Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930227

ABSTRACT

In this article, an L-shaped three-dimensional (3D) braided piezoelectric composite energy harvester (BPCEH) is established, which consists of an elastic layer composed of a 3D braided composite, flanked by upper and lower layers of piezoelectric material and two tuning mass blocks. Glass fiber and epoxy resin are used to produce a 3D braided composite. This L-shaped 3D BPCEH is mechanically designable and can be adapted to different work requirements by varying the braided angle of the 3D braided composite layer. The material parameters of 3D braided composites are predicted for different braided angles by means of a representative volume element (RVE). Electro-mechanical coupled vibration equations for the L-shaped 3D BPCEH are established. The impact of braided angles on voltage and power output is discussed in this article. Simulations using finite element method are conducted to analyze the voltage and power output responses at various braided angles. In addition, the effects of the mass of mass block B and the length of the beam on the output performance of the L-shaped 3D BPCEH are analyzed.

2.
Polymers (Basel) ; 16(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38475384

ABSTRACT

Elastomeric polymers have gained significant attention in the field of flexible electronics. The investigation of the electro-mechanical response relationship between polymer structure and flexible electronics is in increasing demand. This study investigated the factors that affect the performance of flexible capacitive pressure sensors using the finite element method (FEM). The sensor employed a porous elastomeric polymer as the dielectric layer. The results indicate that the sensor's performance was influenced by both the structural and material characteristics of the porous elastomeric polymer. In terms of structural characteristics, porosity was the primary factor influencing the performance of sensors. At a porosity of 76%, the sensitivity was 42 times higher than at a porosity of 1%. In terms of material properties, Young's modulus played a crucial role in influencing the performance of the sensors. In particular, the influence on the sensor became more pronounced when Young's modulus was less than 1 MPa. Furthermore, porous polydimethylsiloxane (PDMS) with porosities of 34%, 47%, 67%, and 72% was fabricated as the dielectric layer for the sensor using the thermal expansion microsphere method, followed by sensing capability testing. The results indicate that the sensor's sensitivity was noticeably influenced within the high porosity range, aligning with the trend observed in the simulation.

3.
Materials (Basel) ; 15(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35207857

ABSTRACT

Dielectric elastomers (DE) belong to a very performant and efficient class of functional materials for actuators, while being compliant, low-weight and silent, they offer high energy efficiencies and large deformations under an applied electric field. In this work, a comparison of different approaches to derive expressions for the electrically induced stress states in dielectric materials is given. In particular, the focus is on three different ways to analytically describe stress states in planar actuator setups and to show how they are connected to each other regarding their resulting deformations. This is the basis to evaluate the suitability of these approaches for cylindrical actuator geometries together with exemplary calculations for concrete use cases. As an outcome, conclusions on the suitability of the different approaches for certain actuator setups are drawn. In particular cylindrical actuator geometries are taken into account and a recommendation on which approach is useful to describe a certain actuator effect is given.

4.
J Math Biol ; 84(3): 17, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35142929

ABSTRACT

In this study, the cardiac electro-mechanical model in a deforming domain is taken with the addition of mechanical feedback and stretch-activated channel current coupled with the ten Tusscher human ventricular cell level model that results in a coupled PDE-ODE system. The existence and uniqueness of such a coupled system in a deforming domain is proved. At first, the existence of a solution is proved in the deformed domain. The local existence of the solution is proved using the regularization and the Faedo-Galerkin technique. Then, the global existence is proved using the energy estimates in appropriate Banach spaces, Gronwall lemma, and the compactness procedure. The existence of the solution in an undeformed domain is proved using the lower semi-continuity of the norms. Uniqueness is proved using Young's inequality, Gronwall lemma, and the Cauchy-Schwartz inequality. For the application purpose, this model is applied to understand the electro-mechanical activity in ischemic cardiac tissue. It also takes care of the development of active tension, conductive, convective, and ionic feedback. The Second Piola-Kirchoff stress tensor arising in Lagrangian mapping between reference and moving frames is taken as a combination of active, passive, and volumetric components. We investigated the effect of varying strength of hyperkalemia and hypoxia, in the ischemic subregions of human cardiac tissue with local multiple ischemic subregions, on the electro-mechanical activity of healthy and ischemic zones. This system is solved numerically using the [Formula: see text] finite element method in space and the implicit-explicit Euler method in time. Discontinuities arising with the modeled multiple ischemic regions are treated to the desired order of accuracy by a simple regularization technique using the interpolating polynomials. We examined the cardiac electro-mechanical activity for several cases in multiple hyperkalemic and hypoxic human cardiac tissue. We concluded that local multiple ischemic subregions severely affect the cardiac electro-mechanical activity more, in terms of action potential (v) and mechanical parameters, intracellular calcium ion concentration [Formula: see text], active tension ([Formula: see text]), stretch ([Formula: see text]) and stretch rate ([Formula: see text]), of a healthy cell in its vicinity, compared to a single Hyperkalemic or Hypoxic subregion. The four moderate hypoxically generated ischemic subregions affect the waveform of the stretch along the fiber and the stretch rate more than a single severe ischemic subregion.


Subject(s)
Algorithms , Heart , Action Potentials/physiology , Electric Conductivity , Finite Element Analysis , Humans
5.
Biosens Bioelectron ; 186: 113289, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33975207

ABSTRACT

Cells in living organisms live in multiphysics-coupled environments. There is growing evidence indicating that both exogenous electric field (EEF) and extracellular stiffness gradient (ESG) can regulate directional movement of cells, which are known as electrotaxis and durotaxis, respectively. How single cells respond to the ubiquitous electromechanical coupling cues, however, remains mysterious. Using microfluidic chip-based methodology and finite element-based electromechanical coupling design strategies, we develope an electromechanical coupling microchip system, enabling us to quantitatively investigate polarization and directional migration governed by EEF and ESG at the single cell level. It is revealed that both of electrotaxis and durotaxis nonlinearly depend on the physiological EEF and ESG, respectively. Specific combinations of EEF and ESG can subtly modify the polarization states of single cells and thus induce hyperpolarization and depolarization. Cells can integrate electrotaxis and durotaxis in response to multi-cue microenvironments via subtle mechanisms involving cooperation and competition during cellular electrosensing and mechanosensing. The work offers a platform for quantifying migration and polarization of cells driven by electromechanical cues, which is essential not only for elucidating physiological and pathological processes like embryo development, and invasion and metastasis of cancer cells, but for manipulating cell behaviors in a controllable and programmable fashion.

6.
Nanomaterials (Basel) ; 11(4)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916340

ABSTRACT

The potential application field of single-walled carbon nanotubes (SWCNTs) is immense, due to their remarkable mechanical and electrical properties. However, their mechanical properties under combined physical fields have not attracted researchers' attention. For the first time, the present paper proposes beam theory to model SWCNTs' mechanical properties under combined temperature and electrostatic fields. Unlike the classical Bernoulli-Euler beam model, this new model has independent extensional stiffness and bending stiffness. Static bending, buckling, and nonlinear vibrations are investigated through the classical beam model and the new model. The results show that the classical beam model significantly underestimates the influence of temperature and electrostatic fields on the mechanical properties of SWCNTs because the model overestimates the bending stiffness. The results also suggest that it may be necessary to re-examine the accuracy of the classical beam model of SWCNTs.

7.
Front Physiol ; 12: 778872, 2021.
Article in English | MEDLINE | ID: mdl-34975532

ABSTRACT

The ECG is one of the most commonly used non-invasive tools to gain insights into the electrical functioning of the heart. It has been crucial as a foundation in the creation and validation of in silico models describing the underlying electrophysiological processes. However, so far, the contraction of the heart and its influences on the ECG have mainly been overlooked in in silico models. As the heart contracts and moves, so do the electrical sources within the heart responsible for the signal on the body surface, thus potentially altering the ECG. To illuminate these aspects, we developed a human 4-chamber electro-mechanically coupled whole heart in silico model and embedded it within a torso model. Our model faithfully reproduces measured 12-lead ECG traces, circulatory characteristics, as well as physiological ventricular rotation and atrioventricular valve plane displacement. We compare our dynamic model to three non-deforming ones in terms of standard clinically used ECG leads (Einthoven and Wilson) and body surface potential maps (BSPM). The non-deforming models consider the heart at its ventricular end-diastatic, end-diastolic and end-systolic states. The standard leads show negligible differences during P-Wave and QRS-Complex, yet during T-Wave the leads closest to the heart show prominent differences in amplitude. When looking at the BSPM, there are no notable differences during the P-Wave, but effects of cardiac motion can be observed already during the QRS-Complex, increasing further during the T-Wave. We conclude that for the modeling of activation (P-Wave/QRS-Complex), the associated effort of simulating a complete electro-mechanical approach is not worth the computational cost. But when looking at ventricular repolarization (T-Wave) in standard leads as well as BSPM, there are areas where the signal can be influenced by cardiac motion of the heart to an extent that should not be ignored.

8.
Ultrasonics ; 109: 106225, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32977292

ABSTRACT

Plane wave expansion (PWE) method is extended to calculate the band structures of a proposed piezoelectric phononic crystal (PC) nanobeam by applying surface elasticity and Timoshenko beam theories. The calculation method is derived and formulized in detail. Further, electrical voltage and external axial force are picked to study the effects of electro-mechanical coupling fields on band gaps, residual surface stress and material intrinsic length are chosen to research the influences of surface effects on band gaps, and ratio between lengths of PZT-4 and epoxy in a unit cell and height-width ratio are picked to investigate the effects of geometric parameters on band gaps. In addition, all the results are compared to those in Euler nanobeam with same parameters. All the results and further analysis demonstrate that the influence rules will play an active role in design process and active control of nano electro-mechanical system based on piezoelectric PC nanobeam.

9.
J Mech Behav Biomed Mater ; 110: 103859, 2020 10.
Article in English | MEDLINE | ID: mdl-32957179

ABSTRACT

Biological cells are exposed to a variety of mechanical loads throughout their life cycles that eventually play an important role in a wide range of cellular processes. The understanding of cell mechanics under the application of external stimuli is important for capturing the nuances of physiological and pathological events. Such critical knowledge will play an increasingly vital role in modern medical therapies such as tissue engineering and regenerative medicine, as well as in the development of new remedial treatments. At present, it is well known that the biological molecules exhibit piezoelectric properties that are of great interest for medical applications ranging from sensing to surgery. In the current study, a coupled electro-mechanical model of a biological cell has been developed to better understand the complex behaviour of biological cells subjected to piezoelectric and flexoelectric properties of their constituent organelles under the application of external forces. Importantly, a more accurate modelling paradigm has been presented to capture the nonlocal flexoelectric effect in addition to the linear piezoelectric effect based on the finite element method. Major cellular organelles considered in the developed computational model of the biological cell are the nucleus, mitochondria, microtubules, cell membrane and cytoplasm. The effects of variations in the applied forces on the intrinsic piezoelectric and flexoelectric contributions to the electro-elastic response have been systematically investigated along with accounting for the variation in the coupling coefficients. In addition, the effect of mechanical degradation of the cytoskeleton on the electro-elastic response has also been quantified. The present studies suggest that flexoelectricity could be a dominant electro-elastic coupling phenomenon, exhibiting electric fields that are four orders of magnitude higher than those generated by piezoelectric effects alone. Further, the output of the coupled electro-mechanical model is significantly dependent on the variation of flexoelectric coefficients. We have found that the mechanical degradation of the cytoskeleton results in the enhancement of both the piezo and flexoelectric responses associated with electro-mechanical coupling. In general, our study provides a framework for more accurate quantification of the mechanical/electrical transduction within the biological cells that can be critical for capturing the complex mechanisms at cellular length scales.


Subject(s)
Cytoskeleton , Microtubules , Cell Membrane , Cell Nucleus , Cytoplasm
10.
Bull Math Biol ; 82(7): 95, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32676881

ABSTRACT

Evidence from experimental studies shows that oscillations due to electro-mechanical coupling can be generated spontaneously in smooth muscle cells. Such cellular dynamics are known as pacemaker dynamics. In this article, we address pacemaker dynamics associated with the interaction of [Formula: see text] and [Formula: see text] fluxes in the cell membrane of a smooth muscle cell. First we reduce a pacemaker model to a two-dimensional system equivalent to the reduced Morris-Lecar model and then perform a detailed numerical bifurcation analysis of the reduced model. Existing bifurcation analyses of the Morris-Lecar model concentrate on external applied current, whereas we focus on parameters that model the response of the cell to changes in transmural pressure. We reveal a transition between Type I and Type II excitabilities with no external current required. We also compute a two-parameter bifurcation diagram and show how the transition is explained by the bifurcation structure.


Subject(s)
Models, Biological , Myocytes, Smooth Muscle/physiology , Animals , Biomechanical Phenomena , Calcium Channels/metabolism , Cell Membrane/physiology , Computer Simulation , Electrophysiological Phenomena , Ion Transport/physiology , Mathematical Concepts , Membrane Potentials , Nonlinear Dynamics , Potassium Channels/metabolism
11.
J Magn Reson ; 298: 6-15, 2019 01.
Article in English | MEDLINE | ID: mdl-30500569

ABSTRACT

Our recent report on Electro-Mechano-Optical (EMO) NMR proved the feasibility of up-conversion of NMR signals from radio-frequency to optical regimes using a metal-coated, high-Q membrane oscillator (Takeda et al., 2018). However, the signal-to-noise ratio, which can in principle exceed that of the conventional electrical detection scheme, was far below than ideal. Here, we developed an aluminum-coated membrane oscillator and used for a capacitor electrode as well as a mirror of an optical cavity. Compared to the gold-deposited membrane used in our previous study, the characteristic frequency of membrane oscillation was significantly higher due to mass reduction, leading to remarkable elimination of noise in the process of conversion of radio-frequency signals to the mechanical oscillation of the membrane. Taking advantage of the significantly improved EMO NMR, we explore physics behind it in terms of coherent transduction of electrical nuclear induction signals to mechanical and then to optical signals. In addition, we study the transient response of the membrane oscillator to electrical excitation due to nuclear induction.

12.
Sensors (Basel) ; 17(12)2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29211015

ABSTRACT

For achieving the power maximum transmission, the electrical impedance matching (EIM) for piezoelectric ultrasonic transducers is highly required. In this paper, the effect of EIM networks on the electromechanical characteristics of sandwiched piezoelectric ultrasonic transducers is investigated in time and frequency domains, based on the PSpice model of single sandwiched piezoelectric ultrasonic transducer. The above-mentioned EIM networks include, series capacitance and parallel inductance (I type) and series inductance and parallel capacitance (II type). It is shown that when I and II type EIM networks are used, the resonance and anti-resonance frequencies and the received signal tailing are decreased; II type makes the electro-acoustic power ratio and the signal tailing smaller whereas it makes the electro-acoustic gain ratio larger at resonance frequency. In addition, I type makes the effective electromechanical coupling coefficient increase and II type makes it decrease; II type make the power spectral density at resonance frequency more dramatically increased. Specially, the electro-acoustic power ratio has maximum value near anti-resonance frequency, while the electro-acoustic gain ratio has maximum value near resonance frequency. It can be found that the theoretically analyzed results have good consistency with the measured ones.

13.
Proc Math Phys Eng Sci ; 473(2199): 20160494, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28413333

ABSTRACT

The equilibrium shape of a bubble/droplet in an electric field is important for electrowetting over dielectrics (EWOD), electrohydrodynamic (EHD) enhancement for heat transfer and electro-deformation of a single biological cell among others. In this work, we develop a general variational formulation in account of electro-mechanical couplings. In the context of EHD, we identify the free energy functional and the associated energy minimization problem that determines the equilibrium shape of a bubble in an electric field. Based on this variational formulation, we implement a fixed mesh level-set gradient method for computing the equilibrium shapes. This numerical scheme is efficient and validated by comparing with analytical solutions at the absence of electric field and experimental results at the presence of electric field. We also present simulation results for zero gravity which will be useful for space applications. The variational formulation and numerical scheme are anticipated to have broad applications in areas of EWOD, EHD and electro-deformation in biomechanics.

14.
Proc Math Phys Eng Sci ; 472(2190): 20160170, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27436985

ABSTRACT

Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings.

SELECTION OF CITATIONS
SEARCH DETAIL