Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.448
Filter
1.
Heliyon ; 10(12): e32619, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38952379

ABSTRACT

Purpose: It is difficult to differentiate between primary central nervous system lymphoma and primary glioblastoma due to their similar MRI findings. This study aimed to assess whether pharmacokinetic parameters derived from dynamic contrast-enhanced MRI could provide valuable insights for differentiation. Methods: Seventeen cases of primary central nervous system lymphoma and twenty-one cases of glioblastoma as confirmed by pathology, were retrospectively analyzed. Pharmacokinetic parameters, including Ktrans, Kep, Ve, and the initial area under the Gd concentration curve, were measured from the enhancing tumor parenchyma, peritumoral parenchyma, and contralateral normal parenchyma. Statistical comparisons were made using Mann-Whitney U tests for Ve and Matrix Metallopeptidase-2, while independent samples t-tests were used to compare pharmacokinetic parameters in the mentioned regions and pathological indicators of enhancing tumor parenchyma, such as vascular endothelial growth factor and microvessel density. The pharmacokinetic parameters with statistical differences were evaluated using receiver-operating characteristics analysis. Except for the Wilcoxon rank sum test for Ve, the pharmacokinetic parameters were compared within the enhancing tumor parenchyma, peritumoral parenchyma, and contralateral normal parenchyma of the primary central nervous system lymphomas and glioblastomas using variance analysis and the least-significant difference method. Results: Statistical differences were observed in Ktrans and Kep within the enhancing tumor parenchyma and in Kep within the peritumoral parenchyma between these two tumor types. Differences were also found in Matrix Metallopeptidase-2, vascular endothelial growth factor, and microvessel density within the enhancing tumor parenchyma of these tumors. When compared with the contralateral normal parenchyma, pharmacokinetic parameters within the peritumoral parenchyma and enhancing tumor parenchyma exhibited variations in glioblastoma and primary central nervous system lymphoma, respectively. Moreover, the receiver-operating characteristics analysis showed that the diagnostic efficiency of Kep in the peritumoral parenchyma was notably higher. Conclusion: Pharmacokinetic parameters derived from dynamic contrast-enhanced MRI can differentiate primary central nervous system lymphoma and glioblastoma, especially Kep in the peritumoral parenchyma.

2.
Brain Imaging Behav ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954259

ABSTRACT

Pain empathy enables us to understand and share how others feel pain. Few studies have investigated pain empathy-related functional interactions at the whole-brain level across all networks. Additionally, women with primary dysmenorrhea (PDM) have abnormal pain empathy, and the association among the whole-brain functional network, pain, and pain empathy remain unclear. Using resting-state functional magnetic resonance imaging (fMRI) and machine learning analysis, we identified the brain functional network connectivity (FNC)-based features that are associated with pain empathy in two studies. Specifically, Study 1 examined 41 healthy controls (HCs), while Study 2 investigated 45 women with PDM. Additionally, in Study 3, a classification analysis was performed to examine the differences in FNC between HCs and women with PDM. Pain empathy was evaluated using a visual stimuli experiment, and trait and state of menstrual pain were recorded. In Study 1, the results showed that pain empathy in HCs relied on dynamic interactions across whole-brain networks and was not concentrated in a single or two brain networks, suggesting the dynamic cooperation of networks for pain empathy in HCs. In Study 2, PDM exhibited a distinctive network for pain empathy. The features associated with pain empathy were concentrated in the sensorimotor network (SMN). In Study 3, the SMN-related dynamic FNC could accurately distinguish women with PDM from HCs and exhibited a significant association with trait menstrual pain. This study may deepen our understanding of the neural mechanisms underpinning pain empathy and suggest that menstrual pain may affect pain empathy through maladaptive dynamic interaction between brain networks.

3.
Article in English | MEDLINE | ID: mdl-38954294

ABSTRACT

PURPOSE: Oocyte maturation defect (OOMD) is a rare cause of in vitro fertilization failure characterized by the production of immature oocytes. Compound heterozygous or homozygous PATL2 mutations have been associated with oocyte arrest at the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) stages, as well as morphological changes. METHODS: In this study, we recruited three OOMD cases and conducted a comprehensive multiplatform laboratory investigation. RESULTS: Whole exome sequence (WES) revealed four diagnostic variants in PATL2, nonsense mutation c.709C > T (p.R237*) and frameshift mutation c.1486_1487delinsT (p.A496Sfs*4) were novel mutations that have not been reported previously. Furthermore, the pathogenicity of these variants was predicted using in silico analysis, which indicated detrimental effects. Molecular dynamic analysis suggested that the A496S variant disrupted the hydrophobic segment, leading to structural changes that affected the overall protein folding and stability. Additionally, biochemical and molecular experiments were conducted on cells transfected with wild-type (WT) or mutant PATL2 (p.R237* and p.A496Sfs*4) plasmid vectors. CONCLUSIONS: The results demonstrated that PATL2A496Sfs*4 and PATL2R237* had impacts on protein size and expression level. Interestingly, expression levels of specific genes involved in oocyte maturation and early embryonic development were found to be simultaneously deregulated. The findings in our study expand the variation spectrum of the PATL2 gene, provide solid evidence for counseling on future pregnancies in affected families, strongly support the application of in the diagnosis of OOMD, and contribute to the understanding of PATL2 function.

4.
Article in English | MEDLINE | ID: mdl-38954382

ABSTRACT

INTRODUCTION: IncobotulinumtoxinA (Xeomin®) is used in the treatment of dynamic wrinkles and the aesthetic repositioning of facial structures. The duration of its muscular effect typically extends for around 4 months. However, the residual aesthetic benefit can be observed for a longer period. To date, the long-term aesthetic benefit of incobotulinumtoxinA in facial aesthetics has not been systematically evaluated. This study aimed to evaluate longitudinally the duration and aesthetic benefits of incobotulinumtoxinA in the treatment of the upper face in adult women. METHODS: A quasi-experimental, evaluator-blind, clinical trial involving 28 adult women (30-60 years old) with facial movement lines, undergoing treatment of the upper face with incobotulinumtoxinA by two injectors, following an individualized protocol (ONE21 and glabellar contraction patterns) was performed. Participants were evaluated on the day of the intervention (day 0) and days 30, 120, 180, and 240, and subjected to standardized photographs. The following outcomes were evaluated blindly at each visit: Merz Aesthetics Facial Contraction Scale (MAS), GAIS (Global Aesthetic Improvement Scale), and patient satisfaction. Adverse effects were evaluated at each visit. RESULTS: Participants ranged in age from 30 to 60 years, 93% were self-declared white, and most of their baseline MAS scores for dynamic lines were moderate and severe. All the parameters presented significative reduction from baseline until day 180. At day 240, the dynamic MAS scores were lower than baseline for forehead lines in 15.4% (95% confidence interval (CI) 0.8-30.0%) of the participants, for glabellar lines in 38.5% (95% CI 18.8-58.1%), and for crow's feet lines in 26.9% (95% CI 9.0-44.8%). Aesthetic improvement compared to baseline was identified in 35% (CI 95% 23‒50%) of the participants at day 240, and 62% (CI 95% 42‒81%) of the sample kept reporting some satisfaction with the procedure. CONCLUSION: The aesthetic treatment of the upper face with incobotulinumtoxinA demonstrates enduring clinical benefits, and patient satisfaction lasting up to 180 days in most participants. The length of efficacy, which exceeded those reported in the literature, may be attributed to the use of techniques based on individualized assessment such as ONE21 and glabellar patterns of contraction.

5.
Ann Biomed Eng ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955891

ABSTRACT

In dynamic impact events, thoracic injuries often involve rib fractures, which are closely related to injury severity. Previous studies have investigated the behavior of isolated ribs under impact loading conditions, but often neglected the variability in anatomical shape and tissue material properties. In this study, we used probabilistic finite element analysis and statistical shape modeling to investigate the effect of population-wide variability in rib cortical bone tissue mechanical properties and rib shape on the biomechanical response of the rib to impact loading. Using the probabilistic finite element analysis results, a response surface model was generated to rapidly investigate the biomechanical response of an isolated rib under dynamic anterior-posterior load given the variability in rib morphometry and tissue material properties. The response surface was used to generate pre-fracture force-displacement computational corridors for the overall population and a population sub-group of older mid-sized males. When compared to the experimental data, the computational mean response had a RMSE of 4.28N (peak force 94N) and 6.11N (peak force 116N) for the overall population and sub-group respectively, whereas the normalized area metric when comparing the experimental and computational corridors ranged from 3.32% to 22.65% for the population and 10.90% to 32.81% for the sub-group. Furthermore, probabilistic sensitivities were computed in which the contribution of uncertainty and variability of the parameters of interest was quantified. The study found that rib cortical bone elastic modulus, rib morphometry and cortical thickness are the random variables that produce the largest variability in the predicted force-displacement response. The proposed framework offers a novel approach for accounting biological variability in a representative population and has the potential to improve the generalizability of findings in biomechanical studies.

6.
Mol Divers ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955977

ABSTRACT

Alpha-fetoprotein (AFP) is a glycoprotein primarily expressed during embryogenesis, with declining levels postnatally. Elevated AFP levels correlate with pathological conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Recent investigations underscore AFP's intracellular role in HCC progression, wherein it forms complexes with proteins like Phosphatase and tensin homolog (PTEN), Caspase 3 (CASP3), and Retinoic acid receptors and Retinoid X receptors (RAR/RXR). RAR and RXR regulate gene expression linked to cell death and tumorigenesis in normal physiology. AFP impedes RAR/RXR dimerization, nuclear translocation, and function, promoting gene expression favoring cancer progression in HCC that provoked us to target AFP as a drug candidate. Despite extensive studies, inhibitors targeting AFP to disrupt complex formation and activities remain scarce. In this study, employing protein-protein docking, amino acid residues involved in AFP-RARß interaction were identified, guiding the definition of AFP's active site for potential inhibitor screening. Currently, kinase inhibitors play a significant role in cancer treatment and, the present study explores the potential of repurposing FDA-approved protein kinase inhibitors to target AFP. Molecular docking with kinase inhibitors revealed Lapatinib as a candidate drug of the AFP-RARß complex. Molecular dynamics simulations and binding energy calculations, employing Mechanic/Poisson-Boltzmann Surface Area (MM-PBSA), confirmed Lapatinib's stability with AFP. The study suggests Lapatinib's potential in disrupting the AFP-RARß complex, providing a promising avenue for treating molecularly stratified AFP-positive HCC or its early stages.

7.
J Orthop Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956422

ABSTRACT

Total knee arthroplasty (TKA) and unicompartmental knee arthroplasty (UKA) are effective surgeries to treat end-stage knee osteoarthritis. Clinicians assume that TKA alters knee kinematics while UKA preserves native knee kinematics; however, few studies of in vivo kinematics have evaluated this assumption. This study used biplane radiography to compare side-to-side tibiofemoral kinematics during chair rise, stair ascent, and walking in 16 patients who received either TKA or UKA. We hypothesized that TKA knees would have significant kinematic changes and increased asymmetry with the contralateral knee, while UKA knee kinematics would not change after surgery and preoperative knee symmetry would be maintained. Native bone and implant motion were tracked using a volumetric model-based tracking technique. Six degrees of freedom kinematics were calculated throughout each motion. Kinematics were compared between the operated and contralateral knees pre- and post-surgery using a linear mixed-effects model. TKA knees became less varus with the tibia more medial, posterior, and distal relative to the femur. UKA knees became less varus with the tibia less lateral on average. Postoperative TKA knees were in less varus than UKA knees on average and at low flexion angles, with an internally rotated tibia during chair rise and stair ascent. At high flexion angles, the tibia was more medial and posterior after TKA than UKA. Side-to-side kinematic symmetry worsened after TKA but was maintained or improved after UKA. Greater understanding of kinematic differences between operated and contralateral knees after surgery may help surgeons understand why some patients remain unsatisfied with their new knees.

8.
Stat Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956865

ABSTRACT

We propose a multivariate GARCH model for non-stationary health time series by modifying the observation-level variance of the standard state space model. The proposed model provides an intuitive and novel way of dealing with heteroskedastic data using the conditional nature of state-space models. We follow the Bayesian paradigm to perform the inference procedure. In particular, we use Markov chain Monte Carlo methods to obtain samples from the resultant posterior distribution. We use the forward filtering backward sampling algorithm to efficiently obtain samples from the posterior distribution of the latent state. The proposed model also handles missing data in a fully Bayesian fashion. We validate our model on synthetic data and analyze a data set obtained from an intensive care unit in a Montreal hospital and the MIMIC dataset. We further show that our proposed models offer better performance, in terms of WAIC than standard state space models. The proposed model provides a new way to model multivariate heteroskedastic non-stationary time series data. Model comparison can then be easily performed using the WAIC.

9.
IUCrJ ; 11(Pt 4): 436-437, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958011

ABSTRACT

The development of smart, stimuli-responsive materials has received increased attention in the past decade for their applications as sensing technologies. This commentary discusses a timely topical review by Kato [(2024). IUCrJ, 11, 442-452] on the fabrication of multi-stimuli responsive crystals comprised of luminescent platinum(II) complexes, which exhibit intriguing chromic phenomena in response to stimuli.

10.
Hum Brain Mapp ; 45(10): e26776, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958131

ABSTRACT

Recent studies in Parkinson's disease (PD) patients reported disruptions in dynamic functional connectivity (dFC, i.e., a characterization of spontaneous fluctuations in functional connectivity over time). Here, we assessed whether the integrity of striatal dopamine terminals directly modulates dFC metrics in two separate PD cohorts, indexing dopamine-related changes in large-scale brain network dynamics and its implications in clinical features. We pooled data from two disease-control cohorts reflecting early PD. From the Parkinson's Progression Marker Initiative (PPMI) cohort, resting-state functional magnetic resonance imaging (rsfMRI) and dopamine transporter (DaT) single-photon emission computed tomography (SPECT) were available for 63 PD patients and 16 age- and sex-matched healthy controls. From the clinical research group 219 (KFO) cohort, rsfMRI imaging was available for 52 PD patients and 17 age- and sex-matched healthy controls. A subset of 41 PD patients and 13 healthy control subjects additionally underwent 18F-DOPA-positron emission tomography (PET) imaging. The striatal synthesis capacity of 18F-DOPA PET and dopamine terminal quantity of DaT SPECT images were extracted for the putamen and the caudate. After rsfMRI pre-processing, an independent component analysis was performed on both cohorts simultaneously. Based on the derived components, an individual sliding window approach (44 s window) and a subsequent k-means clustering were conducted separately for each cohort to derive dFC states (reemerging intra- and interindividual connectivity patterns). From these states, we derived temporal metrics, such as average dwell time per state, state attendance, and number of transitions and compared them between groups and cohorts. Further, we correlated these with the respective measures for local dopaminergic impairment and clinical severity. The cohorts did not differ regarding age and sex. Between cohorts, PD groups differed regarding disease duration, education, cognitive scores and L-dopa equivalent daily dose. In both cohorts, the dFC analysis resulted in three distinct states, varying in connectivity patterns and strength. In the PPMI cohort, PD patients showed a lower state attendance for the globally integrated (GI) state and a lower number of transitions than controls. Significantly, worse motor scores (Unified Parkinson's Disease Rating Scale Part III) and dopaminergic impairment in the putamen and the caudate were associated with low average dwell time in the GI state and a low total number of transitions. These results were not observed in the KFO cohort: No group differences in dFC measures or associations between dFC variables and dopamine synthesis capacity were observed. Notably, worse motor performance was associated with a low number of bidirectional transitions between the GI and the lesser connected (LC) state across the PD groups of both cohorts. Hence, in early PD, relative preservation of motor performance may be linked to a more dynamic engagement of an interconnected brain state. Specifically, those large-scale network dynamics seem to relate to striatal dopamine availability. Notably, most of these results were obtained only for one cohort, suggesting that dFC is impacted by certain cohort features like educational level, or disease severity. As we could not pinpoint these features with the data at hand, we suspect that other, in our case untracked, demographical features drive connectivity dynamics in PD. PRACTITIONER POINTS: Exploring dopamine's role in brain network dynamics in two Parkinson's disease (PD) cohorts, we unraveled PD-specific changes in dynamic functional connectivity. Results in the Parkinson's Progression Marker Initiative (PPMI) and the KFO cohort suggest motor performance may be linked to a more dynamic engagement and disengagement of an interconnected brain state. Results only in the PPMI cohort suggest striatal dopamine availability influences large-scale network dynamics that are relevant in motor control.


Subject(s)
Corpus Striatum , Dopamine Plasma Membrane Transport Proteins , Dopamine , Magnetic Resonance Imaging , Parkinson Disease , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Female , Male , Middle Aged , Aged , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Cohort Studies , Dihydroxyphenylalanine/analogs & derivatives , Connectome , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Nerve Net/physiopathology
11.
J Chromatogr A ; 1730: 465114, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38964160

ABSTRACT

Protein chromatography is the dominant method of purification of biopharmaceuticals. Although all practical chromatography involves competitive absorption and separation of M. species, competitive protein absorption has remained inadequately understood. We previously introduced the measurement of equilibrium protein adsorption isotherms with all intensive variables held constant, including competitor concentration. In this work, we introduce isocratic chromatographic retention measurements of dynamic protein adsorption in the presence of a constant concentration of a competitor protein. These measurements are achieved by establishing a dynamic equilibrium with a constant concentration of competitor (insulin) in the mobile phase flowing through an ion exchange adsorbent column and following the behavior of a test protein (α-lactalbumin) injected into this environment. We observed decreased retention times for α-lactalbumin in presence of the competitor. The presence of competitor also reduces the heterogeneity of the sites available for adsorption of the test protein. This investigation provides an approach to fundamental understanding of competitive dynamics of multicomponent protein chromatography.

12.
Adv Colloid Interface Sci ; 331: 103242, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38964196

ABSTRACT

Proteins in ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention due to their potential applications in various fields, including biocatalysis, bioseparation, biomolecular delivery, and structural biology. Scattering approaches including dynamic light scattering (DLS) and small-angle X-ray and neutron scattering (SAXS and SANS) have been used to understand the solution behavior of proteins at the nanoscale and microscale. This review provides a thorough exploration of the application of these scattering techniques to elucidate protein properties in ILs and DESs. Specifically, the review begins with the theoretical foundations of the relevant scattering approaches and describes the essential solvent properties of ILs and DESs linked to scattering such as refractive index, scattering length density, ion-pairs, liquid nanostructure, solvent aggregation, and specific ion effects. Next, a detailed introduction is provided on protein properties such as type, concentration, size, flexibility and structure as observed through scattering methodologies. This is followed by a review of the literature on the use of scattering for proteins in ILs and DESs. It is highlighted that enhanced data analysis and modeling tools are necessary for assessing protein flexibility and structure, and for understanding protein hydration, aggregation and specific ion effects. It is also noted that complementary approaches are recommended for comprehensively understanding the behavior of proteins in solution due to the complex interplay of factors, including ion-binding, dynamic hydration, intermolecular interactions, and specific ion effects. Finally, the challenges and potential research directions for this field are proposed, including experimental design, data analysis approaches, and supporting methods to obtain fundamental understandings of complex protein behavior and protein systems in solution. We envisage that this review will support further studies of protein interface science, and in particular studies on solvent and ion effects on proteins.

13.
Article in English | MEDLINE | ID: mdl-38967100

ABSTRACT

OBJECTIVES: To assess navigation accuracy for complete-arch implant placement with immediate loading of digitally prefabricated provisional. MATERIALS AND METHODS: Consecutive edentulous and terminal dentition patients requiring at least one complete-arch FDP were treated between December 2020 and January 2022. Accuracy was evaluated by superimposing pre-operative and post-operative cone beam computed tomography (CBCT), recording linear (mm) and angular (degrees) deviations. T-tests were performed to investigate the potential effect of the registration algorithm (fiducial-based vs. fiducial-free), type of references for the fiducial-free algorithm (teeth vs. bone screws), site characteristic (healed vs. post-extractive), implant angulation (axial vs. tilted), type of arch (maxilla vs. mandible) on the accuracy with p-value <0.05. RESULTS: Twenty-five patients, 36 complete-arches, and 161 implants were placed. The overall mean angular deviation was 2.19° (SD 1.26°). The global platform and apex mean deviations were 1.17 mm (SD 0.57 mm), and 1.30 mm (SD 0.62 mm). Meaningful global platform (p = 0.0009) and apical (p = 0.0109) deviations were experienced only between healed and post-extraction sites. None of the analyzed variables significantly influenced angular deviation. Minor single-axis deviations were reported for the type of jaw (y-axis at implant platform and apex), registration algorithm (y-axis platform and z-axis deviations), and type of references for the fiducial-free algorithm. No statistically significant differences were found in relation to implant angulation. CONCLUSIONS: Within the study limitations navigation was reliable for complete-arch implant placement with immediate loading digitally pre-fabricated FDP. AI-driven surface anatomy identification and calibration protocol made fiducial-free registration as accurate as fiducial-based, teeth and bone screws equal as references. Implant site characteristics were the only statistically significant variable with healed sites reporting higher accuracy compared to post-extractive. Live-tracked navigation surgery enhanced operator performance and accuracy regardless of implant angulation and type of jaw. A mean safety room of about 1 mm and 2° should be considered.

14.
Arch Pharm (Weinheim) ; : e2400067, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967191

ABSTRACT

The development of targeted phthalazine-1,4-dione acetylcholinesterase (AChE) inhibitors for treating Alzheimer's disease involved the synthesis of 32 compounds via a multistage process. Various analytical techniques confirmed the compounds' identities. Thirteen compounds were found to inhibit AChE by more than 50% without affecting butyrylcholinesterase (BChE). Among these, three compounds, 8m, 8n, and 8p, exhibited extraordinary activity similar to donepezil, a reference AChE inhibitor. During enzyme kinetic studies, compound 8n, displaying the highest AChE inhibitory activity, underwent evaluation at three concentrations (2 × IC50, IC50, and IC50/2). Lineweaver-Burk plots indicated mixed inhibition activity for compound 8n against AChE, suggesting a combination of competitive and noncompetitive characteristics. Additionally, effective derivatives 8m, 8n, and 8p exhibited high blood-brain barrier (BBB) permeability in in vitro parallel artificial membrane permeability assay tests. Molecular docking studies revealed that these compounds bind to the enzyme's active site residues in a position similar to donepezil. Molecular dynamic simulations confirmed the stability of the protein-ligand system, and the chemical reactivity characteristics of the compounds were investigated using density functional theory. The compounds' wide energy gaps suggest stability and therapeutic potential. This research represents a significant step toward finding a potential cure for Alzheimer's disease. However, further research and testing are required to determine the compounds' safety and efficacy. The unique structure of phthalazine derivatives makes them suitable for various biological activities, and these compounds show promise for developing effective drugs for treating Alzheimer's disease. Overall, the development of these targeted compounds is a crucial advancement in the search for an effective treatment for Alzheimer's disease.

15.
J Sci Food Agric ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967243

ABSTRACT

BACKGROUND: Mycotoxin contamination of food has been gaining increasing attention. Hidden mycotoxins that interact with biological macromolecules in food could make the detection of mycotoxins less accurate, potentially leading to the underestimation of the total exposure risk. Interactions of the mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) with high-molecular glutenin were explored in this study. RESULTS: The recovery rates of AOH and AME (1, 2, and 10 µg kg-1) in three types of grains (rice, corn, and wheat) were relatively low. Molecular dynamics (MD) simulations indicated that AOH and AME bound to glutenin spontaneously. Hydrogen bonds and π-π stacking were the primary interaction forces at the binding sites. Alternariol with one additional hydroxyl group exhibited stronger binding affinity to glutenin than AME when analyzing average local ionization energy. The average interaction energy between AOH and glutenin was -80.68 KJ mol-1, whereas that of AME was -67.11 KJ mol-1. CONCLUSION: This study revealed the mechanisms of the interactions between AOH (or AME) and high-molecular glutenin using MD and molecular docking. This could be useful in the development of effective methods to detect pollution levels. These results could also play an important role in the evaluation of the toxicological properties of bound altertoxins. © 2024 Society of Chemical Industry.

16.
Article in English | MEDLINE | ID: mdl-38967267

ABSTRACT

PURPOSE: To evaluate the impact of age as a risk factor on the revision rates of anterior cruciate ligament (ACL) primary repair (ACLPR), dynamic intraligamentary stabilization (DIS) and bridge-enhanced ACL restoration (BEAR) compared to ACL reconstruction (ACLR). METHODS: A systematic literature search was performed for comparative studies comparing outcomes for ACLPR, DIS or BEAR to ACLR. A random-effects meta-analysis was performed to assess nondifferentiated and age-differentiated (skeletally mature patients ≤21 and >21 years) ACL revision and reoperation risk, as well as results for subjective outcomes. Methodological study quality was assessed using the Risk of Bias Tool 2.0c and Methodological Index for Nonrandomized Studies tools. RESULTS: A total of 12 studies (n = 1277) were included. ACLR demonstrated a lower nonage-stratified revision risk at 2 years versus ACLPR, DIS and BEAR, but a similar revision risk at 5 years when compared to DIS. However, an age-stratified analysis demonstrated a significantly increased ACLPR revision risk as compared to ACLR in skeletally mature patients ≤21 years of age (risk ratios [RR], 6.33; 95% confidence interval [CI], 1.18-33.87, p = 0.03), while adults (>21 years) showed no significant difference between groups (RR, 1.48; 95% CI, 0.25-8.91, n.s.). Furthermore, DIS reoperation rates were significantly higher than respective ACLR rates (RR, 2.22; 95% CI, 1.35-3.65, p = 0.002), whereas BEAR (RR, 1.07; 95% CI, 0.41-2.75, n.s.) and ACLPR (RR, 0.81; 95% CI, 0.21-3.09, n.s.) showed no differences. IKDC scores were equivalent for all techniques. However, ACLPR exhibited significantly better FJS (mean difference, 11.93; 95% CI, 6.36-17.51, p < 0.0001) and Knee injury and Osteoarthritis Outcome Score Symptoms (mean difference, 3.01; 95% CI, 0.42-5.60, p = 0.02), along with a lower Tegner activity reduction. CONCLUSIONS: ACLPR in skeletally mature patients ≤21 years of age is associated with up to a six-fold risk increase for ACL revision surgery compared to ACLR; however, adults (>21 years) present no significant difference. Based on the current data, age emerges as a crucial risk factor and should be considered when deciding on the appropriate treatment option in proximal ACL tears. LEVEL OF EVIDENCE: Level III.

17.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948857

ABSTRACT

Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter-network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 schizophrenia patients and demographically matched 160 healthy controls. Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available brain networks between SZ patients and healthy controls (HC). These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN) and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time-varying connectivity strength across functional regions from each source network, compared to healthy control group. C-means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low-scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large-scale functional entropy correlation. k-means clustering analysis on time-indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that it appears healthy for a brain to primarily circulate through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. However, individuals with SZ seem to struggle with transiently attaining these more focused and structured connectivity patterns. Proposed ICE measure presents a novel framework for gaining deeper insights into understanding mechanisms of healthy and disease brain states and a substantial step forward in the developing advanced methods of diagnostics of mental health conditions.

18.
Int J Biol Macromol ; 275(Pt 1): 133571, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960243

ABSTRACT

Prolyl oligopeptidase (POP) is a compelling therapeutic target associated with aging and neurodegenerative disorders due to its pivotal role in neuropeptide processing. Despite initial promise demonstrated by early-stage POP inhibitors, their progress in clinical trials has been halted at Phase I or II. This impediment has prompted the pursuit of novel inhibitors. The current study seeks to contribute to the identification of efficacious POP inhibitors through the design, synthesis, and comprehensive evaluation (both in vitro and in silico) of thiazolyl thiourea derivatives (5a-r). In vitro experimentation exhibited that the compounds displayed significant higher potency as POP inhibitors. Compound 5e demonstrated an IC50 value of 16.47 ± 0.54 µM, representing a remarkable potency. A meticulous examination of the structure-activity relationship indicated that halogen and methoxy substituents were the most efficacious. In silico investigations delved into induced fit docking, pharmacokinetics, and molecular dynamics simulations to elucidate the intricate interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, our pharmacokinetic assessments confirmed that the majority of the synthesized compounds possess attributes conducive to potential drug development.

19.
Sci Rep ; 14(1): 15498, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969829

ABSTRACT

Black liquor (BL) is the major bioproduct and biomass fuel in pulp mill processes. However, the high viscosity of BL makes it a challenging material to work with, resulting in issues with evaporators and heat exchangers during its transport and processing. The thermal and rheological properties of BLs from Pinus sp. (PBL) and Eucalyptus sp. (EBL) were studied. FTIR spectra revealed the presence of the characteristic functional groups and the chemical composition in liquors. TGA/DTG curves showed three characteristic degradation stages related to evaporation of water, pyrolysis of organic groups, and condensation of char. Rheologically, liquors are classified as non-Newtonian and with comportment pseudoplastic. Their rheological dynamic shear properties included a linear viscoelastic region up to 1% shear strain, while frequency sweeps showed that storage modulus (G') > loss modulus (G''), thus confirming the solid-like behavior of both BLs. The rheological study demonstrated that increasing the temperature and oscillatory deformations of PBL and EBL decreased their degree of viscoelasticity, which could favor their pumping and handling within the pulp mill, as well as the droplet formation and swelling characteristics in the recovery furnace.


Subject(s)
Eucalyptus , Pinus , Rheology , Eucalyptus/chemistry , Pinus/chemistry , Viscosity , Brazil , Finland , Temperature , Spectroscopy, Fourier Transform Infrared
20.
Article in English | MEDLINE | ID: mdl-38972502

ABSTRACT

As a novel measure, dynamic functional connectivity (dFC) provides insight into the dynamic nature of brain networks and their interactions in resting-state, surpassing traditional static functional connectivity in pathological conditions such as depression. Since a comprehensive review is still lacking, we then reviewed forty-five eligible papers to explore pathological mechanisms of major depressive disorder (MDD) from perspectives including abnormal brain regions and functional networks, brain state, topological properties, relevant recognition, along with longitudinal studies. Though inconsistencies could be found, common findings are: (1) From different perspectives based on dFC, default-mode network (DMN) with its subregions exhibited a close relation to the pathological mechanism of MDD. (2) With a corrupted integrity within large-scale functional networks and imbalance between them, longer fraction time in a relatively weakly-connected state may be a possible property of MDD concerning its relation with DMN. Abnormal transition frequencies between states were correlated to the severity of MDD. (3) Including dynamic properties in topological network metrics enhanced recognition effect. In all, this review summarized its use for clinical diagnosis and treatment, elucidating the non-stationary of MDD patients' aberrant brain activity in the absence of stimuli and bringing new views into its underlying neuro mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL