Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
1.
Adv Parasitol ; 125: 1-52, 2024.
Article in English | MEDLINE | ID: mdl-39095110

ABSTRACT

As we strive towards the ambitious goal of malaria elimination, we must embrace integrated strategies and interventions. Like many diseases, malaria is heterogeneously distributed. This inherent spatial component means that geography and geospatial data is likely to have an important role in malaria control strategies. For instance, focussing interventions in areas where malaria risk is highest is likely to provide more cost-effective malaria control programmes. Equally, many malaria vector control strategies, particularly interventions like larval source management, would benefit from accurate maps of malaria vector habitats - sources of water that are used for malarial mosquito oviposition and larval development. In many landscapes, particularly in rural areas, the formation and persistence of these habitats is controlled by geographical factors, notably those related to hydrology. This is especially true for malaria vector species like Anopheles funestsus that show a preference for more permanent, often naturally occurring water sources like small rivers and spring-fed ponds. Previous work has embraced geographical concepts, techniques, and geospatial data for studying malaria risk and vector habitats. But there is much to be learnt if we are to fully exploit what the broader geographical discipline can offer in terms of operational malaria control, particularly in the face of a changing climate. This chapter outlines potential new directions related to several geographical concepts, data sources and analytical approaches, including terrain analysis, satellite imagery, drone technology and field-based observations. These directions are discussed within the context of designing new protocols and procedures that could be readily deployed within malaria control programmes, particularly those within sub-Saharan Africa, with a particular focus on experiences in the Kilombero Valley and the Zanzibar Archipelago, United Republic of Tanzania.


Subject(s)
Anopheles , Malaria , Mosquito Control , Mosquito Vectors , Malaria/prevention & control , Malaria/epidemiology , Malaria/transmission , Animals , Mosquito Vectors/physiology , Mosquito Control/methods , Humans , Anopheles/physiology , Anopheles/parasitology , Ecosystem , Geography
3.
Proc Natl Acad Sci U S A ; 121(35): e2405877121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39163338

ABSTRACT

The advent of drones has revolutionized various aspects of our lives, and in the realm of biological systems, molecular drones hold immense promise as "magic bullets" for major diseases. Herein, we introduce a unique class of fluorinated macromolecular amphiphiles, designed in the shape of jellyfish, serving as exemplary molecular drones for fluorine-19 MRI (19F MRI) and fluorescence imaging (FLI)-guided drug delivery, status reporting, and targeted cancer therapy. Functioning akin to their mechanical counterparts, these biocompatible molecular drones autonomously assemble with hydrophobic drugs to form uniform nanoparticles, facilitating efficient drug delivery into cells. The status of drug delivery can be tracked through aggregation-induced emission (AIE) of FLI and 19F MRI. Furthermore, when loaded with a heptamethine cyanine fluorescent dye IR-780, these molecular drones enable near-infrared (NIR) FL detection of tumors and precise delivery of the photosensitizer. Similarly, when loaded with doxorubicin (DOX), they enable targeted chemotherapy with fluorescence resonance energy transfer (FRET) FL for real-time status updates, resulting in enhanced therapeutic efficacy. Compared to conventional drug delivery systems, molecular drones stand out for their simplicity, precise structure, versatility, and ability to provide instantaneous status updates. This study presents prototype molecular drones capable of executing fundamental drone functions, laying the groundwork for the development of more sophisticated molecular machines with significant biomedical implications.


Subject(s)
Doxorubicin , Drug Delivery Systems , Humans , Animals , Drug Delivery Systems/methods , Doxorubicin/chemistry , Doxorubicin/pharmacology , Halogenation , Mice , Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Macromolecular Substances/chemistry , Optical Imaging/methods , Fluorine-19 Magnetic Resonance Imaging/methods , Neoplasms/drug therapy , Cell Line, Tumor
4.
Ecol Evol ; 14(8): e70093, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108566

ABSTRACT

Foraging efficiency is key to animal fitness. Consequently, animals evolved a variety of kinematic, morphological, physiological, and behavioral adaptations for efficient locomotion to reduce energy expenditure while moving to find, capture, and consume prey. Often suited to specific habitat and prey types, these adaptations correspond to the terrain or substrate the animal moves through. In aquatic systems, adaptations focus on overcoming drag, buoyancy, and hydrostatic forces. Buoyancy both benefits and hinders diving animals; in particular, shallow divers constantly contend with the costs of overcoming buoyancy to dive and maintain position. Pacific Coast Feeding Group (PCFG) gray whales forage in shallow habitats where they work against buoyancy to dive and feed using various foraging tactics. Bubble blasts (underwater exhalations) have been observed during several foraging tactics performed by PCFG whales. As exhalations aid buoyancy regulation in other diving animals, we hypothesize that bubble blasts are performed by longer, more buoyant whales in shallower water and that bubble blasts increase dive duration while accounting for size and tactic. We test our hypotheses using Bayesian linear mixed effects models and a 7-year dataset of drone footage containing concurrent individual morphological and behavioral data. We find that while headstanding - a stationary, head-down tactic - bubble blasts are performed by longer, more buoyant whales and extend the dive duration, whereas whales using forward-swimming tactics are less likely to bubble blast. Our results suggest that PCFG gray whales may use bubble blasts as a behavioral adaption to mitigate the cost of energetically expensive tactics in their shallow habitat foraging niche.

5.
Microsc Res Tech ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177052

ABSTRACT

One of the most popular fruits worldwide is the banana. Accurate identification and categorization of banana diseases is essential for maintaining global fruits security and stakeholder profitability. Four different types of banana leaves exist Healthy, Cordana, Sigatoka, and Pestalotiopsis. These types can be analyzed using four types of vision: RGB, night vision, infrared vision, and thermal vision. This paper presents an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. Each vision consisted of 1600 images with a size of (224 × 224). The training-testing approach was used to evaluate the performance of the hybrid model on Kaggle dataset, which was justified by various methods and metrics. The proposed model achieved a remarkable mean accuracy rate of 99.16% for RGB vision, 98.02% for night vision, 96.05% for infrared vision, and 96.10% for thermal vision for training and testing data. Microscopy employed in this research as a validation tool. The microscopic examination of leaves confirmed the presence and extent of the disease, providing ground truth data to validate and refine the proposed model. RESEARCH HIGHLIGHTS: The model can be helpful for internet of things -based drones to identify the large scale of banana leaf-disease detection using drones for images acquisition. Proposed an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. The model detected banana leaf disease with a 99.16% accuracy rate for RGB vision, 98.02% accuracy rate for night vision, 96.05% accuracy rate for infrared vision, and 96.10% accuracy rate for thermal vision The model will provide a facility for early disease detection which minimizes crop loss, enhances crop quality, timely decision making, cost saving, risk mitigation, technology adoption, and helps in increasing the yield.

6.
R Soc Open Sci ; 11(8): 240328, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39169963

ABSTRACT

Several animal species use tools for foraging; however, very few manufacture and/or modify those tools. Humpback whales, which manufacture bubble-net tools while foraging, are among these rare species. Using animal-borne tag and unoccupied aerial system technologies, we examine bubble-nets manufactured by solitary humpback whales (Megaptera novaeangliae) in Southeast Alaska while feeding on krill. We demonstrate that the nets consist of internally tangential rings and suggest that whales actively control the number of rings in a net, net size and depth and the horizontal spacing between neighbouring bubbles. We argue that whales regulate these net structural elements to increase per-lunge prey intake by, on average, sevenfold. We measured breath rate and swimming and lunge kinematics to show that the resulting increase in prey density does not increase energetic expenditure. Our results provide a novel insight into how bubble-net tools manufactured by solitary foraging humpback whales act to increase foraging efficiency.

7.
J Fish Biol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965826

ABSTRACT

Basking sharks (Cetorhinus maximus) seasonally aggregate in coastal surface waters of the North Atlantic, providing opportunities for visual observation. While putative courtship displays have been observed, actual copulation has not been documented. Here we examine video collected by an unmanned aerial vehicle ("drone") of novel behavioral interactions between basking sharks in Cape Cod Bay, Massachusetts in May 2021. The behaviors, including close following and tight concentric circling, are consistent with pre-copulatory behavior observed in other shark species. These observations provide new insights into the pre-copulatory behavior of basking sharks.

8.
BMC Ecol Evol ; 24(1): 89, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956462

ABSTRACT

Galician forests in northwestern Spain are subject to frequent wildfires with high environmental and economic costs. In addition, due to the consequences of climate change, these fires are becoming more virulent, occurring throughout the year, and taking place in populated areas, in some cases involving the loss of human life. Therefore, forest fire prevention is even more relevant than mitigating its consequences. Given the costs involved in forestry work, alternative measures to reduce fuel load and create vegetation gaps are needed. One involves grazing by an endemic species of feral horses (Equus ferus atlanticus) that feed on thicket-forming gorse (Ulex europaeus). In a 100-ha forest fenced study area stocked with 11 horses, four 50 m2 enclosed plots prevented the access of these wild animals to the vegetation, with the aim of manipulating their impact on the reduction of forest biomass. The measurement of biomass volumes is an important method that can describe the assessment of wildfire risks, unfortunately, high-resolution data collection at the regional scale is very time-consuming. The best result can be using drones (unmanned aerial vehicles - UAVs) as a method of collecting remotely sensed data at low cost. From September 2018 to November 2020, we collected information about aboveground biomass from these four enclosed plots and their surrounding areas available for horses to forage, via UAV. These data, together with environmental variables from the study site, were used as input for a fire model to assess the differences in the surface rate of spread (SROS) among grazed and ungrazed areas. Our results indicated a consistent but small reduction in the SROS between 0.55 and 3.10 m/min in the ungrazed enclosured plots in comparison to their grazed surrounding areas (which have an SROS between 15 and 25 m/min). The research showed that radar remote sensing (UAV) can be used to map forest aboveground biomass, and emphasized the importance and role of feral horses in Galicia as a prevention tool against wildfires in gorse-dominated landscapes.


Subject(s)
Biomass , Remote Sensing Technology , Animals , Horses/physiology , Spain , Remote Sensing Technology/methods , Forests , Grassland , Wildfires , Conservation of Natural Resources/methods
9.
Ecol Evol ; 14(7): e11659, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957698

ABSTRACT

Quantifying the cost-effectiveness of alternative sampling methods is crucial for efficient biodiversity monitoring and detection of population trends. In this study, we compared the cost-effectiveness of three novel sampling methods for detecting changes in koala (Phascolarctos cinereus) occupancy: thermal drones, passive acoustic recorders and camera trapping. Specifically, we fitted single-season occupancy-detection models to data recorded from 46 sites in eight bioregions of New South Wales, Australia, between 2018 and 2022. We explored the effect of weather variables on daily detection probability for each method and, using these estimates, calculated the statistical power to detect 30%, 50% and 80% declines in koala occupancy. We calculated power for different combinations of sites (1-200) and repeat surveys (2-40) and developed a cost model that found the cheapest survey design that achieved 80% power to detect change. On average, detectability of koalas was highest with one 24-h period of acoustic surveys (0.32, 95% CI's: 0.26, 0.39) compared to a 25-ha flight of drone surveys (0.28, 95% 0.15, 0.48) or a 24-h period of camera trapping consisting of six cameras (0.019, 95% CI's: 0.014, 0.025). We found a negative quadratic relationship between detection probability and air temperature for all three methods. Our power and cost analysis suggested that 148 sites surveyed with acoustic recorders deployed for 14 days would be the cheapest method to sufficiently detect a 30% decline in occupancy with 80% power. We recommend passive acoustic recorders as the most efficient sampling method for monitoring koala occupancy compared to cameras or drones. Further comparative studies are needed to compare the relative effectiveness of these methods and others when the monitoring objective is to detect change in koala abundance over time.

10.
Sci Total Environ ; 949: 174966, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39069181

ABSTRACT

In the ongoing Anthropocene era, air quality monitoring constitutes a primary axis of European and international policies for all sectors, including Waste Water Treatment Plants (WWTPs). Unmanned Aerial Systems (UASs) with proper sensing equipment provide an edge technology for air quality and odor monitoring. In addition, Unmanned Aerial Vehicle (UAV) photogrammetry has been used in civil engineering, environmental (water) quality assessment and lately for industrial facilities monitoring. This study constitutes a systematic review of the late advances and limitations of germane equipment and implementations. Despite their unassailable flexibility and efficiency, the employment of the aforementioned technologies in WWTP remote monitoring is yet sparse, partial, and concerns only particular aspects. The main finding of the review was the lack of a tailored UAS for WWTP monitoring in the literature. Therefore, to fill in this gap, we propose a fit-for-purpose remote monitoring system consisting of a UAS with a platform that would integrate all the required sensors for air quality (i.e., emissions of H2S, NH3, NOx, SO2, CH4, CO, CO2, VOCs, and PM) and odor monitoring, multispectral and thermal cameras for photogrammetric structural health monitoring (SHM) and wastewater/effluent properties (e.g., color, temperature, etc.) of a WWTP. It constitutes a novel, supreme and integrated approach to improve the sustainable management of WWTPs. Specifically, the developments that a fit-for-purpose WWTP UAS would launch, are fostering the decision-making of managers, administrations, and policymakers, both in operational conditions and in case of failures, accidents or natural disasters. Furthermore, it would significantly reduce the operational expenditure of a WWTP, ensuring personnel and population health standards, and local area sustainability.

11.
Environ Monit Assess ; 196(8): 694, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963575

ABSTRACT

Human activities at sea can produce pressures and cumulative effects on ecosystem components that need to be monitored and assessed in a cost-effective manner. Five Horizon European projects have joined forces to collaboratively increase our knowledge and skills to monitor and assess the ocean in an innovative way, assisting managers and policy-makers in taking decisions to maintain sustainable activities at sea. Here, we present and discuss the status of some methods revised during a summer school, aiming at better management of coasts and seas. We include novel methods to monitor the coastal and ocean waters (e.g. environmental DNA, drones, imaging and artificial intelligence, climate modelling and spatial planning) and innovative tools to assess the status (e.g. cumulative impacts assessment, multiple pressures, Nested Environmental status Assessment Tool (NEAT), ecosystem services assessment or a new unifying approach). As a concluding remark, some of the most important challenges ahead are assessing the pros and cons of novel methods, comparing them with benchmark technologies and integrating these into long-standing time series for data continuity. This requires transition periods and careful planning, which can be covered through an intense collaboration of current and future European projects on marine biodiversity and ecosystem health.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Environmental Monitoring , Environmental Monitoring/methods , Conservation of Natural Resources/methods , Humans , Oceans and Seas , Human Activities
12.
Glob Chang Biol ; 30(6): e17366, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847450

ABSTRACT

Changes in body size have been documented across taxa in response to human activities and climate change. Body size influences many aspects of an individual's physiology, behavior, and ecology, ultimately affecting life history performance and resilience to stressors. In this study, we developed an analytical approach to model individual growth patterns using aerial imagery collected via drones, which can be used to investigate shifts in body size in a population and the associated drivers. We applied the method to a large morphological dataset of gray whales (Eschrichtius robustus) using a distinct foraging ground along the NE Pacific coast, and found that the asymptotic length of these whales has declined since around the year 2000 at an average rate of 0.05-0.12 m/y. The decline has been stronger in females, which are estimated to be now comparable in size to males, minimizing sexual dimorphism. We show that the decline in asymptotic length is correlated with two oceanographic metrics acting as proxies of habitat quality at different scales: the mean Pacific Decadal Oscillation index, and the mean ratio between upwelling intensity in a season and the number of relaxation events. These results suggest that the decline in gray whale body size may represent a plastic response to changing environmental conditions. Decreasing body size could have cascading effects on the population's demography, ability to adjust to environmental changes, and ecological influence on the structure of their community. This finding adds to the mounting evidence that body size is shrinking in several marine populations in association with climate change and other anthropogenic stressors. Our modeling approach is broadly applicable across multiple systems where morphological data on megafauna are collected using drones.


Subject(s)
Body Size , Climate Change , Whales , Animals , Female , Male , Whales/physiology , Ecosystem , Models, Biological , Pacific Ocean
13.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894139

ABSTRACT

This paper presents an overview on the state of the art in copter drones and their components. It starts by providing an introduction to unmanned aerial vehicles in general, describing their main types, and then shifts its focus mostly to multirotor drones as the most attractive for individual and research use. This paper analyzes various multirotor drone types, their construction, typical areas of implementation, and technology used underneath their construction. Finally, it looks at current challenges and future directions in drone system development, emerging technologies, and future research topics in the area. This paper concludes by highlighting some key challenges that need to be addressed before widespread adoption of drone technologies in everyday life can occur. By summarizing an up-to-date survey on the state of the art in copter drone technology, this paper will provide valuable insights into where this field is heading in terms of progress and innovation.

14.
Sci Rep ; 14(1): 12506, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822002

ABSTRACT

The infiltration of heterogenous fleets of autonomous Unmanned Aerial Vehicles (UAVs) in smart cities is leading to the consumerization of city air space which includes infrastructure creation of roads, traffic design, capacity estimation, and trajectory optimization. This study proposes a novel autonomous Advanced Aerial Mobility (AAM) logistical system for high density city centers. First, we propose a real-time 3D geospatial mining framework for LiDAR data to create a dynamically updated digital twin model. This enables the identification of viable airspace volumes in densely populated 3D environments based on the airspace policy/regulations. Second, we propose a robust city airspace dynamic 4D discretization method (Skyroutes) for autonomous UAVs to incorporate the underlying real-time constraints coupled with externalities, legal, and optimal UAV operation based on kinematics. An hourly trip generation model was applied to create 1138 trips in two scenarios comparing the cartesian discretization to our proposed algorithm. The results show that the AAM enables a precise airspace capacity/cost estimation, due to its detailed 3D generation capabilities. The AAM increased the airspace capacity by up to 10%, the generated UAV trajectories are 50% more energy efficient, and significantly safer.

15.
Sci Total Environ ; 934: 173213, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750739

ABSTRACT

Uncrewed Aerial Spray Systems (UASS), commonly called drones, have become an important application technique for plant protection products in Asia and worldwide. As such, environmental variables and spray system parameters influencing spray drift deserve detailed investigations. This study presents the data analysis of 114 UASS drift trials conducted between December 2021 and December 2022 in China. Study design was based on the ISO 22866:2005 protocol for spray drift trials and considered different UASS platforms, nozzles, and release heights, and specifically continuously measured weather conditions. The relative importance of the environmental variables and spray system parameters was evaluated by a random forest (RF) feature importance analysis, a Sobol sensitivity analysis and partial dependence plots. This approach was preferred to linear ranking techniques such as ANOVA (analysis of variance) due to the non-linearity of the system. In addition, partial dependence plots are proposed to visualize the relationship between specific input parameters within the system. Drift deposition curves calculated from the 114 trials show good agreement with previous UASS trials reported in the literature. As reported in previous studies, spray drift following UASS applications is lower than for manned aerial vehicles, greater than for ground spray applications, and similar to drift observed from orchard air blast applications. In addition, 9 trials were conducted on corn fields in order to evaluate the potential effect of crop cover on spray drift. Spray drift was observed to be reduced over the cropped soil, suggesting that plant cover might possibly reduce spray drift. These findings could help supporting drift mitigation policies, stewardship advice and product labelling around the world.

16.
Front Immunol ; 15: 1366962, 2024.
Article in English | MEDLINE | ID: mdl-38736880

ABSTRACT

Hematopoietic stem cell transplantation and cell therapies like CAR-T are costly, complex therapeutic procedures. Outpatient models, including at-home transplantation, have been developed, resulting in similar survival results, reduced costs, and increased patient satisfaction. The complexity and safety of the process can be addressed with various emerging technologies (artificial intelligence, wearable sensors, point-of-care analytical devices, drones, virtual assistants) that allow continuous patient monitoring and improved decision-making processes. Patients, caregivers, and staff can also benefit from improved training with simulation or virtual reality. However, many technical, operational, and above all, ethical concerns need to be addressed. Finally, outpatient or at-home hematopoietic transplantation or CAR-T therapy creates a different, integrated operative system that must be planned, designed, and carefully adapted to the patient's characteristics and distance from the hospital. Patients, clinicians, and their clinical environments can benefit from technically improved at-home transplantation.


Subject(s)
Hematopoietic Stem Cell Transplantation , Home Care Services , Humans , Hematopoietic Stem Cell Transplantation/methods , Immunotherapy, Adoptive/methods , Artificial Intelligence
17.
Sensors (Basel) ; 24(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793891

ABSTRACT

In response to the numerous challenges faced by traditional human pose recognition methods in practical applications, such as dense targets, severe edge occlusion, limited application scenarios, complex backgrounds, and poor recognition accuracy when targets are occluded, this paper proposes a YOLO-Pose algorithm for human pose estimation. The specific improvements are divided into four parts. Firstly, in the Backbone section of the YOLO-Pose model, lightweight GhostNet modules are introduced to reduce the model's parameter count and computational requirements, making it suitable for deployment on unmanned aerial vehicles (UAVs). Secondly, the ACmix attention mechanism is integrated into the Neck section to improve detection speed during object judgment and localization. Furthermore, in the Head section, key points are optimized using coordinate attention mechanisms, significantly enhancing key point localization accuracy. Lastly, the paper improves the loss function and confidence function to enhance the model's robustness. Experimental results demonstrate that the improved model achieves a 95.58% improvement in mAP50 and a 69.54% improvement in mAP50-95 compared to the original model, with a reduction of 14.6 M parameters. The model achieves a detection speed of 19.9 ms per image, optimized by 30% and 39.5% compared to the original model. Comparisons with other algorithms such as Faster R-CNN, SSD, YOLOv4, and YOLOv7 demonstrate varying degrees of performance improvement.


Subject(s)
Algorithms , Posture , Humans , Posture/physiology , Unmanned Aerial Devices , Image Processing, Computer-Assisted/methods
18.
Pest Manag Sci ; 80(8): 4074-4084, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38563560

ABSTRACT

BACKGROUND: Halyomorpha halys is one of the most damaging invasive agricultural pests in North America and southern Europe. It is commonly monitored using pheromone traps, which are not very effective because few bugs are caught and some escape and/or remain outside the trap on surrounding plants where they feed, increasing the damage. Other monitoring techniques are based on visual sampling, sweep-netting and tree-beating. However, all these methods require several hours of human labor and are difficult to apply to large areas. The aim of this work is to develop an automated monitoring system that integrates image acquisition through the use of drones with H. halys detection through the use of artificial intelligence (AI). RESULTS: The study results allowed the development of an automated flight protocol using a mobile app to capture high-resolution images. The drone caused only low levels of disturbance in both adult and intermediate instars, inducing freezing behavior in adults. Each of the AI models used achieved very good performance, with a detection accuracy of up to 97% and recall of up to 87% for the X-TL model. CONCLUSION: The first application of this novel monitoring system demonstrated the potential of drones and AI to detect and quantify the presence of H. halys. The ability to capture high-altitude, high-resolution images makes this method potentially suitable for use with a range of crops and pests. © 2024 Society of Chemical Industry.


Subject(s)
Artificial Intelligence , Insect Control , Unmanned Aerial Devices , Animals , Insect Control/methods , Insect Control/instrumentation , Heteroptera/physiology , Nymph/physiology , Nymph/growth & development
19.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676050

ABSTRACT

The use of drones has recently gained popularity in a diverse range of applications, such as aerial photography, agriculture, search and rescue operations, the entertainment industry, and more. However, misuse of drone technology can potentially lead to military threats, terrorist acts, as well as privacy and safety breaches. This emphasizes the need for effective and fast remote detection of potentially threatening drones. In this study, we propose a novel approach for automatic drone detection utilizing the usage of both radio frequency communication signals and acoustic signals derived from UAV rotor sounds. In particular, we propose the use of classical and deep machine-learning techniques and the fusion of RF and acoustic features for efficient and accurate drone classification. Distinct types of ML-based classifiers have been examined, including CNN- and RNN-based networks and the classical SVM method. The proposed approach has been evaluated with both frequency and audio features using common drone datasets, demonstrating better accuracy than existing state-of-the-art methods, especially in low SNR scenarios. The results presented in this paper show a classification accuracy of approximately 91% at an SNR ratio of -10 dB using the LSTM network and fused features.

20.
Resusc Plus ; 18: 100633, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666251

ABSTRACT

Intro: Medical drones are an emerging technology which may facilitate rapid treatment in time-sensitive emergencies. However, drones rely on lay rescuers, whose interactions with multipurpose medical drones have not been studied, and the optimal drone design remains unclear. Methods: We conducted 24 simulations of adult out-of-hospital cardiac arrest (OHCA) and pediatric anaphylaxis with a prototype drone equipped with spoken and visual cues and a multipurpose medical kit. 24 layperson volunteers encountered one of the two scenarios and were supported through administering treatment by a simulated 911 dispatcher. Bystander-drone interactions were evaluated via a convergent parallel mixed methods approach using surveys, video event review, and semi-structured interviews. Results: 83% (20/24) of participants voiced comfort interacting with the drone. 96% (23/24) were interested in future interaction. Participants appreciated the drone's spoken instructions but found visual cues confusing. Participants retrieved the medical kit from the drone in a mean of 5 seconds (range 2-14) of drone contact; 79% (19/24) found this step easy or very easy. The medical kit's layered design caused difficulty in retrieving appropriate equipment. Participants expressed a wide range of reactions to the unique drone design. Conclusions: Laypeople can effectively and comfortably interact with a medical drone with a novel design. Feedback on design elements will result in further refinements and valuable insights for other drone designers. A multipurpose medical kit created more challenges and indicates the need for further refinement to facilitate use of the equipment.

SELECTION OF CITATIONS
SEARCH DETAIL