Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 15(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38006090

ABSTRACT

The structural stability of silt foundations, particularly sensitive to moisture content, can be severely compromised by recurring wetting and drying processes. This not only threatens the foundational integrity but also raises grave concerns about the long-term safety of major civil engineering endeavors. Addressing this critical issue, our study delves into the transformative effects of reclaimed polyester fiber on subgrade silt exposed to such environmental stressors. Through rigorous wet-dry cycle tests on this enhanced soil, we evaluate shifts in shear strength across varying confining pressures. We also dissect the interplay between average pore diameter, particle distribution, and morphology in influencing the soil's microstructural responses to these cycles. A detailed analysis traces the structural damage timeline in the treated soil, elucidating the intertwined micro-macro dynamics driving strength reduction. Key discoveries indicate a notably non-linear trajectory of shear strength degradation, marked by distinct phases of rapid, subdued, and stabilized strength attrition. Alterations within the micropores induce a rise in both their count and size, ultimately diminishing the total volume proportion of the reinforced soil. Intriguingly, particle distribution is directly tied to the wet-dry cycle frequency, while the fractal dimension of soil particles consistently wanes. This research identifies cement hydrolysis and pore expansion as the dominant culprits behind the observed macroscopic strength degradation due to incessant wet-dry cycles. These revelations hold profound implications for risk management and infrastructural strategizing in areas dominated by silt foundations.

2.
Materials (Basel) ; 16(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37444916

ABSTRACT

This research investigates the effects of iron tailings content on the mechanical properties and durability of concrete under dry-wet cycling and negative temperature conditions (-10 °C), where iron tailings replace river sand at rates of 0%, 10%, 20%, and 30%. A variety of tests were conducted on the iron tailings concrete, including compressive strength, flexural strength, splitting tensile strength, mass loss, and relative dynamic modulus, and its pore characteristics were analyzed using low-field nuclear magnetic resonance (NMR) experiments. The results reveal that when 20% of the river sand was replaced with iron tailings, the concrete achieved optimal splitting strength, compressive strength, and flexural strength at 28 days, improving by 0.46 MPa, 3.14 MPa, and 0.41 MPa, respectively, compared to conventional concrete. Furthermore, the concrete containing this proportion of iron tailings demonstrated superior mechanical properties and durability in both negative temperature conditions and dry-wet cycling experiments. Due to the excellent physical and chemical properties of iron tailings, they enhance the performance of concrete when incorporated in appropriate quantities. The fine granularity of iron tailings helps to compensate for the granularity defects in concrete aggregates by filling internal voids, optimizing the pore structure, and improving the concrete's density and integrity. This enhances the concrete's mechanical properties and its resistance to external solutions and harmful ion penetration. Additionally, the active substances in iron tailings promote the hydration reaction of cement, leading to the formation of an increased amount of C-S-H gel and other hydration products in the cement system.

3.
Plant Biol (Stuttg) ; 25(3): 440-447, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36627749

ABSTRACT

Dry/wet cycling driven by water level fluctuation in wetlands may strongly influence the destiny of seeds. However, how dry/wet cycling affects spore survival and germinability in peatland bryophytes is poorly understood. Six peatland bryophytes, three hummock- and three hollow-dwelling Sphagnum species, were chosen as study species. We tested the effects of dry (60% air RH)/wet (waterlogging) cycle frequency (once per 12, 8 or 4 days for low, medium or high, respectively) and ratio (3:1, 1:1 or 1:3 dry:wet time per cycle) on spore germinability, viability, dormancy percentage and protonema development. Dry/wet cycling significantly reduced spore germination percentage and viability and slowed protonema development in all Sphagnum species, being more pronounced with higher dry/wet cycling frequencies. The hummock species S. capillifolium and S. fuscum had higher spore germination percentage after the continuous dry treatment, while the hollow species S. angustifolium, S. squarrosum and S. subsecundum showed the opposite response, compared to the continuously wet treatment. Except for S. squarrosum, spore viability was higher after the dry than after the wet treatment. Spore viability and dormancy percentage were higher after a dry/wet ratio of 1:3 than after ratios of 3:1 and 1:1. Our study shows that both germinability and viability of bryophyte spores are reduced by dry/wet cycling (especially when frequent) in peatlands. This emphasizes the need to ensure constant water levels and low frequencies of water level fluctuation, which are relevant in connection with wetland restoration, to promote Sphagnum spore survival and establishment in peatlands after disturbances.


Subject(s)
Germination , Sphagnopsida , Spores , Wetlands , Water
SELECTION OF CITATIONS
SEARCH DETAIL