Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
J Colloid Interface Sci ; 677(Pt A): 264-272, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39094487

ABSTRACT

The electrocatalytic nitrogen reduction reaction (NRR) is a crucial process in addressing energy shortages and environmental concerns by synthesizing the NH3. However, the difficulty of N2 activation and fewer NRR active sites limit the application of NRR. Therefore, the NRR performance can be improved by rapid electron transport paths to participate in multi-electron reactions and N2 activation. Doping with transition metal element is a viable strategy to provide electrons and electronic channels in the NRR. This study focuses on the synthesis of Fe2(MoO4)3 (FeMo) and x%La-doped FeMo (x = 3, 5, 7, and 10) using the hydrothermal method. La-doping creates electron transport channels Fe2+-O2--Fe3+ and oxygen vacancies, achieving an equal molar ratio of Fe2+/Fe3+. This strategy enables the super-exchange in Fe2+-O2--Fe3+, and then enhances electron transport speed for a rapid hydrogenation reaction. Therefore, the synergistic effect of Fe2+/Fe3+ cycling and oxygen vacancies improves the NRR performance. Notably, 5%La-FeMo demonstrates the superior NRR performance (NH3 yield rate: 29.6 µg h-1 mgcat-1, Faradaic efficiency: 5.8%) at -0.8 V (vs. RHE). This work analyzes the influence of the catalyst electronic environment on the NRR performance based on the effect on different valence states of ions on electron transport.

2.
Angew Chem Int Ed Engl ; : e202409484, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218790

ABSTRACT

Utilizing hot carriers for efficient plasmonic-mediated chemical reactions (PMCRs) to convert solar energy into secondary energy is one of the most feasible solutions to the global environmental and energy crisis. Finding a plasmonic heterogeneous nanostructure with a more efficient and reasonable hot carrier transport path without affecting the intrinsic plasmonic properties is still a major challenge that urgently needs to be solved in this field. Herein, the mechanism by which plasmonic-promoted interatomic hot electron redistribution on the surface of Au3Cu alloy nanoparticles promotes the electrocatalytic nitrogen reduction reaction (ENRR) is successfully clarified. The localized surface plasmon resonance (LSPR) effect can boost the transfer of plasmonic hot electrons from Au atoms to Cu atoms, trigger the interatomic electron regulation of Au3Cu alloy nanoparticles, enhance the desorption of ammonia molecules, and increase the ammonia yield by approximately 93.9%. This work provides an important reference for rationally designing and utilizing the LSPR effect to efficiently regulate the distribution and mechanism of plasmonic hot carriers on the surface of heterogeneous alloy nanostructures.

3.
J Colloid Interface Sci ; 676: 22-32, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39018807

ABSTRACT

The urgent need to prepare clean energy by environmentally friendly and efficient methods, which has led to widespread attention on electrocatalytic nitrogen reduction reaction (NRR) for ammonia production. At present, single atom catalytic nitrogen reduction has become the earliest promising method for industrial production due to its high atomic utilization rate, high selectivity, high controllability, and high stability. However, how to quickly screen catalysts with high catalytic efficiency and selectivity in single-atom catalysts (SACs) remains a challenge. Herein, the 29 SACs are constructed from C6N2 nanosheets doped with transition metals (TM@C6N2), which are analyzed for stability, adsorption performance, NRR catalytic activity, electronic properties, and competitiveness using first-principles calculations. The results show that Mo@C6N2 and Re@C6N2 exhibit the most outstanding catalytic performances, with limiting potentials (UL) of -0.29 and -0.31 V, respectively, in the solvent model. Machine learning is used to derive descriptors from the intrinsic features to predict the free energy changes for the potential-determining step. The importance of features is calculated, with the first ionisation energy (IE1) being the most significant influencing factor. Based on the guidance of machine learning and considering that IE1 is related to the ability of metal atoms to donate electrons, a four-step screening strategy using the Integrated Crystal Orbital Hamilton Populations (ICOHP) to screen catalysts instead of the traditional five-step screening not only improves the screening efficiency but also obtains completely consistent screening results. This work presents a new approach to predicting the catalytic performance of SACs and provides new insights into the influence of intrinsic properties on catalytic activity.

4.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398531

ABSTRACT

The electrocatalytic nitrogen reduction reaction (NRR) is considered a viable alternative to the Haber-Bosch process for ammonia synthesis, and the design of highly active and selective catalysts is crucial for the industrialization of the NRR. Dual-atom catalysts (DACs) with dual active sites offer flexible active sites and synergistic effects between atoms, providing more possibilities for the tuning of catalytic performance. In this study, we designed 48 graphene-based DACs with N4O2 coordination (MM'@N4O2-G) using density functional theory. Through a series of screening strategies, we explored the reaction mechanisms of the NRR for eight catalysts in depth and revealed the "acceptance-donation" mechanism between the active sites and the N2 molecules through electronic structure analysis. The study found that the limiting potential of the catalysts exhibited a volcano-shaped relationship with the d-band center of the active sites, indicating that the synergistic effect between the bimetallic components can regulate the d-band center position of the active metal M, thereby controlling the reaction activity. Furthermore, we investigated the selectivity of the eight DACs and identified five potential NRR catalysts. Among them, MoCo@N4O2-G showed the best NRR performance, with a limiting potential of -0.20 V. This study provides theoretical insights for the design and development of efficient NRR electrocatalysts.

5.
ACS Appl Mater Interfaces ; 16(7): 8707-8716, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38346080

ABSTRACT

Two-dimensional (2D) metal organic framework (MOF) or metalloporphyrin nanosheets with a stable metal-N4 complex unit present the metal as a single-atom catalyst dispersed in the 2D porphyrin framework. First-principles calculations on the 3d-transition metals in M-TCPP are investigated in this study for their surface-dependent electronic properties including work function and d-band center. Crystal orbital Hamiltonian population (-pCOHP) analysis highlights a higher contribution of the bonding state in the M-N bond and antibonding state in the N-N bond to be essential for N-N bond activation. A linear relationship between ΔGmax and surface electronic properties, N-N bond strength, and Bader charge has been found to influence the rate-determining potential for nitrogen reduction reaction (NRR) in M-TCPP MOFs. 2D Ti-TCPP MOF, with a kinetic energy barrier of 1.43 eV in the final protonation step of enzymatic NRR, shows exclusive NRR selectivity over competing hydrogen reduction (HER) and nitrogenous compounds (NO and NO2). Thus, Ti-TCPP MOF with an NRR limiting potential of -0.35 V in water solvent is proposed as an attractive candidate for electrocatalytic NRR.

6.
Chemistry ; 30(6): e202303148, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-37943116

ABSTRACT

Developing efficient nanostructured electrocatalysts for N2 reduction to NH3 under mild conditions remains a major challenge. The Fe-Mo cofactor serves as the archetypal active site in nitrogenase. Inspired by nitrogenase, we designed a series of heteronuclear dual-atom catalysts (DACs) labeled as FeMoN6-a Xa (a=1, 2, 3; X=B, C, O, S) anchored on the pore of g-C3 N4 to probe the impact of coordination on FeMo-catalyzed nitrogen fixation. The stability, reaction paths, activity, and selectivity of 12 different FeMoN6-a Xa DACs have been systematically studied using density functional theory. Of these, four DACs (FeMoN5 B1 , FeMoN5 O1 , FeMoN4 O2 , and FeMoN3 C3 ) displayed promising nitrogen reduction reaction (NRR) performance. Notably, FeMoN5 O1 stands out with an ultralow limiting potential of -0.11 V and high selectivity. Analysis of the density of states and charge/spin changes shows FeMoN5 O1 's high activity arises from optimal N2 binding on Fe initially and synergy of the FeMo dimer enabling protonation in NRR. This work contributes to the advancement of rational design for efficient NRR catalysts by regulating atomic coordination environments.

7.
ACS Appl Mater Interfaces ; 15(18): 22012-22024, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37098155

ABSTRACT

Electrocatalytic reduction of nitrogen to ammonia (eNRR) under ambient condition is a potential sustainable and promising alternative to the traditional Haber-Bosch process. However, this electrochemical transformation is limited by the high overpotential, poor selectivity, low efficiency, and low yield. Herein, a new class of two-dimensional (2D) organometallic nanosheets c-TM-TCNE (c = cross motif, TM = 3d/4d/5d transition metals, TCNE = tetracyanoethylene) were comprehensively investigated as potential electrocatalysts for eNRR through high-throughput screening combined with spin-polarized density functional theory computations. After a multistep screening and follow-up systematic evaluation, c-Mo-TCNE and c-Nb-TCNE were selected as eligible catalysts, and c-Mo-TCNE showed the lowest limiting potential of -0.35 V via a distal pathway, displaying high catalytic performance. In addition, the desorption of NH3 from the surface of c-Mo-TCNE catalyst is also easy, with the free energy being 0.34 eV. Furthermore, the stability, metallicity, and eNRR selectivity are preeminent, making c-Mo-TCNE a promising catalyst. Unexpectedly, the magnetic moment of the transition metal shows a strong correlation with the catalytic activity (limiting potential), i.e., the larger the magnetic moment of the transition metal, the smaller the limiting potential of the electrocatalyst. The Mo atom has the largest magnetic moment and the c-Mo-TCNE catalyst features the smallest magnitude of limiting potential. Thus, the magnetic moment can be used as an effective descriptor for eNRR on c-TM-TCNE catalysts. The present study opens a way toward the rational design of highly efficient electrocatalysts for eNRR with novel two-dimensional functional materials. This work will promote further experimental efforts in this field.

8.
Small ; 19(22): e2300239, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36855782

ABSTRACT

The electrocatalytic nitrogen reduction reaction (NRR) to synthesize NH3 under ambient conditions is a promising alternative route to the conventional Haber-Bosch process, but it is still a great challenge to develop electrocatalysts' high Faraday efficiency and ammonia yield. Herein, a facile and efficient exfoliation strategy to synthesize ultrathin 2D boron and nitrogen co-doped porous carbon nanosheets (B/NC NS) via a metal-organic framework (MOF)-derived van der Waals superstructure, is reported. The results of experiments and theoretical calculations show that the doping of boron and nitrogen can modulate the electronic structure of the adjacent carbon atoms; which thus, promotes the competitive adsorption of nitrogen and reduces the energy required for ammonia synthesis. The B/NC NS exhibits excellent catalytic performance and stability in electrocatalytic NRR, with a yield rate of 153.4 µg·h-1 ·mg-1 cat and a Faraday efficiency of 33.1%, which is better than most of the reported NRR electrocatalysts. The ammonia yield of B/NC NS can maintain 92.7% of the initial NRR activity after 48 h stability test. The authors' controllable exfoliation strategy using MOF-derived van der Waals superstructure can provide a new insight for the synthesis of other 2D materials.

9.
ACS Appl Mater Interfaces ; 15(9): 11812-11826, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36808933

ABSTRACT

TM-Nx is becoming a comforting catalytic center for sustainable and green ammonia synthesis under ambient conditions, resulting in increasing interest in single-atom catalysts (SACs) for the electrochemical nitrogen reduction reaction (NRR). However, given the poor activity and unsatisfactory selectivity of existing catalysts, it remains a long-standing challenge to design efficient catalysts for nitrogen fixation. Currently, the two-dimensional (2D) graphitic carbon-nitride substrate provides abundant and evenly distributed holes for stably supporting transition-metal atoms, which presents a fascinating prospect for overcoming this challenge and promoting single-atom NRR. An emerging holey graphitic carbon-nitride skeleton with a C10N3 stoichiometric ratio (g-C10N3) from a supercell of graphene is constructed, which provides outstanding electric conductivity for achieving high-efficiency NRR due to the Dirac band dispersion. Herein, a high-throughput first-principles calculation is carried out to evaluate the feasibility of π-d conjugated SACs resulting from a single TM atom anchored on g-C10N3 (TM = Sc-Au) for NRR. We find that W metal embedded in g-C10N3 (W@g-C10N3) can compromise the ability to adsorb the key target reaction species (N2H and NH2), hence acquiring an optimal NRR behavior among 27 TM-candidates. Our calculations demonstrate that W@g-C10N3 shows a well-suppressed HER ability and, impressively, a low energy cost of -0.46 V. Additionally, all-around descriptors are proposed to uncover the fundamental mechanism of NRR activity, among which a 3D volcano plot (limiting potential, screening strategy, and electron origin) uncovers the NRR activity trend, achieving a quick and high-efficiency prescreening for numerous candidates. Overall, the strategy of the structure- and activity-based TM-Nx-containing unit design will offer useful insight for further theoretical and experimental attempts.

10.
Adv Sci (Weinh) ; 10(8): e2205786, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36683249

ABSTRACT

A defect-rich 2D p-n heterojunction, Cox Ni3- x (HITP)2 /BNSs-P (HITP: 2,3,6,7,10,11-hexaiminotriphenylene), is constructed using a semiconductive metal-organic framework (MOF) and boron nanosheets (BNSs) by in situ solution plasma modification. The heterojunction is an effective catalyst for the electrocatalytic nitrogen reduction reaction (eNRR) under ambient conditions. Interface engineering and plasma-assisted defects on the p-n Cox Ni3-x (HITP)2 /BNSs-P heterojunction led to the formation of both Co-N3 and B…O dual-active sites. As a result, Cox Ni3-x (HITP)2 /BNSs-P has a high NH3 yield of 128.26 ± 2.27 µg h-1 mgcat. -1 and a Faradaic efficiency of 52.92 ± 1.83% in 0.1 m HCl solution. The catalytic mechanism for the eNRR is also studied by in situ FTIR spectra and DFT calculations. A Cox Ni3- x (HITP)2 /BNSs-P-based Zn-N2 battery achieved an unprecedented power output with a peak power density of 5.40 mW cm-2 and an energy density of 240 mA h gzn -1 in 0.1 m HCl. This study establishes an efficient strategy for the rational design, using defect and interfacial engineering, of advanced eNRR catalysts for ammonia synthesis under ambient conditions.

11.
ACS Appl Mater Interfaces ; 14(47): 52806-52814, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36380594

ABSTRACT

The volcano-shaped relationship is very common in electrocatalytic nitrogen reduction reaction (e-NRR) and is usually caused by the competition between the first and last hydrogenation steps. How to break such a relationship to further improve the catalytic performance remains a great challenge. Herein, using first-principles calculations, we investigate a range of transition-metal (TM)-doped Cu-based single-atom alloys (TM1-Cu(111)) as catalysts for e-NRR. When the adsorption of N2 on the catalysts is strong enough, the inert N2 molecules can be effectively activated for the first hydrogenation step. Meanwhile, the last hydrogenation step is not affected by the scaling relationship and remains easy on all of the catalysts due to the unstable top-site adsorption of NH2, resulting in the break of the volcano-shaped relationship in e-NRR. Thus, only the first hydrogenation step is identified as the potential determining step. Four TM1-Cu(111) catalysts (TM = Re, W, Tc, and Mo) are selected as promising catalysts with limiting potential ranging from -0.38 to -0.56 V, showing outstanding e-NRR activity. Besides, the four catalysts also inhibit the competing hydrogen evolution reaction and long-term stability. Our work provides a guideline for breaking the volcano-shaped relationship in e-NRR and significant in the rational design of highly efficient electrocatalysts.

12.
ACS Appl Mater Interfaces ; 14(46): 52544-52552, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36367754

ABSTRACT

The catalytic activities of single-atom catalysts (SACs) are strongly influenced by the local chemical environments of their substrates, by which the electronic structures of the SACs can be effectively tuned. Together with the freedom of available reactive metallic centers, it would be feasible to maximize the catalytic performance by means of a synergetic optimization in the chemical space spanned by the features of both the substrate and the catalytic center. In this work, using first-principles calculations, we systematically assessed the synergetic effect between the substrate geometric/electronic structures and the catalytic centers on the electrocatalytic nitrogen reduction reaction (NRR). Carbon nanotubes with different chirality, defects, and chemical functionalization were used to support 15 transition metal atoms. Three SACs, TiN4CNT(3,3), TiN4CNT(5,5), and VN4CNT(3,3), simultaneously possess high NRR selectivities (w.r.t hydrogen evolution) and low overpotentials of 0.35, 0.35, and 0.37 V, respectively. Electronic structure analysis elucidated that larger metal atoms anchored on CNTs with higher curvature and doped by N atoms facilitate the rupture of the N-N bond in *NH2NH2 to lower the overpotentials. The synergy of substrate chemical environments and single atomic catalysis is a promising strategy to optimize the catalytic performance.

13.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080000

ABSTRACT

The electrocatalytic nitrogen reduction reaction (NRR) can use renewable electricity to convert water and N2 into NH3 under normal temperature and pressure conditions. However, due to the competitiveness of the hydrogen evolution reaction (HER), the ammonia production rate (RNH3) and Faraday efficiency (FE) of NRR catalysts cannot meet the needs of large-scale industrialization. Herein, by assembling hydrophobic ZIF-8 on a cerium oxide (CeO2) nanorod, we designed an excellent electrocatalyst CeO2-ZIF-8 with intrinsic NRR activity. The hydrophobic ZIF-8 surface was conducive to the efficient three-phase contact point of N2 (gas), CeO2 (solid) and electrolyte (liquid). Therefore, N2 is concentrated and H+ is deconcentrated on the CeO2-ZIF-8 electrocatalyst surface, which improves NRR and suppresses HER and finally CeO2-ZIF-8 exhibits excellent NRR performance with an RNH3 of 2.12 µg h-1 cm-2 and FE of 8.41% at -0.50 V (vs. RHE). It is worth noting that CeO2-ZIF-8 showed excellent stability in the six-cycle test, and the RNH3 and FE variation were negligible. This study paves a route for inhibiting the competitive reaction to improve the NRR catalyst activity and may provide a new strategy for NRR catalyst design.

14.
J Colloid Interface Sci ; 621: 24-32, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35447519

ABSTRACT

Extensive investigations on the electrocatalytic nitrogen reduction reactions (eNRR) and the high-efficiency single-atom catalysts (SACs) have increasingly given us confidence in intensive arrival of nitrogen (N2) fixation into ammonia (NH3) under ambient conditions in the future, which prompts us to speed up the exploration for highly active SACs for eNRR. Excellent SACs in eNRR should have three advantages: high selectivity, low overpotential, and high stability. Based on these aspects, we employed high-throughput screening method and first-principles calculations to study the catalytic performance of 30 transition-metal atoms (TMs) embedded rectangular tetrafluorotetracyanoquinodimethane (denoted as TM-rF4TCNQ) monolayers (TM = 3d, 4d, and 5d series transition metal atoms) for the eNRR process, and four potential catalysts, i.e., Ti-, Mo-, Nb-, and Tc-rF4TCNQ, were obtained. Among them, Ti-rF4TCNQ catalyzing the N2 reduction to NH3 through an enzymatic mechanism needs a theoretical onset potential of only -0.41 V. When Mo-rF4TCNQ catalyzes eNRR through a distal mechanism, the theoretical onset potential is as low as -0.43 V. The band structures show that these materials are all metallic, ensuring good charge transport during the eNRR process. Analyzing the projected density of states (PDOSs) before and after N2 adsorption, the differential charge density, and the spin density reveals that the Ti-, Mo-, Nb-, and Tc-rF4TCNQ monolayers all can effectively adsorb and activate inert N2, which may be mainly attributed to the "acceptance-donation" interaction between TM and N2.


Subject(s)
Ammonia , Nitrogen , Adsorption , Catalysis , Nitrogen/chemistry
15.
J Colloid Interface Sci ; 606(Pt 2): 1374-1379, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34492473

ABSTRACT

The electrocatalytic reduction of nitrogen (N2) to ammonia (NH3) has broad prospects for green and sustainable NH3 production. Due to the electrocatalytic nitrogen reduction reaction (eNRR) performance of transition metal compound may be restricted with low yield rate, we develop transition metal interface engineering to improve the eNRR performance. Although the edge of MoS2 catalyst is active, the MoS2(001) surface is inert for N2 electroreduction. Through the hydrothermal and electrodeposition methods, Fe(OH)3 as N2 and H+ channels coated on MoS2 nanosheets array (MoS2@Fe(OH)3/CC) is synthesized. Such catalyst exhibits excellent eNRR performance in 0.1 M Na2SO4 with high Faradaic efficiency (2.76%) and NH3 yield rate (4.23 × 10-10 mol s-1 cm-2) at - 0.45 V (vs. RHE). This work may provide a new electrocatalyst synthesis pathway for artificial N2 fixation. Density functional theory calculations show that electrodeposition Fe(OH)3 can accelerate eNRR process rate of MoS2.

16.
ACS Appl Mater Interfaces ; 13(46): 55040-55050, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34751553

ABSTRACT

Highly efficient catalysts with enough selectivity and stability are essential for electrochemical nitrogen reduction reaction (e-NRR) that has been considered as a green and sustainable route for synthesis of NH3. In this work, a series of three-dimensional (3D) porous iron foam (abbreviated as IF) self-supported FeS2-MoS2 bimetallic hybrid materials, denoted as FeS2-MoS2@IFx, x = 100, 200, 300, and 400, were designed and synthesized and then directly used as the electrode for the NRR. Interestingly, the IF serving as a slow-releasing iron source together with polyoxomolybdates (NH4)6Mo7O24·4H2O as a Mo source were sulfurized in the presence of thiourea to form self-supported FeS2-MoS2 on IF (abbreviated as FeS2-MoS2@IF200) as an efficient electrocatalyst. Further material characterizations of FeS2-MoS2@IF200 show that flower cluster-like FeS2-MoS2 grows on the 3D skeleton of IF, consisting of interconnected and staggered nanosheets with mesoporous structures. The unique 3D porous structure of FeS2-MoS2@IF together with synergy and interface interactions of bimetallic sulfides would make FeS2-MoS2@IF possess favorable electron transfer tunnels and expose abundant intrinsic active sites in the e-NRR. It is confirmed that synthesized FeS2-MoS2@IF200 shows a remarkable NH3 production rate of 7.1 ×10-10 mol s-1 cm-2 at -0.5 V versus the reversible hydrogen electrode (vs RHE) and an optimal faradaic efficiency of 4.6% at -0.3 V (vs RHE) with outstanding electrochemical and structural stability.

17.
ACS Appl Mater Interfaces ; 13(25): 29641-29653, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34143610

ABSTRACT

Herein, the catalytic properties and reaction mechanisms of the 3d, 4d, and 5d transition metals embedded in 2D rectangular tetracyanoquinodimethane (TM-rTCNQ) monolayers as single-atom catalysts (SACs) for the electrocatalytic N2 reduction reaction (NRR) were systematically investigated, using first-principles calculations. A series of high-throughput screenings were carried out on 30 TM-rTCNQ monolayers, and all possible NRR pathways were explored. Three TM-rTCNQ (TM = Mo, Tc, and W) SACs were selected as promising new NRR catalyst candidates because of their high structural stability and good catalytic performance (low onset potential and high selectivity). Our results show that the Mo-rTCNQ monolayer can catalyze NRR through a distal mechanism with an onset potential of -0.48 V. Surprisingly, the NH3 desorption energy on the Mo-rTCNQ monolayer is only 0.29 eV, the lowest one reported in the literature so far, which makes the Mo-rTCNQ monolayer a good NRR catalyst candidate. In-depth research studies on the structures of N2-TM-rTCNQ (TM = Mo, Tc, and W) found that strong adsorption and activation performance of TM-rTCNQ for N2 may be due to the strong charge transfer and orbital hybridization between the TM-rTCNQ catalyst and the N2 molecules. Our work provides new ideas for achieving N2 fixation under environmental conditions.

18.
ACS Appl Mater Interfaces ; 13(22): 26109-26122, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34038081

ABSTRACT

As an environmentally friendly and sustainable strategy to produce ammonia, the electrocatalytic nitrogen reduction reaction (eNRR) is facing the challenge of low conversion rates and high overpotential, to solve which efficient catalysts are urgently needed. Here, a new class of two-dimensional metal-organic layers (MOLs) TM3(HAB)2 (TM = 30 transition metals; HAB = hexaaminobenzene) were evaluated via a three-step high-throughput screening combined with the spin-polarized density functional theory (DFT) method to obtain eligible TM3(HAB)2 catalysts embedded with transition metal atoms from 3d to 5d. Our investigation revealed that Nb3(HAB)2, Mo3(HAB)2, and Tc3(HAB)2 are eligible NRR candidates, among which Tc3(HAB)2 possesses the best catalytic performance with a lowest onset potential of -0.63 V via both distal and alternating pathways and an ultralow NH3 desorption free energy of 0.22 eV. Furthermore, the band structures of three catalysts show their nice conductivity. The corresponding projected density of states (PDOS) illustrate that high catalytic activity can be ascribed to apparent orbital hybridization and charge transfer between catalysts and adsorbed N2. Later, stability and selectivity of all three candidates were computed, Tc3(HAB)2 and Nb3(HAB)2 catalysts are proved to facilitate dinitrogen reduction and exhibit good stability and high selectivity, yet NRR on the Mo3(HAB)2 catalyst is inhibited by hydrogen evolution reaction (HER). Based on the abovementioned studies, we concluded that Tc3(HAB)2 and Nb3(HAB)2 monolayers are promising catalysts for nitrogen fixation. We expect this work to fill the gap of exploring more eligible single-atom catalysts (SACs) anchored with transition metal atoms on MOLs for NRR.

19.
ACS Appl Mater Interfaces ; 13(12): 14091-14101, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33728891

ABSTRACT

Ammonia synthesis is an essential process in chemistry and industry. However, it is limited by the lack of efficient catalysts and high energy costs. Developing highly efficient systems for ammonia synthesis is an important and long-standing challenge. In this paper, a large class of metal atoms (including 3d/4d transition metals and main group metals) anchored onto borophene have been studied as single atom catalysts for ammonia synthesis. After comprehensive computational screening and systematic evaluation, four candidates stand out. We predict that Mo, Mn, Tc, and Cr@BM-ß12 will have superior performance for catalytic reduction of N2 to NH3 with low limiting potentials of -0.26, -0.32, -0.38, and -0.48 V, respectively. Furthermore, we studied the activity of the competitive HER on M@BM-ß12. The results implied that the two materials Mo@BM-ß12 and Mn@BM-ß12 showed HER suppression. These properties exceed most currently reported nitrogen reduction reaction electrocatalysts. Our results suggest the possibility of efficient electrochemical reduction of N2 to NH3 in a lower energy process.

20.
ACS Appl Mater Interfaces ; 13(1): 608-621, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33372749

ABSTRACT

We have identified three novel metal phthalocyanine (MPc, M = Mo, Re, and Tc) single-atom catalyst candidates with excellent predicted performance for the production of ammonia from electrocatalytic nitrogen reduction reaction (NRR) through a combination of high-throughput screening and first-principles calculations on a series of 3d, 4d, and 5d transition metals anchored onto extended Pc monolayer catalysts. Analysis of the energy band structures and projected density of states of N2-MPc revealed significant orbital hybridization and charge transfer between the adsorbed N2 and catalyst MPc, which accounts for the high catalytic activity. Among 30 MPc catalysts, MoPc and TcPc monolayers were found to be the most promising new NRR catalysts, as they exhibit excellent stability, low onset potential, and high selectivity. A comprehensive reaction pathway search found that the maximum free energy changes for the MoPc and TcPc monolayers are 0.33 and 0.54 eV, respectively. As a distinctive nature of this work, the hybrid reaction pathway was considered extensively and searched systematically. The onset potential of the hybrid pathway is found to be smaller than or comparable to that of the commonly known pure pathway. Thus, the hybrid path is highly competitive with low onset potential and high activity. The hybrid pathway is expected to have an important impact on future research on the mechanism of NRR, and it will open up a new way to explore the mechanism of the NRR reaction. We hope that our work will provide impetus to the creation of new catalysts for reduction of N2 to NH3. This work provides new insights into the rational design of NRR catalysts and explores novel reaction pathways under ambient or mild conditions.

SELECTION OF CITATIONS
SEARCH DETAIL