ABSTRACT
Pore forming toxins rely on oligomerization for membrane insertion to kill their targets. Bacillus thuringiensis produces insecticidal Cry-proteins composed of three domains that form pores that kill the insect larvae. Domain I is involved in oligomerization and membrane insertion, whereas Domains II and III participate in receptor binding and specificity. However, the structural changes involved in membrane insertion of these proteins remain unsolved. The most widely accepted model for membrane insertion, the 'umbrella model', proposed that the α-4/α-5 hairpin of Domain I swings away and is inserted into the membrane. To determine the topology of Cry1Ab in the membrane, disulfide bonds linking α-helices of Domain I were introduced to restrict their movement. Disulfide bonds between helices α-2/α-3 or α-3/α-4 lost oligomerization and toxicity, indicating that movement of these helices is needed for insecticidal activity. By contrast, disulfide bonds linking helices α-5/α-6 did not affect toxicity, which contradicts the 'umbrella model'. Additionally, Föster resonance energy transfer closest approach analyses measuring distances of different points in the toxin to the membrane plane and collisional quenching assays analysing the protection of specific fluorescent-labeled residues to the soluble potassium iodide quencher in the membrane inserted state were performed. Overall, the data show that Domain I from Cry1Ab may undergo a major conformational change during its membrane insertion, where the N-terminal region (helices α-1 to α-4) participates in oligomerization and toxicity, probably forming an extended helix. These data break a paradigm, showing a new 'folding white-cane model', which better explains the structural changes of Cry toxins during insertion into the membrane.
Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Insecticides/toxicity , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Endotoxins/chemistry , Hemolysin Proteins/metabolism , Disulfides/metabolism , Larva/metabolismABSTRACT
The leader of the capsid (LC) protein is exclusive to the Vesivirus genus, and it is needed for successful feline calicivirus (FCV) replication, as well as an efficient apoptosis induction through the mitochondrial pathway. In this work, we aimed to determine if the LC protein from the FCV is a viroporin. Although lacking in a transmembrane domain or an amphipathic helix, the LC protein from the FCV is toxic when expressed in bacteria and it oligomerizes through disulfide bonds, which are both key characteristics of viroporins. An electron microscopy analysis of LC-expressing E. coli cells suggest that the protein induces osmotic stress. Moreover, we found that the previously studied C40A LC mutant, that fails to induce apoptosis and that hinders the replication cycle, also oligomerizes but it has a reduced toxicity and fails to induce osmotic stress in bacteria. We propose that the LC protein is a viroporin that acts as a disulfide bond-dependent antimicrobial peptide, similar to the Ebola virus delta peptide.
Subject(s)
Caliciviridae Infections , Calicivirus, Feline , Animals , Calicivirus, Feline/genetics , Calicivirus, Feline/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cats , Cell Line , Disulfides , Escherichia coli/metabolism , Viroporin ProteinsABSTRACT
The quaternary structure of the redox protein thioredoxin (Trx) has been debated. For bacterial Trx, there is no question regarding its monomeric state. In humans and other eukaryotes, the presence of a cysteine residue at the crystallographic symmetry axis points to the relevance of dimer formation in solution and in vivo. Crystallographic data for shrimp thioredoxin (LvTrx) obtained under different redox conditions reveal a dimeric arrangement mediated by a disulfide bond through residue Cys73 and other hydrophobic interactions located in the crystallographic interface, as reported for human Trx. Through the analysis of five mutants located at the crystallographic interface, this study provides structural and biochemical evidence for the existence in solution of monomeric and dimeric populations of wild-type LvTrx and five mutants. Based on the results of biochemical assays, SAXS studies and the crystallographic structures of three of the studied mutants (Cys73Ser, Asp60Ser and Trp31Ala), it is clear that the Cys73 residue is essential for dimerization. However, its mutation to Ser produces an enzyme which has similar redox activity in vitro to the wild type. A putative regulatory function of dimerization is proposed based on structural analysis. Nonetheless, the biological role of LvTrx dimerization needs to be experimentally unveiled. Additionally, the findings of this work reopen the discussion regarding the existence of similar behaviour in human thioredoxin, which shares a Cys at position 73 with LvTrx, a structural feature that is also present in some Trxs from vertebrates and crustaceans.
Subject(s)
Arthropod Proteins/chemistry , Penaeidae/chemistry , Protein Multimerization , Thioredoxins/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Scattering, Small Angle , Sequence Alignment , X-Ray DiffractionABSTRACT
The Pseudomonas aeruginosa plasmid pUM505 contains in a pathogenicity island the dsbA2 gene, which encodes a product with similarity to DsbA protein disulfide isomerases, enzymes that catalyze formation and isomerization of disulfide bonds in protein cysteine residues. Using transcriptional fusions, it was found that dsbA2 gene promoter is activated during the stationary phase, suggesting that DsbA2 protein may be required for adaptive changes that occur during this stage of bacterial growth. Transfer of the pUM505 dsbA2 gene to a cadmium-sensitive P. aeruginosa PAO1-derivative affected in the chromosomal dsbA gene, restored cadmium resistance, suggesting a role of DsbA2 in protecting protein disulfide bonds. PAO1 dsbA2 transformants displayed increased sensitivity to intercalating agent mitomycin C, indicating that DsbA2 functions as a thioredoxin enzyme able to modify and activate toxicity of this compound. These results highlight the adaptive role of the pUM505 plasmid in its P. aeruginosa hosts.
Subject(s)
Gene Expression Regulation, Bacterial , Plasmids/genetics , Protein Disulfide-Isomerases/genetics , Thioredoxins/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Cadmium/pharmacology , Cadmium/toxicity , Cloning, Molecular , Drug Resistance, Bacterial , Gene Order , Mitomycin/pharmacology , Protein Disulfide-Isomerases/chemistry , Pseudomonas aeruginosa/genetics , Thioredoxins/chemistryABSTRACT
Background: Bacillus thuringiensis Cry toxins bind with different insect midgut proteins leading to toxin oligomerization, membrane insertion and pore formation. However, different Cry toxins had been shown to readily form high molecular weight oligomers or aggregates in solution in the absence of receptor interaction. The role of Cry oligomers formed in solution remains uncertain. The Cry9A proteins show high toxicity against different Lepidoptera, and no-cross resistance with Cry1A. Results: Cry9Aa655 protein formed oligomers easily in solution mediated by disulfide bonds, according to SDS-PAGE analysis under non-reducing and reducing conditions. However, oligomerization is not observed if Cry9Aa655 is activated with trypsin, suggesting that cysteine residues, C14 and C16, located in the N-terminal end that is processed during activation participate in this oligomerization. To determine the role of these residues on oligomerization and in toxicity single and double alanine substitution were constructed. In contrast to single C14A and C16A mutants, the double C14A-C16A mutant did not form oligomers in solution. Toxicity assays against Plutella xylostella showed that the C14A-C16A mutant had a similar insecticidal activity as the Cry9Aa655 protein indicating the oligomers of Cry9Aa formed in solution in the absence of receptor binding are not related with toxicity. Conclusions: The aggregation of Cry9Aa655 polypeptides was mediated by disulfide bonds. Cry9Aa655 C14 and C16C are involved in oligomerization in solution. These aggregate forms are not related to the mode of action of Cry9Aa leading to toxicity.
Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Insecticides , Biological Assay , Disulfides , Electrophoresis, Polyacrylamide Gel , Bacillus thuringiensis Toxins , MutationABSTRACT
BACKGROUND: Low protein digestibility and lysine content of white sorghum grain limit its use as a foodstuff. The increase in γ-kafirin cross-linking, has an important role in the reduction of protein digestibility. The objective of this study was to characterize the γ-kafirin gene in 12 Mexican tannin-free white sorghum genotypes and its relationship with protein digestibility and lysine content. RESULTS: Two alleles of γ-kafirin gene were identified: alleles 1 and 7. The predicted amino acid sequence of allele 7 showed seven point mutations; six were silent, and one missense (C235G), causing the substitution P79A in the deduced amino acid sequence. In silico analysis showed that γ-kafirin codified by allele 1 has five α-helixes without disulfide bonds, while γ-kafirin coding by allele 7 has four α-helixes and three disulfide bonds. Genotypes with allele 7 had higher lysine content than those with allele 1, showing no differences in the kafirin electrophoretic profile, neither a correlation with the protein content nor the in vitro pepsin digestibility. CONCLUSIONS: Mexican tannin-free white sorghum genotypes showed two γ-kafirin alleles, 1 and 7. Allele 7 was associated with higher lysine content; in silico analysis showed that the substitution of P79A in this allele could modify γ-kafirin secondary structure. © 2015 Society of Chemical Industry.
Subject(s)
Alleles , Lysine/analysis , Plant Proteins/genetics , Seeds/chemistry , Sorghum/chemistry , Amino Acid Sequence , Dietary Proteins/metabolism , Digestion , Disulfides/chemistry , Genotype , Mexico , Pepsin A/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Conformation, alpha-Helical , Protein Structure, SecondaryABSTRACT
Thioredoxin (Trx) is a 12â kDa cellular redox protein that belongs to a family of small redox proteins which undergo reversible oxidation to produce a cystine disulfide bond through the transfer of reducing equivalents from the catalytic site cysteine residues (Cys32 and Cys35) to a disulfide substrate. In this study, crystals of thioredoxin 1 from the Pacific whiteleg shrimp Litopenaeus vannamei (LvTrx) were successfully obtained. One data set was collected from each of four crystals at 100â K and the three-dimensional structures of the catalytic cysteines in different redox states were determined: reduced and oxidized forms at 2.00â Å resolution using data collected at a synchrotron-radiation source and two partially reduced structures at 1.54 and 1.88â Å resolution using data collected using an in-house source. All of the crystals belonged to space group P3212, with unit-cell parameters a = 57.5â (4), b = 57.5â (4), c = 118.1â (8)â Å. The asymmetric unit contains two subunits of LvTrx, with a Matthews coefficient (VM) of 2.31â Å(3)â Da(-1) and a solvent content of 46%. Initial phases were determined by molecular replacement using the crystallographic model of Trx from Drosophila melanogaster as a template. In the present work, LvTrx was overexpressed in Escherichia coli, purified and crystallized. Structural analysis of the different redox states at the Trx active site highlights its reactivity and corroborates the existence of a dimer in the crystal. In the crystallographic structures the dimer is stabilized by several interactions, including a disulfide bridge between Cys73 of each LvTrx monomer, a hydrogen bond between the side chain of Asp60 of each monomer and several hydrophobic interactions, with a noncrystallographic twofold axis.
Subject(s)
Gene Expression Regulation , Penaeidae , Thioredoxins/chemistry , Thioredoxins/metabolism , Animals , Binding Sites/physiology , Crystallization , Crystallography, X-Ray , Oxidation-Reduction , Penaeidae/genetics , Thioredoxins/geneticsABSTRACT
Peptide toxins are usually highly bridged proteins with multipairs of intrachain disulfide bonds. Analysis of disulfide connectivity is an important facet of protein structure determination. In this paper, we successfully assigned the disulfide linkage of two novel peptide toxins, called HNTX-III and HNTX-IV, isolated from the venom of Ornithoctonus hainana spider. Both peptides are useful inhibitors of TTX-sensitive voltage-gated sodium channels and are composed of six cysteine residues that form three disulfide bonds, respectively. Firstly, the peptides were partially reduced by tris(2-carboxyethyl)-phosphine (TCEP) in 0.1 M citrate buffer containing 6 M guanidine-HCl at 40° C for ten minutes. Subsequently, the partially reduced intermediates containing free thiols were separated by reversed-phase high-performance liquid chromatography (RP-HPLC) and alkylated by rapid carboxamidomethylation. Then, the disulfide bonds of the intermediates were analyzed by Edman degradation. By using the strategy above, disulfide linkages of HNTX-III and HNTX-IV were determined as I-IV, II-V and III-VI pattern. In addition, this study also showed that this method may have a great potential for determining the disulfide bonds of spider peptide toxins.
ABSTRACT
Peptide toxins are usually highly bridged proteins with multipairs of intrachain disulfide bonds. Analysis of disulfide connectivity is an important facet of protein structure determination. In this paper, we successfully assigned the disulfide linkage of two novel peptide toxins, called HNTX-III and HNTX-IV, isolated from the venom of Ornithoctonus hainana spider. Both peptides are useful inhibitors of TTX-sensitive voltage-gated sodium channels and are composed of six cysteine residues that form three disulfide bonds, respectively. Firstly, the peptides were partially reduced by tris(2-carboxyethyl)-phosphine (TCEP) in 0.1 M citrate buffer containing 6 M guanidine-HCl at 40° C for ten minutes. Subsequently, the partially reduced intermediates containing free thiols were separated by reversed-phase high-performance liquid chromatography (RP-HPLC) and alkylated by rapid carboxamidomethylation. Then, the disulfide bonds of the intermediates were analyzed by Edman degradation. By using the strategy above, disulfide linkages of HNTX-III and HNTX-IV were determined as I-IV, II-V and III-VI pattern. In addition, this study also showed that this method may have a great potential for determining the disulfide bonds of spider peptide toxins.(AU)