and have functional implications for the mechanism of unconventional translation initiation and reinitiation.


Subject(s)
Cell Cycle Proteins/chemistry , Eukaryotic Initiation Factors/chemistry , Oncogene Proteins/chemistry , Ribosomes/chemistry , Crystallography, X-Ray , Humans , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL