Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Neurocirugia (Astur : Engl Ed) ; 35(5): 272-280, 2024.
Article in English | MEDLINE | ID: mdl-38972388

ABSTRACT

A 36-year-old male presented to the Emergency Department with clinical symptoms of blurred vision of progressive onset of two years of evolution. The ophthalmological examination revealed the existence of bilateral papilledema. Using cranial computed tomography and magnetic resonance imaging, the presence of a right occipital pial arteriovenous malformation was certified. Arteriographically, pial arterial contributions dependent on the right middle cerebral artery and the right posterior cerebral artery were identified. Venous drainage was located at the level of the superior sagittal sinus. An associated right transverse sinus stenosis was also identified. The existence of secondary intracranial hypertension was corroborated by monitoring with an intracranial pressure sensor. An interventional procedure was carried out consisting of embolization of the arterial supplies of the lesion using Onyx®. The clinical-radiological findings after the procedure were favorable: the papilledema disappeared and complete exclusion of the malformation was achieved. A new intracranial pressure measurement showed resolution of intracranial hypertension. Subsequent regulated radiological controls showed complete exclusion of the malformation up to 5 years later.


Subject(s)
Embolization, Therapeutic , Intracranial Arteriovenous Malformations , Intracranial Hypertension , Polyvinyls , Humans , Male , Adult , Intracranial Hypertension/etiology , Intracranial Arteriovenous Malformations/complications , Intracranial Arteriovenous Malformations/diagnostic imaging , Dimethyl Sulfoxide , Pia Mater/blood supply , Papilledema/etiology
2.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930397

ABSTRACT

Modified clays with organic molecules have many applications, such as the adsorption of pollutants, catalysts, and drug delivery systems. Different methodologies for intercalating these structures with organic moieties can be found in the literature with many purposes. In this paper, a new methodology of modifying Sodium Montmorillonite clays (Na-Mt) with a faster drying time was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET, and thermogravimetric analysis (TG and DTG). In the modification process, a mixture of ethyl alcohol, DMSO, and Na-Mt were kept under magnetic stirring for one hour. Statistical analysis was applied to evaluate the effects of the amount of DMSO, temperature, and sonication time on the modified clay (DMSO-SMAT) using a 23-factorial design. XRD and FTIR analyses showed the DMSO intercalation into sodium montmorillonite Argel-T (SMAT). An average increase of 0.57 nm for the interplanar distance was found after swelling with DMSO intercalation. BET analysis revealed a decrease in the surface area (from 41.8933 m2/g to 2.1572 m2/g) of Na-Mt when modified with DMSO. The porosity increased from 1.74 (SMAT) to 1.87 nm (DMSO-SMAT) after the application of the methodology. Thermal analysis showed a thermal stability for the DMSO-SMAT material, and this was used to calculate the DMSO-SMAT formula of Na[Al5Mg]Si12O30(OH)6 · 0.54 DMSO. Statistical analysis showed that only the effect of the amount of DMSO was significant for increasing the interlayer space of DMSO-SMAT. In addition, at room temperature, the drying time of the sample using this methodology was 30 min.

3.
J Esthet Restor Dent ; 36(6): 930-940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433719

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effects of different surface treatments on the repair bond strength between a fiber-reinforced dentin composite and a posterior composite. METHODS: Forty fiber-reinforced dentin composite resin blocks (4 mm × 4 mm × 4 mm) were separated into eight groups (n = 5) according to the surface preparation methods: (G1) negative control group, (G2) adhesive application, (G3) 50% dimethylsulfoxide (DMSO) application, (G4) 50% DMSO + adhesive application, (G5) 37% phosphoric acid etch + adhesive application, (G6) air abrasion + adhesive application, (G7) 37% phosphoric acid etch + 50% DMSO application + adhesive application, and (G8) air abrasion +50% DMSO application + adhesive application group. The composite surfaces were repaired in two layers with a posterior composite. Composite sticks were subjected to a micro tensile bond strength (µTBS) test. Fractured surfaces were evaluated using a stereomicroscope (×25). Short fiber-reinforced composite samples' surfaces were investigated by scanning electron microscope (SEM). Shapiro Wilk, one-way ANOVA, and Tukey HSD tests were used for statistical evaluation. RESULTS: The highest average (µTBS) values were observed in G8, whereas the lowest mean µTBS values were evident in the G1 group. Statistically significant µTBS values were found in all adhesive-applied groups when compared with the negative control group. Notably, the application of 50% DMSO without adhesive did not lead to a statistically significant increase in µTBS values. SEM images demonstrated that acid etching partially eliminated residues on the composite surface, while air abrasion had a detrimental effect on the integrity of fiber structures. CONCLUSION: In the repair of fiber-reinforced dentin composite with a posterior composite, adhesive application is an effective approach. The treatment of 50% DMSO without adhesive did not confer a statistically significant advantage, and the supplemental use of acid etch or air abrasion did not show an additional benefit compared to adhesive-only repairs. CLINICAL SIGNIFICANCE: Adhesive application emerges as a potent and effective strategy for the repair of bur-roughened fiber-reinforced dentin composites. With its limitations, the study highlights the efficacy of adhesive-only repairs without the necessity for additional surface treatments.


Subject(s)
Composite Resins , Dental Bonding , Surface Properties , Tensile Strength , Composite Resins/chemistry , Dental Bonding/methods , Humans , Dentin , Acid Etching, Dental , Materials Testing , Phosphoric Acids/chemistry , Dentin-Bonding Agents/chemistry , Dental Stress Analysis , Microscopy, Electron, Scanning
4.
Methods Mol Biol ; 2783: 53-89, 2024.
Article in English | MEDLINE | ID: mdl-38478226

ABSTRACT

The development of simple but effective storage protocols for adult stem cells will greatly enhance their use and utility in tissue-engineering applications. Cryopreservation has shown the most promise but is a fairly complex process, necessitating the use of chemicals called cryoprotective agents (CPAs), freezing equipment, and obviously, storage in liquid nitrogen. The purpose of this chapter is to present a general overview of cryopreservation storage techniques and the optimal protocols/results obtained in our laboratory for long-term storage of adult stem cells using freezing storage.


Subject(s)
Adult Stem Cells , Cryopreservation , Adult , Humans , Adipose Tissue , Cell Survival , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Freezing
5.
Food Chem Toxicol ; 182: 114096, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37858842

ABSTRACT

Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver. The aim of this study is to evaluate the comparative in silico and in vivo ameliorative potential of the ethanolic extract of Curcuma longa (EECL) in male and female Wistar rats administered N-nitrosodiethylamine-induced hepatocellular carcinoma. The MAPK compound was obtained from a protein data bank (PDB ID: 7AUV) for molecular docking. One hundred and twenty Wistar rats, were randomly selected into twelve groups (n = 5): Group A received regular diets as a basal control; groups B to G were administered 100 mg/kg NDEA twice in two weeks; while groups C to E received 200 mg/kg, 400 mg/kg, and 600 mg/kg of EECL; group F was treated with 200 mg/kg pure curcumin; and group G received 100 mg/kg Sylibon-140. Group H received only 200 mg/kg pure curcumin, and group I received 200 mg/kg of dimethylsulfoxide (DMSO). Groups J, K, and L received 200 mg/kg, 400 mg/kg and 600 mg/kg of EECL. MAPK and AFP mRNA in Wistar rats administered NDEA were upregulated as compared to EECL groups. In conclusion, the in silico and in vitro study validates the mitigating role of ethanolic extract of Curcuma longa and pure curcumin.


Subject(s)
Carcinoma, Hepatocellular , Curcumin , Liver Neoplasms , Rats , Male , Female , Animals , Rats, Wistar , Curcumin/pharmacology , Curcuma , Carcinoma, Hepatocellular/drug therapy , Mitogen-Activated Protein Kinases , Molecular Docking Simulation , Liver Neoplasms/drug therapy , Plant Extracts/pharmacology , Ethanol
6.
Mar Pollut Bull ; 196: 115632, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37826908

ABSTRACT

Spatial distributions of dissolved and particulate dimethylsulfoxide (DMSOd and DMSOp) were investigated off the northern Antarctic Peninsula during the austral summer of 2018, an ecologically and climatically important region of the world. In the upper waters, DMSOd was concentrated in the ice-melt zone because DMSO functions physiologically as an intracellular osmolyte and cryoprotectant. DMSOd concentrations had a weak positive correlation with temperature but a negative correlation with nutrients. This highlighted the importance of temperature-dependent biological activities and photolysis in DMSOd production and the important role of the intracellular antioxidation system in phytoplankton cells. The decrease of average DMSOp:Chl-a ratios in upper waters from west to east, along with decreasing temperatures and increasing diatoms proportions in the phytoplankton, illustrates how seawater DMSO production capacities depend on ambient temperatures and the composition of phytoplankton assemblages. DMSOp were accumulated in deep waters through bio-debris accumulation and microbial activity.


Subject(s)
Dimethyl Sulfoxide , Seawater , Antarctic Regions , Seasons , Phytoplankton/physiology
7.
Int J Pharm ; 646: 123449, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37776965

ABSTRACT

VISUDYNE® is a liposomal formulation of verteporfin, used in the photodynamic therapy of age-related macular degeneration via intravenous administration. In this study, we developed a new in vitro method to quantify verteporfin release from VISUDYNE® under conditions that replicate in vivo conditions using human serum albumin (HSA). Verteporfin release from the liposomes was quantified using capillary electrophoresis (CE) with optical detection. Verteporfin binding to HSA was quantified by measuring HSA fluorescence that is quenched by drugs binding to specific HSA binding sites. The binding constant of verteporfin to HSA was calculated using the Stern Volmer plot and found to be 1.966 × 107 M-1 at 37 °C. Verteporfin binding to HSA involves one albumin binding site and the binding molar ratio between verteporfin and HSA is approximately 1:1. A rapid partitioning of verteporfin from VISUDYNE® onto HSA takes place within 10 min and involves the release of more than 90% of the verteporfin at physiological temperatures. This study verifies this approach of using CE to rapidly separate liposome and HSA-bound drug, thus minimizing drug release artifacts created with other methods.

8.
J Phycol ; 59(5): 963-979, 2023 10.
Article in English | MEDLINE | ID: mdl-37464562

ABSTRACT

Phaeocystis antarctica forms extensive spring blooms in the Southern Ocean that coincide with high concentrations of dimethylsulfoniopropionate (DMSP), dimethylsulfoxide (DMSO), dimethylsulfide (DMS), and acrylate. We determined how concentrations of these compounds changed during the growth of axenic P. antarctica cultures exposed to light-limiting, sub-saturating, and saturating PAR irradiances. Cellular DMSP concentrations per liter cell volume (CV) ranged between 199 and 403 mmol · LCV -1 , with the highest concentrations observed under light-limiting PAR. Cellular acrylate concentrations did not change appreciably with a change in irradiance level or growth, ranging between 18 and 45 mmol · LCV -1 , constituting an estimated 0.2%-2.8% of cellular carbon. Both dissolved acrylate and DMSO increased substantially with irradiance during exponential growth on a per-cell basis, ranging from 0.91 to 3.15 and 0.24 to 1.39 fmol · cell-1 , respectively, indicating substantial export of these compounds into the dissolved phase. Average cellular DMSO:DMSP ratios increased 7.6-fold between exponential and stationary phases of batch growth, with a 3- to 13-fold increase in cellular DMSO likely formed from abiotic reactions of DMSP and DMS with reactive oxygen species (ROS). At mM levels, cellular DMSP and acrylate are proposed to serve as de facto antioxidants in P. antarctica not regulated by oxidative stress or changes in ROS. Instead, cellular DMSP concentrations are likely controlled by other physiological processes including an overflow mechanism to remove excess carbon via acrylate, DMS, and DMSO during times of unbalanced growth brought on by physical stress or nutrient limitation. Together, these compounds should aid P. antarctica in adapting to a range of PAR irradiances by maintaining cellular functions and reducing oxidative stress.


Subject(s)
Haptophyta , Sulfonium Compounds , Dimethyl Sulfoxide , Reactive Oxygen Species , Acrylates , Carbon
9.
Carbohydr Polym ; 303: 120440, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36657835

ABSTRACT

The molecular self-diffusion coefficients were accessed, for the first time, in solutions of microcrystalline cellulose, dissolved in 30 wt% and 55 wt% aqueous tetrabutylammonium hydroxide, TBAH (aq), and in mixtures of 40 wt% TBAH (aq) with an organic co-solvent, dimethylsulfoxide (DMSO), through pulsed field gradient stimulated echo NMR measurements. A two-state model was applied to estimate α (i.e., average number of ions that "bind" to each anhydroglucose unit) and Pb (i.e., fraction of "bound" molecules of DMSO, TBAH or H2O to cellulose) parameters. The α values suggest that TBA+ ions can bind to cellulose within 0.5 TBA+ to 2.3 TBA+/AGU. On the other hand, the Pb parameter increases when raising cellulose concentration for TBA+, DMSO and water in all solvent systems. Data suggests that TBAH interacts with the ionized OH groups from cellulose forming a sheath of bulky TBA+ counterions which consequently leads to steric hindrance between cellulose chains.

10.
Biotechnol Bioeng ; 120(1): 203-215, 2023 01.
Article in English | MEDLINE | ID: mdl-36128631

ABSTRACT

Microbial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle. The metabolic pathway was reconstructed by eliminating fumarase to prevent MA conversion to fumarate. The respiration system of M. succiniciproducens was reconstructed by introducing the Actinobacillus succinogenes dimethylsulfoxide (DMSO) reductase to improve cell growth using DMSO as an electron acceptor. Also, the cell membrane was engineered by employing Pseudomonas aeruginosa cis-trans isomerase to enhance MA tolerance. High inoculum fed-batch fermentation of the final engineered strain produced 61 g/L of MA with an overall productivity of 2.27 g/L/h, which is the highest MA productivity reported to date. The systems metabolic engineering strategies reported in this study will be useful for developing anaerobic bioprocesses for the production of various industrially important chemicals.


Subject(s)
Mannheimia , Metabolic Engineering , Animals , Mannheimia/genetics , Mannheimia/metabolism , Dimethyl Sulfoxide/metabolism , Electrons , Fumarates/metabolism
11.
Biopreserv Biobank ; 21(4): 417-426, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36001824

ABSTRACT

Cryopreservation of human T lymphocytes has become a key strategy for supporting cell-based immunotherapy. However, the effects of ice seeding on the cryopreservation of cells under relatively slow cooling have not been well researched. The cryopreservation strategy with a nontoxic, single-ingredient, and injectable cryoprotective solution remains to be developed. We conducted ice seeding for the cells in a solution of normal saline with 1% (v/v) dimethyl sulfoxide (Me2SO), 0.1 M trehalose, and 4% (w/v) human serum albumin (HSA) under different slow cooling rates. With the positive results, we further applied seeding in the solution of 0.2 M trehalose and 4% (w/v) HSA under the same cooling rates. The optimal concentration of trehalose in the Me2SO-free solutions was then investigated under the optimized cooling rate with seeding, with control groups without seeding, and in a freezing container. In vitro toxicity of the cryoprotective solutions to the cells was also tested. We found that the relative viability of cells (1% [v/v] Me2SO, 0.1 M trehalose and 4% [w/v] HSA) was improved significantly from 88.6% to 94.1% with ice seeding, compared with that without seeding (p < 0.05). The relative viability of cells (0.2 M trehalose and 4% [w/v] HSA) with seeding was significantly higher than that without seeding, 96.3% and 92.0%, respectively (p < 0.05). With no significant difference in relative viability between the solutions of 0.2 M trehalose or 0.3 M trehalose with 4% (w/v) HSA (92.4% and 94.6%, respectively, p > 0.05), the solution of 0.2 M trehalose and 4% (w/v) HSA was selected as the optimized Me2SO-free solution. This strategy could cryopreserve human T lymphocytes without any toxic cryoprotectant and boost the application of cell products in humans by intravenous injection, with the osmolality of the low-concentration cryoprotective solution close to that of human plasma.


Subject(s)
Ice , Trehalose , Humans , Trehalose/pharmacology , T-Lymphocytes , Cryoprotective Agents/pharmacology , Cryopreservation/methods , Dimethyl Sulfoxide/pharmacology , Cell Survival
12.
Toxicol Rep ; 9: 769-777, 2022.
Article in English | MEDLINE | ID: mdl-36518384

ABSTRACT

Background: Apoptosis is a common pathology in malaria and most antimalarial drugs induce apoptosis during chemotherapy. Globimetula braunii is an African mistletoe used for the treatment of malaria but its effect on mitochondria-mediated apoptosis is not known. Methods: Malarial infection was induced by the intraperitoneal injection of NK 65 strain Plasmodium berghei-infected erythrocytes into mice which were treated with graded doses (100-400 mg/kg) of methanol extract (ME), and fractions of n-hexane, dichloromethane, ethylacetate and methanol (HF, DF, EF and MF) for 9 days after the confirmation of parasitemia. Artequine (10 mg/kg) was used as control drug. The fraction with the highest antiplasmodial activity was used (same dose) to treat mice infected with chloroquine-resistant (ANKA) strain for 5 consecutive days after the confirmation of parasitemia. P-alaxin (10 mg/kg) was used as control drug. On the last day of the treatment, liver mitochondria were isolated and mitochondrial Permeability Transition (mPT) pore opening, mitochondrial F0F1 ATPase (mATPase) activity, lipid peroxidation (mLPO) and liver deoxyribonucleic acid (DNA) fragmentation were assessed spectrophotometrically. Caspases 3 and 9 were determined by Enzyme-Linked Immunosorbent Assay (ELISA) technique. Cytochrome c, P53, Bcl-2-associated X protein (Bax), and B-cell lymphoma-2 (Bcl2) were determined via immunohistochemistry. Phytochemical constituents of the crude methanol extract of Globimetula braunii were determined via the Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Results: There was large amplitude mPT induction by malaria parasites, extract and fractions of Globimetula braunii. At 400 mg/kg, HF significantly (p < 0.01) downregulated mATPase activity, and mLPO in both (susceptible and resistant) models, caused DNA fragmentation (P < 0.0001), induced caspases activation, P53, bax and cytochrome c release but downregulated Bcl2 in both models. The GC-MS analysis of methanol extract of Globimetula braunii showed that α-amyrin is the most abundant phytochemical. Conclusion: The n-hexane fraction of Globimetula braunii induced mitochondrial-mediated apoptosis through the opening of the mitochondrial pore, fragmentation of genomic DNA, increase in the levels of P53, bax, caspase 3 and 9 activation and cytochrome c release with concomitant decrease in the level of Bcl2. α-Amyrin is a triterpene with apoptotic effects.

13.
Front Pharmacol ; 13: 998179, 2022.
Article in English | MEDLINE | ID: mdl-36353489

ABSTRACT

Traumatic brain injury (TBI) has been the result of neurological deficit and oxidative stress. This study evaluated the antioxidative neuroprotective property and learning and memory-enhancing effects of dimethyl sulfoxide (DMSO) in a rat model after the induction of TBI. 21 albino rats with 7 rats per group were used in this study. Group I was induced with TBI and treated with DMSO at 67.5 mg/kg orally once daily which started 30 min after the induction of TBI and lasted 21 days. Group II was induced with TBI but not treated while Group III was neither induced with TBI nor treated. Assessment of behavioral function (Learning and memory, anxiety and motor function), the level of an antioxidant enzymes and their gene expression (superoxide dismutase, catalase, glutathione peroxidase), the biomarkers of oxidative stress (malondialdehyde) and S100B levels as well as brain tissues histological studies were conducted. Administration of DMSO to rats with induced TBI has improved learning and memory, locomotor function and decreased anxiety in Group I compared to Group II. Moreover, the level of S100B was significantly (p < 0.05) lower in Group I compared to Group II. Treatment with DMSO also decreased lipid peroxidation significantly (p < 0.05) compared to Group II. There exists a significant (p < 0.05) increase in CAT, SOD, and GPX activities in Group I compared to Group II. Therefore, DMSO has demonstrated a potential antioxidative neuroprotective effect through its ability to increase the level of antioxidant enzymes which they quench and inhibit the formation of ROS, thereby improving cognitive functions.

14.
J Mass Spectrom Adv Clin Lab ; 26: 28-33, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36388059

ABSTRACT

Background: Despite its clear advantages over immunoassay-based testing, the measurement of serum thyroglobulin by mass spectrometry remains limited to a handful of institutions. Slow adoption by clinical laboratories could reflect limited accessibility to existing methods that have sensitivity comparable to modern immunoassays, as well as a lack of tools for calibration and assay harmonization. Methods: We developed and validated a liquid chromatography-tandem mass spectrometry-based assay for the quantification of serum thyroglobulin. The protocol combined peptide immunoaffinity purification using a commercially available, well-characterized monoclonal antibody and mobile phase modification with dimethylsulfoxide (DMSO) for enhanced sensitivity. To facilitate harmonization with other laboratories, we developed a novel, serum-based 5-point distributable reference material (Husky Ref). Results: The assay demonstrated a lower limit of quantification of 0.15 ng/mL (<20 %CV). Mobile phase DMSO increased signal intensity of the target peptide at least 3-fold, improving quantification at low concentrations. Calibration traceable to Husky Ref enabled harmonization between laboratories in an interlaboratory study. Conclusions: Sensitive mass spectrometry-based thyroglobulin measurement can be achieved using a monoclonal antibody during peptide immunoaffinity purification and the addition of mobile phase DMSO. Laboratories interested in deploying this assay can utilize the provided standard operating procedure and freely-available Husky Ref reference material.

15.
Molecules ; 27(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36080396

ABSTRACT

The Met80Ala variant of yeast cytochrome c is known to possess electrocatalytic properties that are absent in the wild type form and that make it a promising candidate for biocatalysis and biosensing. The versatility of an enzyme is enhanced by the stability in mixed aqueous/organic solvents that would allow poorly water-soluble substrates to be targeted. In this work, we have evaluated the effect of dimethylsulfoxide (DMSO) on the functionality of the Met80Ala cytochrome c mutant, by investigating the thermodynamics and kinetics of electron transfer in mixed water/DMSO solutions up to 50% DMSO v/v. In parallel, we have monitored spectroscopically the retention of the main structural features in the same medium, focusing on both the overall protein structure and the heme center. We found that the organic solvent exerts only minor effects on the redox and structural properties of the mutant mostly as a result of the modification of the dielectric constant of the solvent. This would warrant proper functionality of this variant also under these potentially hostile experimental conditions, that differ from the physiological milieu of cytochrome c.


Subject(s)
Cytochromes c , Dimethyl Sulfoxide , Cytochromes c/metabolism , Dimethyl Sulfoxide/chemistry , Kinetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Solvents , Thermodynamics , Water
16.
J Med Life ; 15(6): 751-756, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35928361

ABSTRACT

Inflammatory cytokines, cell adhesion molecules, and toll-like receptors (TLRs) play an important role in atherosclerosis. The aim of this study was to further evaluate the role of inflammatory cytokines, cell adhesion molecules, and toll-like receptors in atherosclerosis. Forty local breed domestic male rabbits were divided randomly into 4 groups, 10 rabbits each. Group I was the control group, group II received a high cholesterol diet, group III received the drug solvent dimethyl sulfoxide (DMSO), and group IV received Atorvastatin (3.5 mg/kg/day). Blood samples were collected at 0 times, 5 weeks, and at the end of 10 weeks. TLRs expression on monocyte was measured by flow cytometry, IL-10, IL-17, IL-1ß, intracellular adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) were measured by ELISA. In group II, a high cholesterol diet led to a statistically significant elevation of lipids profile (TC, TG, and LDL) at both 5 weeks and 10 weeks compared to the control. The expression of TLRs was also increased compared to the control (13.53±2.5 to 25.79±6.5). The intimal thickness increased from 103.46±13.85 to 248.43±11.11. IL-17 increased significantly from 3.4±0.4 to 7.7±1.00, and IL-1ß increased from 1.04±0.19 to 9.66±1.4 (P 0.05) at 10 weeks. ICAM and VCAM increased from 1.7±0.16 to 8.2±0.74 and from 0.89±0.07 to 5.2±0.45, respectively. Atorvastatin significantly reduced TLRs at 10 weeks to 21.98±3.4 and intimal thickness to 191.6±15.59. IL-17, IL-1ß, ICAM, and VCAM were significantly reduced by Atorvastatin. Cytokines, cellular adhesion molecules, and probably TLRs have a role in the pathogenesis of hyperlipidemia and atherosclerosis.


Subject(s)
Atherosclerosis , Cytokines , Animals , Atherosclerosis/drug therapy , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Cell Adhesion Molecules , Cholesterol , Interleukin-17 , Male , Rabbits , Toll-Like Receptors , Vascular Cell Adhesion Molecule-1
17.
Molecules ; 27(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35744871

ABSTRACT

Hydrogen/deuterium (H/D) exchange combined with two-dimensional (2D) NMR spectroscopy has been widely used for studying the structure, stability, and dynamics of proteins. When we apply the H/D-exchange method to investigate non-native states of proteins such as equilibrium and kinetic folding intermediates, H/D-exchange quenching techniques are indispensable, because the exchange reaction is usually too fast to follow by 2D NMR. In this article, we will describe the dimethylsulfoxide (DMSO)-quenched H/D-exchange method and its applications in protein science. In this method, the H/D-exchange buffer is replaced by an aprotic DMSO solution, which quenches the exchange reaction. We have improved the DMSO-quenched method by using spin desalting columns, which are used for medium exchange from the H/D-exchange buffer to the DMSO solution. This improvement has allowed us to monitor the H/D exchange of proteins at a high concentration of salts or denaturants. We describe methodological details of the improved DMSO-quenched method and present a case study using the improved method on the H/D-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride.


Subject(s)
Dimethyl Sulfoxide , Hydrogen , Dimethyl Sulfoxide/chemistry , Humans , Hydrogen/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Protein Folding , Proteins
18.
Article in Spanish | LILACS, CUMED | ID: biblio-1410301

ABSTRACT

Haemophilus influenzae tipo b es un importante patógeno del hombre causante de varias de las enfermedades invasivas en niños menores de cinco años, contra el cual fueron autorizadas las vacunas glicoconjugadas a partir del polirribosilribitol fosfato. Quimi-Hib® es la primera y única vacuna contra este patógeno que utiliza el polisacárido obtenido por síntesis química. El Ingrediente Farmacéutico Activo es producido por el Centro de Ingeniería Genética y Biotecnología y se obtiene a partir de su conjugación al toxoide tetánico. En el presente reporte se hizo una caracterización del polirribosilribitol fosfato mediante la técnica de cromatografía de exclusión molecular de alta eficacia con detección ultravioleta a 215 nm. En el estudio se evaluaron tres lotes y se determinó el perfil de elución en una columna SuperdexTM 75 10/300 GL Increase con un porciento de pureza de 77,42 ± 8,97 y una masa molar promedio de 7.381 Da ± 210,93. La principal impureza presente en el polirribosilribitol fosfato es el dimetilsulfóxido, disolvente utilizado en la reacción de activación con el éster N-hidroxisuccinimidilo del ácido β-maleimidopropiónico. El polirribosilribitol fosfato se purificó por filtración con un Amicon Ultra-15 de 2.000 Da hasta una pureza de 99,1 por ciento y se conjugó al toxoide tetánico. El rendimiento de la reacción de conjugación con el polisacárido purificado fue de 30,0 por ciento 1,77 el cual no muestra diferencias significativas con el control que fue 33,7 por ciento ± 3,57 demostrándose que el dimetilsulfóxido no afecta el desempeño de la reacción de conjugación(AU)


Haemophilus influenzae type b is an important human pathogen causing some invasive diseases in children less than five years of age. Glycoconjugate vaccines based on polyribosylribitol phosphate have been licensed against this bacterium. Quimi-Hib® is the first and only vaccine against this pathogen using the chemically synthesized polysaccharide. The Active Pharmaceutical Ingredient is produced by the Center for Genetic Engineering and Biotechnology and is obtained from its conjugation to tetanus toxoid. In the present report a characterization of polyribosylribitol phosphate was performed by high performance molecular exclusion chromatography with ultraviolet detection at 215 nm. Three batches were evaluated in the study and the elution profile was determined on a SuperdexTM 75 10/300 GL Increase column with a purity percentage of 77.42 ± 8.97 and an average molecular weight of 7,381 Da ± 210.93. The main impurity present in polyribosylribitol phosphate was dimethylsulfoxide, the solvent used in the activation reaction with N-hydroxysuccinimidyl ester of β-maleimidopropionic acid. Polyribosylribitol phosphate was purified by filtration using a 2,000 Da cut-off Amicon Ultra-15 to a purity of 99.1 percent and conjugated to tetanus toxoid. The yield of the conjugation reaction with the purified polysaccharide was 30.0 percent ± 1.77 which shows no significant difference with the control which was 33.7 percent ± 3.57 demonstrating that dimethylsulfoxide does not affect the performance of the conjugation reaction(AU)


Subject(s)
Humans , Male , Female , Infant, Newborn , Infant , Child, Preschool , Polysaccharides , Chromatography, Gel/methods , Vaccines, Conjugate/therapeutic use , Reference Drugs , Haemophilus Infections/epidemiology , Tetanus Toxoid/therapeutic use
19.
Cell Tissue Bank ; 23(4): 851-861, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35338396

ABSTRACT

PURPOSE: To compare the effects on adhesive and structural properties of newer preservation conditions to those obtained with an established, standardized protocol (dimethyl sulfoxide at -180 °C). In attempt to simplify and enhance the safety of the procedure, we tested dextran-based freezing medium and a dry condition (no medium) at temperatures of -80 °C. METHODS: Five patches of human amniotic membrane were obtained from three different donors. For each donor, five preservation condition were tested: dimethyl sulfoxide at -180 °C, dimethyl sulfoxide at -80 °C, dextran-based medium at -180 °C, dextran-based medium at -80 °C and dry freezing at -80 °C (no medium). At the end of four months storage period, adhesive properties and structure were analyzed. RESULTS: None of the newer preservation protocols showed differences in adhesive and structural properties of the tissues. The stromal layer always kept its adhesiveness, while both structure and basement membrane were not altered by any the preservation protocol. CONCLUSIONS: Switching from liquid nitrogen cryopreservation to -80 °C would reduce manipulation, simplify the procedure, making it also cheaper. The use of dextran-based freezing medium or no medium at all (dry condition) would avoid the potential toxicity of the dimethyl sulfoxide-based freezing media.


Subject(s)
Cryoprotective Agents , Dimethyl Sulfoxide , Humans , Cryoprotective Agents/pharmacology , Amnion , Dextrans , Cryopreservation/methods
20.
Data Brief ; 42: 108024, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35313495

ABSTRACT

Theoretical understanding of dimethylsulfoxide (DMSO) liquid depends on the understanding of the DMSO clusters. In this work, we provide the structures and the energetics of the DMSO clusters. The structures have been generated using ABCluster and further optimized at the MP2/aug-cc-pVDZ level of theory. The final structures have been optimized at two different levels of theory: PW6B95D3/aug-cc-pVDZ and ω B97XD/aug-cc-pVDZ. The Cartesian coordinates of the structures optimized at the MP2/aug-cc-pVDZ level of theory are also reported. The relative energies of the structures can be used to locate the most favorable structures of the DMSO clusters. The Cartesian coordinates of the structures can be used for further investigations on DMSO clusters. In addition, we report the data related to the quantum theory of atoms in molecule (QTAIM) analysis of the investigated clusters. The QTAIM data reported in this work can be used to understand and determine the nature of non-covalent interactions in DMSO clusters. For further reading and discussion on the data reported here, please report to the original manuscript Malloum and Conradie (2022) [1].

SELECTION OF CITATIONS
SEARCH DETAIL