Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.448
Filter
1.
Reprod Sci ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218837

ABSTRACT

Zinc finger E-box binding homeobox 1 (ZEB1) promotes epithelial-mesenchymal transition (EMT) in carcinogenesis, but its role in embryo implantation has not yet been well studied. In the present study we evaluated the hypothesis that ZEB1-induced EMT is essential for embryo implantation in vivo. Endometrial epithelium from female Kunming mice (non-pregnant, and pregnant from day 2.5 to 6.5) were collected for assessment of mRNA/protein expression of ZEB1, and EMT markers E-cadherin and vimentin, by employment of real-time quantitative reverse transcription PCR, Western blot, and immunohistochemical staining. To test if knockdown of ZEB1 affects embryo implantation in vivo, mice received intrauterine injection of shZEB1 before the number of embryos implanted was counted. The results showed that, ZEB1 was highly expressed at both mRNA and protein levels in the mouse endometrium on day 4.5 of pregnancy, paralleled with down-regulated E-cadherin and up-regulated vimentin expression (P < 0.05). Intrauterine injection of shZEB1 markedly suppressed embryo implantation in mice (P < 0.01). Conclusively, the present work demonstrated that ZEB1 is essential for embryo implantation under in vivo condition, and is possibly due to its effect on modulation of endometrial receptivity through EMT.

2.
Front Vet Sci ; 11: 1413523, 2024.
Article in English | MEDLINE | ID: mdl-39220769

ABSTRACT

Listeriosis is highly prevalent in the animal farming industry, with Listeria monocytogenes as the causative pathogen. To identify potential therapeutic targets for LM infection, we investigated the mechanisms of LM infection in goat uteri. We inoculated a group of goats with LM via jugular vein injection, isolated and raised them, and subsequently collected sterile samples of their uterine tissue after they exhibited clinical symptoms of LM infection. We used Giemsa staining, immunohistochemical staining, real-time qPCR, and Western blotting as experimental methods.First, we investigated the mechanism of Listeria monocytogenes (LM) infection in the goat uterus by examining the expression levels of listeriolysin O, E-cadherin, and tyrosine kinase c-Met in the uterus.Furthermore, we investigated the impact of LM infection on uterine autophagy and cell apoptosis. The results indicate that the injection of LM into the goats' jugular veins leads to LM infection in the goats' uteri. During LM survival inside the goat uterine cells, there is a significant increase in the expression levels of LLO, E-cadherin, and c-Met in the host uterine tissue. This suggests that LM may potentially infect goat uteri through the InlA/E-cadherin and InlB/c-Met pathways. Furthermore, LM infection increases the levels of apoptosis and autophagy in goat uteri. Apoptosis genes Bcl-2 and Bax, as well as autophagy-related genes LC3B, PINK1, and Parkin, exhibit varying degrees of changes in localization and expression in goat uteri, mediating the occurrence of apoptotic and autophagic responses.

3.
Proc Natl Acad Sci U S A ; 121(37): e2405560121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39231206

ABSTRACT

Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.


Subject(s)
Cadherins , Cell Movement , ErbB Receptors , Phosphorylation , Cell Movement/physiology , Cadherins/metabolism , ErbB Receptors/metabolism , Viscosity , Humans , Animals , Adherens Junctions/metabolism , Dogs
4.
Sci Rep ; 14(1): 21130, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39256509

ABSTRACT

Morphine has been suggested to affect cancer cell dynamics and decrease survival rates in lung cancer patients at specific doses, but the precise mechanisms poorly understood. In this study, we aimed to investigate the molecular mechanisms by which morphine modulates the malignant characteristics of non-small cell lung cancer. Cell proliferation was assessed via the Cell Counting Kit-8 assay, and cell migration and invasion were examined via wound healing and Transwell assays. We employed immunofluorescence staining to evaluate E-cadherin expression in A549 and Lewis lung cancer (LLC) cell lines and immunohistochemistry to evaluate E-cadherin expression in nude mice tumours. Additionally, the in vivo effects of morphine on lung cancer progression were explored in a xenograft tumour experiments, in which naloxone was used as a morphine antagonist. Western blot analysis was performed to detect E-cadherin, phosphorylated mTOR (p-mTOR), mTOR, phosphorylated AKT (p-AKT), AKT, phosphorylated PI3K (p-PI3K), and PI3K protein levels in A549 and LLC cells as well as in tumour samples. Morphine (10 µM) significantly increased the proliferation of A549 and LLC cells in vitro (p < 0.05). It also enhanced the migratory and invasive capacities of these cell lines (p < 0.01). Mechanistically, morphine treatment (10 µM) led to a reduction in the expression of E-cadherin, and an increase in the phosphorylation of PI3K, AKT, and mTOR in A549 and LLC cells (p < 0.01). Morphine treatment (1.5 mg/kg) also reduced E-cadherin expression in xenograft tumours and promoted tumour growth in vivo (p < 0.05). This effect was reversed by naloxone (0.1 mg/kg). The results demonstrated that morphine stimulates the malignant proliferation of A549 and LLC cell lines and promotes xenograft tumour growth. Perhaps by specifically targeting MOR, morphine triggers a signalling cascade that activates the PI3K/AKT/mTOR pathway while inhibiting the EMT marker E-cadherin, which may consequently promote the progression of lung cancer.


Subject(s)
Cadherins , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Lung Neoplasms , Morphine , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Cadherins/metabolism , Humans , TOR Serine-Threonine Kinases/metabolism , Animals , Morphine/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Phosphatidylinositol 3-Kinases/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Signal Transduction/drug effects , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Mice, Nude , A549 Cells , Disease Progression , Cell Line, Tumor , Xenograft Model Antitumor Assays , Down-Regulation/drug effects , Naloxone/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Male
5.
Fluids Barriers CNS ; 21(1): 69, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252039

ABSTRACT

For centuries, the meninges have been described as three membranes: the inner pia, middle arachnoid and outer dura. It was therefore sensational when in early 2023 Science magazine published a report of a previously unrecognized - 4th - meningeal membrane located between the pia and arachnoid. Multiple features were claimed for this new membrane: a single cell layer marked by the transcription factor Prox1 that formed a barrier to low molecular weight substances and separated the subarachnoid space (SAS) into two fluid-filled compartments, not one as previously described. These features were further claimed to facilitate unidirectional glymphatic cerebrospinal fluid transport. These claims were immediately questioned by several researchers as misinterpretations of the authors' own data. The critics argued that (i) the 4th meningeal membrane as claimed did not exist as a separate structure but was part of the arachnoid, (ii) the "outer SAS" compartment was likely an artifactual subdural space created by the experimental procedures, and (iii) the 4th membrane barrier property was confused with the arachnoid barrier. Subsequent publications in late 2023 indeed showed that Prox1 + cells are embedded within the arachnoid and located immediately inside of and firmly attached to the arachnoid barrier cells by adherens junctions and gap junctions. In a follow-up study, published in this journal, the lead authors of the Science paper Kjeld Møllgård and Maiken Nedergaard reported additional observations they claim support the existence of a 4th meningeal membrane and the compartmentalization of the SAS into two non-communicating spaces. Their minor modification to the original paper was the 4th meningeal membrane was better observable at the ventral side of the brain than at the dorsal side where it was originally reported. The authors also claimed support for the existence of a 4th meningeal membrane in classical literature. Here, we outline multiple concerns over the new data and interpretation and argue against the claim there is prior support in the literature for a 4th meningeal membrane.


Subject(s)
Meninges , Meninges/anatomy & histology , Humans , Arachnoid/anatomy & histology , Animals
6.
J Biol Chem ; : 107768, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270819

ABSTRACT

Basal-like breast cancer may originate from luminal epithelial or cancerous cells. Inadequately repaired DNA damage impairs luminal differentiation and promotes aberrant luminal to basal trans-differentiation in mammary epithelial cells (MECs). Ubiquitin-specific peptidase 11 (USP11), a deubiquitinase, plays a critical role in DNA damage repair. The role of USP11 in controlling mammary cell differentiation and tumorigenesis remains poorly understood. We generated Usp11 knockout mice and breast cancer cell lines expressing wild-type (WT) and mutant form of USP11. By using these mutant mice, cell lines, and human USP11-deficient and -proficient breast cancer tissues, we tested how USP11 controls mammary cell fate. We generated Usp11 knock-out mice and found that deletion of Usp11 reduced the expression of E-cadherin and promoted DNA damage in MECs. Overexpression of WT USP11, but not a deubiquitinase-inactive mutant form of USP11, promoted luminal differentiation, enhanced DNA damage repair, and suppressed tumorigenesis in mice. Mechanistically, we found that USP11 enhanced the protein expression of E-cadherin dependent on its deubiquitinase activity, and that USP11 deubiquitinated E-cadherin at K738. We discovered that USP11 bound to E-cadherin through its C-terminal region. In human breast cancers, expression of USP11 was positively correlated with that of E-cadherin, and high USP11 predicted better recurrence-free survival. Our findings provide compelling genetic and biochemical evidence that USP11 not only promotes DNA damage repair but also deubiquitinates E-cadherin and maintains the luminal feature of mammary tumor cells, thereby suppressing luminal breast cancer.

7.
Virulence ; 15(1): 2399217, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39221673

ABSTRACT

Fusobacterium nucleatum (F. nucleatum), an anaerobic resident of the oral cavity, is increasingly recognized as a contributing factor to ulcerative colitis (UC). The adhesive properties of F. nucleatum are mediated by its key virulence protein, FadA adhesin. However, further investigations are needed to understand the pathogenic mechanisms of this oral pathogen in UC. The present study aimed to explore the role of the FadA adhesin in the colonization and invasion of oral F. nucleatum in dextran sulphate sodium (DSS)-induced colitis mice via molecular techniques. In this study, we found that oral inoculation of F. nucleatum strain carrying the FadA adhesin further exacerbated DSS-induced colitis, leading to elevated alveolar bone loss, disease severity, and mortality. Additionally, CDH1 gene knockout mice treated with DSS presented increases in body weight and alveolar bone density, as well as a reduction in disease severity. Furthermore, FadA adhesin adhered to its mucosal receptor E-cadherin, leading to the phosphorylation of ß-catenin and the degradation of IκBα, the activation of the NF-κB signalling pathway and the upregulation of downstream cytokines. In conclusion, this research revealed that oral inoculation with F. nucleatum facilitates experimental colitis via the secretion of the virulence adhesin FadA. Targeting the oral pathogen F. nucleatum and its virulence factor FadA may represent a promising therapeutic approach for a portion of UC patients.


Subject(s)
Adhesins, Bacterial , Colitis, Ulcerative , Fusobacterium Infections , Fusobacterium nucleatum , Mice, Knockout , Fusobacterium nucleatum/pathogenicity , Animals , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Mice , Colitis, Ulcerative/microbiology , Fusobacterium Infections/microbiology , Virulence , Dextran Sulfate , Virulence Factors/genetics , Virulence Factors/metabolism , Cadherins/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Bacterial Adhesion , Humans
8.
Development ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258889

ABSTRACT

Pharyngeal endoderm cells undergo convergence and extension (C&E), which is essential for endoderm pouch formation and craniofacial development. Our prior work implicates Gα13/RhoA-mediated signaling in regulating this process, but underlying mechanisms remain unclear. Here, we used endoderm-specific transgenic and Gα13 mutant zebrafish to demonstrate that Gα13 plays a crucial role in pharyngeal endoderm C&E by regulating RhoA activation and E-cadherin expression. We showed that during C&E, endodermal cells gradually establish stable cell-cell contacts, acquire apical-basal polarity, and undergo actomyosin-driven apical constriction, processes that require Gα13. Additionally, we found Gα13-deficient embryos exhibit reduced E-cadherin expression, partially contributing to endoderm C&E defects. Notably, interfering with RhoA function disrupts spatial actomyosin activation without affecting E-cadherin expression. Collectively, our findings identify critical cellular processes for pharyngeal endoderm C&E and reveal that Gα13 controls this through two independent pathways: modulating RhoA activation and regulating E-cadherin expression, thus unveiling intricate mechanisms governing pharyngeal endoderm morphogenesis.

9.
Int Immunopharmacol ; 142(Pt A): 113074, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244903

ABSTRACT

BACKGROUND: Posterior capsular opacification is a major complication following cataract surgery, marked by proliferation, migration, epithelial-mesenchymal transition, and fibrosis of residual epithelial cells. Various inflammatory cytokines are upregulated and contribute to the development of posterior capsular opacification. The effect of interleukin-8 on residual epithelial cells has not been fully determined. METHODS: Aqueous humor and anterior capsules samples were collected from cataract surgery. Capsular bags from rats and pigs were cultured in DMEM media. Protein and mRNA expressions were measured using immunoblot and qPCR. Cell migration was assessed using the transwell assay. RESULTS: Interleukin-8 is an early inflammatory factor secreted by residual lens epithelial cells. Migration of lens epithelial cells in aqueous humor positively correlates with interleukin-8 levels, and this effect is inhibited by the receptors of interleukin-8 CXCR1/2 blocker Reparaxin. The expression of tight-junction protein ZO-1 and cell-adhesion protein E-cadherin were down-regulated by administrating interleukin-8, and cell migration of both SRA01/04 cell line in vitro and capsular residual epithelial cells ex vivo were up-regulated via activating RhoA expression and RhoA/GTPase activity. The loss-of- function studies demonstrate that interleukin-8 binding to its receptor CXCR1/2 activates NF-κB/p65, which then turns on the RhoA's expression and RhoA/GTPase activity, and RhoA-modulated the downexpression of E-cadherin and ZO-1 and the increase of cell migration. CONCLUSIONS: The upregulation in interleukin-8 occurs early in posterior capsular opacification and contributes to down-regulating tight-junctions among epithelial cells and elevates cell migration via the CXCR1/2-NF-κB-RhoA signaling pathway. These demonstrated that interleukin-8 could be a potential target for preventing posterior capsular opacification.

10.
Front Genet ; 15: 1404515, 2024.
Article in English | MEDLINE | ID: mdl-39144722

ABSTRACT

Background: Breast cancer recurrence and lymph node metastasis significantly impact patient outcomes. Understanding the molecular mechanisms behind these processes is crucial for developing effective treatments. CCN5 and E-cadherin are proteins involved in cell adhesion and epithelial-mesenchymal transition (EMT), playing roles in breast cancer progression. Objective: This study aimed to analyze the expression levels and clinical significance of CCN5 and E-cadherin in primary and recurrent breast cancer lesions. Methods: Immunohistochemical staining using the SP method was performed to detect CCN5 and E-cadherin expression levels in 28 normal breast tissue samples, 52 primary breast cancer lesions, and paired recurrent chest wall lesions. The expression levels of these proteins were compared across different tissue types and correlated with lymph node metastasis. Results: CCN5 and E-cadherin expression levels significantly differed among normal breast tissues, primary breast cancer lesions, and recurrent lesions (Χ2 = 18.934 and Χ2 = 14.516, p < 0.05). Primary breast cancer lesions exhibited higher CCN5 and E-cadherin expression levels compared with recurrent lesions and normal tissues, although these differences were not statistically significant. Patients without lymph node metastases exhibited significantly higher expression levels of CCN5 and E-cadherin compared with those with lymph node metastases (Χ2 = 9.775, Χ2 = 9.1479, p < 0.05). A positive correlation between CCN5 and E-cadherin expression levels was found in breast cancer tissues (r = 0.398, p < 0.001). Conclusion: CCN5 and E-cadherin were expressed at lower levels in recurrent breast cancer tissues and those with lymph node metastases, indicating their potential roles in breast cancer recurrence and metastasis. These findings suggest that CCN5 and E-cadherin might work synergistically to influence breast cancer progression.

11.
J Maxillofac Oral Surg ; 23(4): 896-908, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118911

ABSTRACT

Introduction: The characterization of circulating tumor cells (CTC) and circulating tumor microemboli (CTM) has emerged as both a challenge to the standard view of metastasis, and as a valuable means for understanding genotypic and phenotypic variability shown even within the same cancer type. However, in the case of salivary gland neoplasms, limited data are available for the role that CTCs and CTMs play in metastasis and secondary tumor formation.ru.AQ1 In response to this, we propose that similarities between in vitro clusters of cultured salivary gland cancer cells may act as a surrogate model for in vivo CTCs and CTMs isolated from patients. Materials and Methods: Using techniques in immunofluorescence, immunoblotting, and 2-dimensional migration, we isolated and characterized a group of cohort cells from a commercially available cell line (HTB-41). Results: Here, cells exhibited a hybrid phenotype with simultaneous expression of both epithelial and mesenchymal markers (E-cadherin, vimentin, and α-SMA). Cohort cells also exhibited increased migration in comparison to parental cells. Conclusion: Data suggest that these isolated cell clusters may fucntion as a potential in vitro model of CTCs and CTMs.

12.
Oncol Rep ; 52(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39129320

ABSTRACT

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that, with the cell migration assay data shown in Fig. 7 on p. 901, the "TPA" and "TPA + U0126" panels were strikingly similar, such that data which were intended to show the results from differently performed experiments had apparently been derived from the same original source. In addition, it was noted that the "TPA + hispolon" and "TPA + NAC" data panels in Fig. 4B on p. 899 contained overlapping sections. Thirdly, a data panel was shared between Figs. 1 and 4, although this was intentional on the part of the authors as the same experiment was being portrayed in these figures.  The authors were able to re­examine their original data files, and realized that errors were made in asssembling Figs. 4B and 7. The revised versions of Figs. 4 and 7, now containing the correct data for the "TPA + NAC" experiment in Fig. 4B and the Control ("Ctrl") experiment in Fig. 7, are shown on the next two pages. The authors wish to emphasize that the corrections made to these figures do not affect the overall conclusions reported in the paper, and they are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this corrigendum. All the authors agree to the publication of this corrigendum, and also apologize to the readership for any inconvenience caused. [Oncology Reports 35: 896­904, 2016; DOI: 10.3892/or.2015.4445].

13.
J Clin Med ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39124679

ABSTRACT

Background/Objectives. Novel diagnostic and therapeutic approaches are needed to improve the clinical management of nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs). Here, the expression of two proteins controlling the epithelial-mesenchymal transition (EMT)-an underlying NF-PitNET pathogenic mechanism-were analyzed as prognostic markers: E-cadherin (E-Cad) and KLHL14. Methods. The immunohistochemistry characterization of KLHL14 and E-Cad subcellular expression in surgical specimens of 12 NF-PitNET patients, with low and high invasiveness grades (respectively, Ki67+ < and ≥3%) was carried out. Results. The analysis of healthy vs. NF-PitNET tissues demonstrated an increased protein expression and nuclear translocation of KLHL14. Moreover, both E-Cad and KLHL14 shifted from a cytoplasmic (C) form in a low invasive NF-PitNET to a nuclear (N) localization in a high invasive NF-PitNET. A significant correlation was found between E-Cad/KLHL14 co-localization in the cytoplasm (p = 0.01) and nucleus (p = 0.01) and with NF-PitNET invasiveness grade. Conclusions. Nuclear buildup of both E-Cad and KLHL14 detected in high invasive NF-PitNET patients highlights a novel intracellular mechanism governing the tumor propensity to local invasion (Ki67+ ≥ 3%). The prolonged progression-free survival trend documented in patients with lower KLHL14 expression further supported such a hypothesis even if a larger cohort of NF-PitNET patients have to be analyzed to definitively recognize a key prognostic role for KLHL14.

14.
Cureus ; 16(7): e65225, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39184723

ABSTRACT

Aim Epithelial cadherin or E-cadherin is a cell adhesion molecule that is present in all cells to promote integrity and survival of the cells. The aim of this study was to assess the immunohistochemical staining pattern of E-cadherin in hyperplastic endometrium. Methods A total of 25 blocks of formalin-fixed paraffin-embedded tissues of endometrial biopsies, from September 2020 to May 2023, were obtained from the Department of Pathology, Saveetha Medical College. Out of these 25 histologically proven cases of endometrial hyperplasia (EH), 17 cases were of EH without atypia and 8 cases were of endometrial hyperplasia with atypia (AH, or atypical hyperplasia). Results The immunohistochemical examination revealed that E-cadherin expression was downregulated in both EH without atypia and AH. But the downregulation was more pronounced in cases of AH than in EH without atypia. This was confirmed by the comparison of E-cadherin expression between EH with and without atypia by a chi-square test, which showed a p-value of 0.05 and was proven significant. Conclusion The heterogeneous expression of E-cadherin can be attributed to the impairment of cadherin-catenin complex. This impairment is seen in AH as well as EH without atypia. This shows this impairment occurs very early in the transformation process of the endometrium from hyperplastic to neoplastic.

15.
Expert Rev Mol Diagn ; : 1-13, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187988

ABSTRACT

OBJECTIVES: Renal cell carcinoma (RCC) is the most common cancer of the kidney. This study aims to evaluate the potential predictive value of E-cadherin, a marker of the epithelial mesenchymal transit (EMT) process that has been associated with tumor metastasis. METHODS: We searched PubMed, Embase, and Cochrane Library to identify prospective studies. Hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were summarized to validate the relationship between E-cadherin and survival and clinical characteristics. The quality of the included studies was assessed using the NOS table. Then, we analyzed genetic data and clinical characteristics from The Cancer Genome Atlas Program (TCGA) database using R language with the dplyr package for validation. RESULTS: Including 21 articles. The analysis revealed a strong link between high E-cadherin expression and favorable prognosis (for OS, HR = 0.35, 95% CI: 0.19-0.62; for PFS, HR = 0.19, 95% CI: 0.03-0.53; for DSS, HR = 0.25, 95% CI: 0.08-0.76; for RFS, HR = 0.71, 95% CI: 0.44-1.16; for DFS, HR = 0.28, 95% CI: 0.13-0.61; for T stage, OR = 0.21, 95% CI: 0.11-0.41; for N stage, OR = 0.07, 95%CI: 0.02-0.25; for M stage, OR = 0.12, 95% CI: 0.02-0.60; for clinical stage, OR = 0.29, 95% CI: 0.18-0.47; for nuclear grade, OR = 0.23, 95% CI: 0.13-0.41; for tumor size, OR = 0.49, 95% CI: 0.26-0.92). The findings were supported by bioinformatic analysis which used TCGA RCC patient's cohort (P < 0.01). CONCLUSION: Based on the current data, E-cadherin may predict a better prognosis in RCC patients.

16.
Klin Onkol ; 38(1): 50-56, 2024.
Article in English | MEDLINE | ID: mdl-39183551

ABSTRACT

BACKGROUND: Triple-negative breast carcinomas (TNBC) are a heterogeneous group of tumors with mostly aggressive behaviour and poor prognosis. In association with their aggressive behavior and chemoresistance to treatment, the concept of epithelial-mesenchymal transition (EMT) has come to the fore. CD9 and CD29 proteins are associated with EMT and may play a role in TNBC progression. Our aim was to investigate association of these markers with the lymph node metastasis, tumor grade, proliferative activity, and patient survival. PATIENTS AND METHODS: Our cohort consisted of 66 TNBC patients without neoadjuvant therapy, aged 26-81 years. The pathological tumor stages ranged from pT1b to pT3 and histological grades ranged from II to III, according to the Bloom-Richardson system. Immunohistochemical evaluation of CD9, CD29, E-cadherin, vimentin, androgen receptor and Ki-67 expression was performed semiquantitatively using the H-score. Expression of the proteins was statistically evaluated in relation to the clinicopathological parameters and survival of the patients. RESULTS: We observed lower expression of CD9 in lymph node metastases compared to the primary tumor (P = 0.021). The CD29 expression in primary tumor was significantly lower in patients with lymph node metastases compared to patients without cancer dissemination (P = 0.03). Neither CD9 nor CD29 protein expression was associated with breast cancer-specific survival (BCSS). Lower expression of E-cadherin at the periphery of the primary tumor was associated with worse BCSS (P = 0.038). Neither grade nor the presence of lymph node metastases reached significant association with the BCSS. Lower expression of E-cadherin at the periphery was also associated with higher Ki67 (Rs -0.26) and vimentin (Rs -0.33). CONCLUSION: Decreased protein expression of CD9 and CD29 were associated with lymph node metastasis growth, however, their association with survival was not proved. Lower expression of E-cadherin at the periphery of the primary tumor was associated with high proliferation and poor breast cancer-specific survival.


Subject(s)
Biomarkers, Tumor , Epithelial-Mesenchymal Transition , Lymphatic Metastasis , Tetraspanin 29 , Triple Negative Breast Neoplasms , Humans , Female , Aged , Middle Aged , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Adult , Aged, 80 and over , Biomarkers, Tumor/metabolism , Tetraspanin 29/metabolism , Immunohistochemistry , Cadherins/metabolism
17.
Tissue Cell ; 90: 102517, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137537

ABSTRACT

The Egyptian tortoise (Testudo kleinmanni) is remarkably adapted to its harsh desert environment, a characteristic that is crucial for its survival under extreme conditions. This study was aimed at providing a deeper understanding of the lingual salivary gland structures in the Egyptian tortoise and examining how these structures help the tortoise manage hydration and nutrition in arid conditions. Utilizing a combination of light microscopy and immunofluorescence, this research introduced pioneering methods involving seven different antibodies, marking a first in the study of reptilian salivary glands. Our investigations categorized the tortoise's salivary glands into papillary and non-papillary types. The papillary glands were further classified into superficial, deep, interpapillary, and intraepithelial salivary glands, while non-papillary glands included superficial and deep lingual types. Structurally, these glands are organized into lobules, delineated by interlobular septa, and are equipped with a duct system comprising interlobular, intercalated, and main excretory ducts with gland openings on the tongue's surface and the papillae surfaces. Notably, the superficial glands displayed both tubuloalveolar and acinar configurations, whereas the deep lingual glands were exclusively acinar. Immunofluorescence results indicated that α-smooth muscle actin (α-SMA) was prevalent in myoepithelial cells, myofibroblasts, and blood vessels, suggesting their integral role in glandular function and support. E-cadherin was predominantly found in epithelial cells, enhancing cell adhesion and integrity, which are critical for efficient saliva secretion. Importantly, Mucin 1 (MUC1) and Mucin 5B (MUC5B) staining revealed that most glands were mucous in nature, with MUC5B specifically marking mucin within secretory cells, confirming their primary function in mucous secretion. PDGFRα and CD34 highlighted the presence of telocytes and stromal cells within the glandular and interlobular septa, indicating a role in structural organization and possibly in regenerative processes. Cytokeratin 14 expression was noted in the basal cells of the glands, underscoring its role in upholding the structural foundation of the epithelial barrier. In conclusion, this detailed morphological and immunological characterization of the Egyptian tortoise's salivary glands provides new insights into their complex structure and essential functions. These findings not only enhance our understanding of reptilian physiology but also underline the critical nature of salivary glands in supporting life in arid environments. This study's innovative use of a broad range of immunofluorescence markers opens new avenues for further research into the adaptive mechanisms of reptiles.


Subject(s)
Fluorescent Antibody Technique , Salivary Glands , Turtles , Animals , Turtles/metabolism , Salivary Glands/metabolism , Salivary Glands/cytology , Tongue/cytology , Tongue/metabolism , Egypt
18.
Mol Med Rep ; 30(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39155876

ABSTRACT

Endometrial receptivity is essential for successful embryo implantation and pregnancy initiation and is regulated via various signaling pathways. Adiponectin, an important adipokine, may be a potential regulator of reproductive system functions. The aim of the present study was to elucidate the regulatory role of adiponectin receptor 1 (ADIPOR1) in endometrial receptivity. The endometrial receptivity between RL95­2 and AN3CA cell lines was confirmed using an in vitro JAr spheroid attachment model. 293T cells were transfected with control or short hairpin (sh)ADIPOR1 vectors and RL95­2 cells were transduced with lentiviral particles targeting ADIPOR1. Reverse transcription­quantitative PCR and immunoblot assays were also performed. ADIPOR1 was consistently upregulated in the endometrium during the mid­secretory phase compared with that in the proliferative phase and in receptive RL95­2 cells compared with that in non­receptive AN3CA cells. Stable cell lines with diminished ADIPOR1 expression caused by shRNA showed reduced E­cadherin expression and attenuated in vitro endometrial receptivity. ADIPOR1 regulated AMP­activated protein kinase (AMPK) activity in endometrial epithelial cells. Regulation of AMPK activity via dorsomorphin and 5­aminoimidazole­4­carboxamide ribonucleotide affected E­cadherin expression and in vitro endometrial receptivity. The ADIPOR1/AMPK/E­cadherin axis is vital to endometrial receptivity. These findings can help improve fertility treatments and outcomes.


Subject(s)
AMP-Activated Protein Kinases , Cadherins , Endometrium , Receptors, Adiponectin , Signal Transduction , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Humans , Female , Endometrium/metabolism , Cadherins/metabolism , Cadherins/genetics , AMP-Activated Protein Kinases/metabolism , Cell Line , Embryo Implantation , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Adult , Aminoimidazole Carboxamide/analogs & derivatives , Ribonucleotides
19.
Int J Mol Sci ; 25(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39201647

ABSTRACT

Invasive lobular carcinoma exhibits unique morphological features frequently associated with alterations in CDH1. Although some studies have identified abnormalities in adhesion factors other than E-cadherin, the molecular mechanisms underlying E-cadherin abnormalities in CDH1-unaltered invasive lobular carcinoma remain poorly understood. In this study, we investigated the molecular underpinnings of E-cadherin dysregulation in invasive lobular carcinoma in the absence of CDH1 gene alterations, using comprehensive bioinformatic analyses. We conducted a comparative study of CDH1-mutated and non-mutated invasive lobular carcinoma and evaluated the differences in mRNA levels, reverse-phase protein array, methylation, and miRNAs. We observed that invasive lobular carcinoma cases without CDH1 alterations exhibited a significantly higher incidence of the Claudin-low subtype (p < 0.01). The results of the reverse-phase protein array indicate no significant difference in E-cadherin expression between CDH1-mutated and non-mutated cases. Therefore, abnormalities in E-cadherin production also exist in CDH1 non-mutated invasive lobular carcinoma. Considering that there are no differences in mRNA levels and methylation status, post-translational modifications are the most plausible explanation for the same. Hence, future studies should focus on elucidating the mechanism underlying E-cadherin inactivation via post-translational modifications in CDH1 non-mutated invasive lobular carcinoma.


Subject(s)
Antigens, CD , Breast Neoplasms , Cadherins , Carcinoma, Lobular , Computational Biology , DNA Methylation , Gene Expression Regulation, Neoplastic , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/pathology , Humans , Antigens, CD/metabolism , Antigens, CD/genetics , Computational Biology/methods , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Mutation , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL