Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Chemosphere ; 363: 142825, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996982

ABSTRACT

Electrochemical oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) with a BDD anode have been comparatively assessed to remediate solutions of Red CL and/or Red WB azo dyes from real raw water. For the EO process in 50 mM Na2SO4 at pH 3.0, the main oxidant was the heterogeneous •OH generated at the anode, whereas in EF and PEF, the cathodic production of H2O2 and the addition of 0.50 mM Fe2+ catalyst additionally originated homogeneous •OH that enhanced the oxidation of organics. In PEF, the solution was illuminated with a 6 W UVA light. An almost total discoloration was always found operating with a 1:1 mixture of 200 mg L-1 of both dyes in 60 min, whose efficiency increased in the order of EO < EF < PEF. The HPLC analysis of the dye mixture treated by PEF disclosed that its degradation process agreed with its discoloration. A high 74% of COD was reduced due to the oxidative action of hydroxyl radicals and the photolysis of final Fe(III)-carboxylate species with UVA irradiation. The process was accompanied by an energy consumption of 0.76 kWh (g COD)-1, a value similar to the energy consumed by the applied UVA light.


Subject(s)
Azo Compounds , Boron , Coloring Agents , Diamond , Electrodes , Oxidation-Reduction , Water Pollutants, Chemical , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Boron/chemistry , Azo Compounds/chemistry , Diamond/chemistry , Hydrogen Peroxide/chemistry , Tanning , Electrochemical Techniques , Photolysis , Ultraviolet Rays , Waste Disposal, Fluid/methods , Iron/chemistry
2.
Environ Pollut ; 346: 123688, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38431247

ABSTRACT

One challenge of the citrus industry is the treatment and disposal of its effluents due to their high toxicity, substantial organic load, and consequent resistance to conventional biotechnological processes. This study introduces a novel approach, using electrochemical oxidation with a boron-doped diamond anode to efficiently remove organic compounds from biodegraded pulp wash (treated using the fungus Pleurotus sajor-caju.) The findings reveal that employing a current density of 20 mA cm-2 achieves notable results, including a 44.1% reduction in color, a 70.0% decrease in chemical oxygen demand, an 88.0% reduction in turbidity, and an impressive 99.7% removal of total organic carbon (TOC) after 6 h of electrolysis. The energy consumption was estimated at 2.93 kWh g-1 of removed TOC. This sequential biological-electrochemical procedure not only significantly reduced the mortality rate (85%) of Danio rerio embryos but also reduced the incidence of morphologically altered parameters. Regarding acute toxicity (LC50) of the residue, the process demonstrated a mortality reduction of 6.97% for D. rerio and a 40.88% lethality decrease for Lactuca sativa seeds. The substantial reduction in toxicity and organic load observed in this study highlights the potential applicability of combined biological and electrochemical treatments for real agroindustrial residues or their effluents.


Subject(s)
Diamond , Water Pollutants, Chemical , Diamond/chemistry , Water Pollutants, Chemical/analysis , Electrolysis/methods , Organic Chemicals , Electrodes , Oxidation-Reduction
3.
Chemosphere ; 349: 140873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056712

ABSTRACT

New alternatives for effluent decontamination, such as electrochemical oxidation, are being developed to provide adequate removal of endocrine disruptors such as 17ß-estradiol in wastewater. In this study, data-driven models of response surface methodology, artificial neural networks, wavelet neural networks, and adaptive neuro-fuzzy inference system will be used to predict the degradation and mineralization of the microcontaminant hormone 17ß-estradiol through an electrochemical process to contribute to the treatment of effluent containing urine. With the use of different statistical criteria and graphical analysis of the correlation between observed and predicted data, it was possible to conduct a comparative analysis of the performances of the data-driven approaches. The results point to the superiority of the adaptive neuro-fuzzy inference system (correlation coefficient, R2, ranged from 0.99330 to 0.99682 for TOC removal and from 0.95330 to 0.99223 for the degradation of the hormone 17ß-estradiol) techniques over the others. The remaining results obtained with the other metrics are consistent with this analysis.


Subject(s)
Fuzzy Logic , Neural Networks, Computer , Wastewater , Oxidation-Reduction , Estradiol
4.
Article in English | MEDLINE | ID: mdl-37723391

ABSTRACT

The development of technologies capable of producing efficient and economically viable anodes is essential for the electrochemical treatment of water contaminated with complex organic pollutants. In this context, the use of ionic liquids as solvents to prepare mixed metal oxide (MMO) anodes has proven to be an up-and-coming alternative. Here, we analyze the influence of the temperature of calcination (300, 350, and 400 ºC) on the production of Ti(RuO2)0.8-(Sb2O4)0.2 anodes made using the thermal decomposition method using three ionic liquids (IL) as solvents: dipropyl ammonium acetate (DPA-Ac), dipropyl ammonium propionate (DPA-Pr), and dipropyl ammonium butyrate (DPA-Bu). The decomposition temperature for all IL, accessed by thermogravimetry, is below 200 ºC. Physical and electrochemical analyses demonstrate that the calcination temperature of the anodes is decisive for their durability and electrochemical properties. Anodes prepared with DPA-Bu at 350 ºC show higher stability (around 35 h) than those made with other ILs at temperatures of 300 and 400 ºC and improved results in terms of 4-NP mineralization, where 97% of TOC removal was achieved in 120 min. It could be verified that the calcination temperature and IL employed had a decisive influence on the characteristics of the presented anodes. Therefore, the anode prepared with DPA-Bu at 350 ºC is promising for application in the degradation of organic compounds.

5.
Chemosphere ; 339: 139666, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37532204

ABSTRACT

Today, water shortage problems around the world have forced the search for new treatment alternatives, in this context, electrochemical oxidation technology is a hopeful process for wastewater treatment, although it is still needed exploration of new efficient and economically viable electrode materials. In this way, mixed metal oxide anodes look like promising alternatives but their preparation is still a significant point to study, searching for finding low-cost materials to improve electrocatalytic efficiencies. In an exploration of this kind of highly efficient materials, this work presents the results obtained using an MMO Ti/IrO2-SnO2-Sb2O5 anode. All the prepared anodes exhibited excellent physical and electrochemical properties. The electrochemical oxidation of 100 mL and 200 mg L-1 Reactive Orange 84 (RO 84) diazo dye was studied using 3 cm2 of such synthesized anodes by applying current densities of 25, 50, and 100 mA cm-2. Faster and more efficient electrochemical oxidation occurred at 100 mA cm-2 with 50 mM of Na2SO4 + 10 mM NaCl as supporting electrolyte at pH 3.0. The degradation and mineralization processes of the above solution were enhanced with the electro-Fenton process with 0.05 mM Fe2+ and upgraded using photoelectron-Fenton with UVA light. This process yielded 91% COD decay with a low energy consumption of 0.1137 kWh (g COD)-1 at 60 min. The evolution of a final carboxylic acid like oxalic was followed by HPLC analysis. The Ti/IrO2-SnO2-Sb2O5 is then an efficient and low-cost anode for the photoelectro-Fenton treatment of RO 84 in a chloride and sulfate media.


Subject(s)
Ultraviolet Rays , Water Pollutants, Chemical , Titanium/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Electrodes , Water Pollutants, Chemical/chemistry , Electrochemical Techniques
6.
Front Chem ; 11: 900670, 2023.
Article in English | MEDLINE | ID: mdl-37179778

ABSTRACT

Treating domestic wastewater has become more and more complicated due to the high content of different types of detergents. In this context, advanced electro-oxidation (AEO) has become a powerful tool for complex wastewater remediation. The electrochemical degradation of surfactants present in domestic wastewater was carried out using a DiaClean® cell in a recirculation system equipped with boron-doped diamond (BDD) as the anode and stainless steel as the cathode. The effect of recirculation flow (1.5, 4.0 and 7.0 L min-1) and the applied current density (j = 7, 14, 20, 30, 40, and 50 mA cm-2) was studied. The degradation was followed by the concentration of surfactants, chemical oxygen demand (COD), and turbidity. pH value, conductivity, temperature, sulfates, nitrates, phosphates, and chlorides were also evaluated. Toxicity assays were studied through evaluating Chlorella sp. performance at 0, 3, and 7 h of treatment. Finally, the mineralization was followed by total organic carbon (TOC) under optimal operating conditions. The results showed that applying j = 14 mA cm-2 and a flow rate of 1.5 L min-1 during 7 h of electrolysis were the best conditions for the efficient mineralization of wastewater, achieving the removal of 64.7% of surfactants, 48.7% of COD, 24.9% of turbidity, and 44.9% of mineralization analyzed by the removal of TOC. The toxicity assays showed that Chlorella microalgae were unable to grow in AEO-treated wastewater (cellular density: 0 × 104 cells ml-1 after 3- and 7-h treatments). Finally, the energy consumption was analyzed, and the operating cost of 1.40 USD m-3 was calculated. Therefore, this technology allows for the degradation of complex and stable molecules such as surfactants in real and complex wastewater, if toxicity is not taken into account.

7.
J Environ Manage ; 342: 118080, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196625

ABSTRACT

Complex wastewater is generated during biodiesel production. We propose a new solution for the treatment of wastewater from enzymatic pretreatment of biodiesel production (WEPBP) by using a hybrid system based on the photo-Fered-Fenton process with O3 assistance (PEF-Fered-O3). We applied response surface methodology (RSM) to determine the suitable conditions for the PEF-Fered-O3 process: a current intensity of 3 A, an initial solution pH controlled at 6.4, an initial H2O2 concentration of 12,000 mg L-1, and an O3 concentration of 50 mg L-1. We performed three new experiments under similar conditions with slight changes to the conditions, namely a longer reaction time (120 min) and single or periodic H2O2 addition (i.e., small H2O2 additions at different reaction times). Periodic H2O2 addition provided the best removal results probably by reducing the occurrence of undesired side reactions that cause hydroxyl radical (•OH) scavenging. With the application of the hybrid system, the chemical oxygen demand (COD) and total organic carbon (TOC) decreased by 91% and 75%, respectively. We also evaluated the presence of metals such as iron, copper, and calcium; electric conductivity; and voltage at 5, 10, 15, 30, 45, 60, 90, and 120 min. We submitted raw and treated WEPBP sludge samples to X-ray diffraction to study the degree of crystallinity. There was a rearrangement of the compounds present in treated WEPBP, possibly caused by oxidation of a large fraction of organic matter. Finally, we evaluated the genotoxicity and cytotoxicity of WEPBP by using Allium cepa meristematic root cells. Treated WEPBP was less toxic to these cells, denoted by improvements in gene regulation and cell morphology. Given the current scenario for the biodiesel industry, applying the proposed hybrid PEF-Fered-O3 system at suitable conditions provides an efficient alternative to treat a complex matrix, namely WEPBP, to reduce its potential to cause abnormalities in the cells of living organisms. Thus, the negative impacts of the discharge of WEPBP in the environment might be reduced.


Subject(s)
Wastewater , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Biofuels , Decontamination , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods
8.
Sci Total Environ ; 855: 158816, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36115407

ABSTRACT

This study aims to develop a cheap method for the evaluation of quality of water or the assessment of the treatment of water by chemical oxygen demand (COD) measurements throughout the use of the HSV color model in digital devices. A free application installed on a smartphone was used for analyzing the images in which the colors were acquired before to be quantified. The proposed method was also validated by the standard and spectrophotometric methods, demonstrating that no significant statistical differences were attained (average accuracy of 97 %). With these results, the utilization of this smartphone-based method for COD analysis was used/evaluated, for first time, by treating electrochemically a real water matrix with substantial organic and salts content using BDD and Pt/Ti anodes. Aiming to understand the performance of both anodes, bulk experiments were performed under real pH by applying current densities (j) of 15, 30, and 60 mA cm-2. COD abatement results (which were achieved with this novel smart water security solution) clearly showed that different organic matter removal efficiencies were achieved, depending on the electrocatalytic material used as well as the applied current density (42 %, 45 %, and 85 % for Ti/Pt while 93 %, 97 % and total degradation for BDD by applying 15, 30, and 60 mA cm-2, respectively). However, when the persulfate-mediated oxidation approach was used, with the addition of 2 or 4 g Na2SO4 L-1, COD removal efficiencies were enhanced, obtaining total degradation with 4 g Na2SO4 L-1 and by applying 15 mA cm-2. Finally, this smartphone imaging-based method provides a simple and rapid method for the evaluation of COD during the use of electrochemical remediation technology, developing and decentralizing analytics technologies for smart water solutions which play a key role in achieving the Sustainable Development Goal 6 (SDG6).


Subject(s)
Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Biological Oxygen Demand Analysis , Smartphone , Cost-Benefit Analysis , Electrodes , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Water
9.
Front Chem ; 11: 1298630, 2023.
Article in English | MEDLINE | ID: mdl-38239927

ABSTRACT

Selecting the ideal anodic potential conditions and corresponding limiting current density to generate reactive oxygen species, especially the hydroxyl radical (•OH), becomes a major challenge when venturing into advanced electrochemical oxidation processes. In this work, a step-by-step guide for the electrochemical generation of •OH on boron-doped diamond (BDD) for beginners is shown, in which the following steps are discussed: i) BDD activation (assuming it is new), ii) the electrochemical response of BDD (in electrolyte and ferri/ferro-cyanide), iii) Tafel plots using sampled current voltammetry to evaluate the overpotential region where •OH is mainly generated, iv) a study of radical entrapment in the overpotential region where •OH generation is predominant according to the Tafel plots, and v) finally, the previously found ideal conditions are applied in the electrochemical degradation of amoxicillin, and the instantaneous current efficiency and relative cost of the process are reported.

10.
Materials (Basel) ; 15(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36363037

ABSTRACT

In this study, for the first time, the production of green hydrogen gas (H2) in the cathodic compartment, in concomitance with the electrochemical oxidation (EO) of an aqueous solution containing Calcon dye at the anodic compartment, was studied in a PEM-type electrochemical cell driven by a photovoltaic (PV) energy source. EO of Calcon was carried out on a Nb/BDD anode at different current densities (7.5, 15 and 30 mA cm-2), while a stainless steel (SS) cathode was used for green H2 production. The results of the analysis by UV-vis spectroscopy and total organic carbon (TOC) clearly showed that the electrochemical oxidation (EO) of the Calcon dye after 180 min of electrolysis time by applying 30 mA cm-2 reached up to 90% of degradation and 57% of TOC removal. Meanwhile, under these experimental conditions, a green H2 production greater than 0.9 L was achieved, with a Faradaic efficiency of 98%. The hybrid electrolysis strategy is particularly attractive in the context of a circular economy, as these can be coupled with the use of more complex water matrices to transform organic depollution into an energy resource to produce H2 as a chemical energy carrier.

11.
Chemosphere ; 307(Pt 4): 136157, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36029853

ABSTRACT

This work reports the radicals detected and identified during the degradation of atrazine in methanol medium in the presence and absence of different proportions of water (0%, 5%, and 10%). The determination of these radicals is an important step to understand the electrolysis processes in methanol medium and contribute to clarify the degradation mechanism. Furthermore, the parameters for the successful removal of the contaminant were optimized and the results showed that the application of the technique led to the removal of nearly 99.8% of atrazine after 1 h of electrolysis. The oxidation kinetics was found to be very fast and most of the atrazine molecule in the medium was degraded in the first hour of electrolysis. The results obtained from a thorough analysis conducted with a view to evaluating the effects of different current densities and initial pH values on atrazine degradation showed that the application of higher current densities resulted in lower energy consumption, as this led to faster removal of atrazine. Additionally, the initial pH of the solution was found to favor the formation of different species of active chlorine. The radicals formed during the electro-oxidation process were detected by electron paramagnetic resonance spectroscopy and include hydroxyl, methoxy and hydroxymethyl. The use of methanol for the degradation of pollutants is a highly promising technique and this work shows that the identification of the different radicals formed in the process can be the key to understanding the degradation mechanism.


Subject(s)
Atrazine , Water Pollutants, Chemical , Water Purification , Atrazine/chemistry , Chlorine , Electrodes , Methanol , Oxidation-Reduction , Water , Water Pollutants, Chemical/chemistry , Water Purification/methods
12.
Environ Sci Pollut Res Int ; 29(36): 54769-54781, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35305220

ABSTRACT

As a result of anthropogenic action, an increasing amount of toxic organic compounds has been released into the environment. These pollutants have adverse effects on human health and wildlife, which has motivated the development of different types of technologies for the treatment of effluents and contaminated environments. The electrochemical degradation of organic pollutants has attracted the interest of research centers around the world for its environmental compatibility, high efficiency, and affordable cost. In the present study, a bibliometric analysis was performed using the Web of Science database in order to assess the progress of publications related to electrochemical degradation of organic pollutants between the years 2001 and 2021. The data retrieved showed a significant increase in publications related to the topic in the last 20 years. Electrochimica Acta was the magazine responsible for the largest number of publications (291, 6.52%). The studies mainly included the areas of engineering, chemistry, and environmental science ecology. China with a total of 1472 (32.96%) publications dominated research in this area, followed by Spain (436, 9.76%) and Brazil (345, 7.72%). The institutions with the highest number of contributions were the University of Barcelona and the Chinese Academy of Sciences, and the most productive authors were Brillas E. and Oturan M. A. The results of this study provide important references and information on possible research directions for future investigations on electrochemical degradation of organic pollutants.


Subject(s)
Environmental Pollutants , Bibliometrics , China , Ecology , Humans , Organic Chemicals
13.
Chemosphere ; 281: 130821, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34000653

ABSTRACT

Water pollution is an environmental problem in constant raising because of population growing, industrial development, agricultural frontier expansion, and principally because of the lack of wastewater treatment technology to remove organic recalcitrant and toxic pollutants from industrial and domestic wastewater. Recalcitrant compounds are a serious environmental and health problem mainly due to their toxicity and potential hazardous effects on living organisms, including human beings. Conventional wastewater treatments have not been able to remove efficiently pollutants from water; however, electrochemical advanced oxidation processes (EAOPs) are able to solve this environmental concern. One of the most recent EAOPs technology is photoelectrocatalysis (PEC), it consists in applying an external bias potential to a semiconductor film placed over a conductive substrate to avoid the recombination of photogenerated electron-hole (e-/h+) pairs, increasing h+ availability and hydroxyl radicals' formation, responsible for promoting the degradation/mineralization of organic pollutants in aqueous medium. This review summarizes the recent advances in PEC as a promising technology for wastewater treatment. It addresses the fundamentals and kinetic aspects of PEC. An analysis of photoanode materials and of the configuration of photoelectrochemical reactors is also presented, including an analysis of the influence of the main operational parameters on the treatment of contaminated water. Finally, the most recent applications of PEC are reviewed, and the challenges and perspectives of PEC in wastewater treatment are discussed.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Humans , Oxidation-Reduction , Wastewater/analysis , Water , Water Pollutants, Chemical/analysis
14.
Chemosphere ; 273: 129696, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33524759

ABSTRACT

The electro-oxidation of tetracycline (TeC) in methanol medium containing chloride or sulfate ions was evaluated using a DSA®-Cl2 in a flow reactor and compared with BDD. The results show that after 30 min of electrolysis no TeC is detected by liquid chromatography when chloride is used as supporting electrolyte. On the other hand, after 90 min of electrolysis using a BDD anode only 61% of TeC was removed from solutions with chloride, but in the presence of sulfate the removal reaches 94%. This evidences that the oxidizing species generated during electrochemical oxidation control the process and the mechanism of degradation of the TeC. Besides that, it was possible to infer that only a small amount of methanol might convert to formaldehyde or formic acid, although they were not detected according to the nil changes in the FTIR spectra or in the HPLC chromatograms recorded.


Subject(s)
Methanol , Water Pollutants, Chemical , Diamond , Electrodes , Electrolysis , Oxidation-Reduction , Sulfates , Water Pollutants, Chemical/analysis
15.
Environ Sci Pollut Res Int ; 28(19): 23634-23646, 2021 May.
Article in English | MEDLINE | ID: mdl-32812159

ABSTRACT

In this study, binary and ternary mixed metal oxide anodes of Ti/RuO2-Sb2O4 and Ti/RuO2-Sb2O4-TiO2 were prepared using two different heating methods: conventional furnace and alternative CO2 laser heating. The produced anodes were physically and electrochemically characterized by using different techniques. The main difference found in the laser-made anodes was their more compact morphology, without the common deep cracks found in anodes made by typical thermal decomposition, which showed an important correlation with the prolonged accelerated service life. The correlation between the physicochemical properties of the anodes with their performance towards the 4-nitrophenol oxidations is discussed. The results demonstrated that the ternary anode (Ti/RuO2-Sb2O4-TiO2) is very promising, presenting a kinetic 5.7 times faster than the respective binary anode and the highest removal efficiency when compared with conventionally made anodes. Also, the lowest energy consumption per unit of mass of contaminant removed is seen for the laser-made Ti/RuO2-Sb2O4-TiO2 anode, which evidences the excellent cost-benefit of this anode material. Finally, some by-products were identified, and a degradation route is proposed. Graphical abstract.


Subject(s)
Titanium , Water Pollutants, Chemical , Electrodes , Lasers , Nitrophenols , Oxidation-Reduction , Water Pollutants, Chemical/analysis
16.
Chemosphere ; 253: 126701, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32302902

ABSTRACT

In this study, we investigated the impact of a TiO2 nanotube (NT) interlayer on the electrochemical performance and service life of Sb and Bi-doped SnO2-coatings synthesized on a titanium mesh. Ti/SnO2-SbBi electrode was synthetized by a thermal decomposition method using ionic liquid as a precursor solvent. Ti/TiO2-NT/SnO2-SbBi electrode was obtained by a two-step electrochemical anodization, followed by the same process of thermal decomposition. The synthesized electrodes were electrochemically characterized and analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Terephthalic acid (TA) experiments showed that Ti/SnO2-SbBi and Ti/TiO2-NT/SnO2-SbBi electrodes formed somewhat higher amounts of hydroxyl radicals (HO) compared with the mesh boron doped diamond (BDD) anode. Electrochemical oxidation experiments were performed using iodinated contrast media (ICM) as model organic contaminants persistent to oxidation. At current density of 50 A m-2, BDD clearly outperformed the synthesized mixed metal oxide (MMO) electrodes, with 2 to 3-fold higher oxidation rates observed for ICM. However, at 100 and 150 A m-2, Ti/SnO2-SbBi had similar performance to BDD, whereas Ti/TiO2-NT/SnO2-SbBi yielded even higher oxidation rates. Disappearance of the target ICM was followed by up to 80% removal of adsorbable organic iodide (AOI) for all three materials, further demonstrating iodine cleavage and thus oxidative degradation of ICM mediated by HO. The presence of a TiO2 NT interlayer yielded nearly 4-fold increase in anode stability and dislocated the oxygen evolution reaction by +0.2 V. Thus, TiO2 NT interlayer enhanced electrode stability and service life, and the electrocatalytic activity for the degradation of persistent organic contaminants.


Subject(s)
Contrast Media/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Boron/chemistry , Diamond/chemistry , Electrodes , Nanotubes/chemistry , Oxidation-Reduction , Oxides/chemistry , Titanium/chemistry
17.
Environ Technol ; 41(10): 1307-1321, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30280982

ABSTRACT

After designing and constructing an electrochemical reactor with concentric electrodes and tangential feed (RECT), it is necessary to characterize it and to study its performance. The experimental study of the residence time distribution (RTD) was conducted for flow rates of 2.78 × 10-6 m3 s-1, 8.33 × 10-6 m3 s-1 and 13.9 × 10-6 m3 s-1. According to the values obtained from the Pe number (0.67-1.52), the RECT fits as tubular with great dispersion. The determined empirical correlation (Sh = 18.16 Re0.50 Sc0.33) showed a laminar flow behavior in the range of Reynolds number (Re) between 23 and 117. In order to use RECT in effluent treatment, an electrochemical oxidation study of the Diuron model molecule (Nortox®) was performed to analyze reactor performance in a closed system with total reflux. A decay kinetics of pseudo-first order was associated with the decay of the concentration of diuron and 30% mineralization in 180 min of process were obtained, having a total volume of 4 × 10-3 m3 and an initial concentration of commercial Diuron in 215.83 mg dm-3. Eleven by-products were identified by HPLC-MS analysis and, from this, it was possible to propose a route of degradation of the diuron. From these observations, it can be inferred that the studied electrochemical reactor had applicability in the degradation of recalcitrant compounds, as is the case of commercial diuron. Make some changes in the electrochemical reactor studied and other advanced oxidative processes, such as electro-Fenton, can be associated with the studied system to achieve a better conversion efficiency.


Subject(s)
Herbicides , Water Pollutants, Chemical , Diuron , Electrodes , Hydrogen Peroxide , Oxidation-Reduction
18.
Sci Total Environ ; 691: 417-429, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31323587

ABSTRACT

The pharmaceutical compounds sulfamethoxazole (SMX), propranolol (PRO) and carbamazepine (CBZ) are biorecalcitrant and frequently detected in waters causing negative impacts on human health and aquatic organisms. Electrochemical oxidation appears as an effective option for the removal of recalcitrant compounds and its enhancement is an important issue for the removal of emerging compounds in water. The contribution of this research lies in the comprehensive analysis of the oxygenated electro chemical oxidation of CBZ, SMX and PRO using Nb/BDD mesh anode. The effect of treatment time, current, pH and oxygen injection on the SMX, PRO and CBZ degradation was assessed using Na2SO4 as electrolyte, process optimization was performed, by-products were identified, kinetic and toxicity tests were carried out using different electrolytes. Finally, the process effectiveness was tested using real secondary effluent spiked with the mixture of the pharmaceutical compounds and the acute toxicity was determined. The obtained results indicated that the oxygenated electrochemical oxidation allows effective simultaneous SMX, PRO and CBZ degradation, which showed a significant dependence of treatment time, current and oxygen injection in Na2SO4 electrolyte. At 90 min of electrolysis the parent compounds were detected as well as eight by-products. At 150 min of treatment, further to the already determined by-products and the parent compounds, appeared phenol and p-benzoquinone. Based on the identified compounds, degradation pathways were explained as a result of two main mechanisms: transformation (hydroxylation, deamination, desulfunation) and bond rupture. The kinetic study indicated an increase of the first-order kinetic constant in the oxygenated electrochemical oxidation process using Na2SO4 and NaBr as electrolyte, nevertheless the constant decreased in the presence of NaCl. In the assays with secondary effluent spiked with SMX, PRO and CBZ, the oxygenation did not enhance the performance of the process, however; pharmaceuticals were degraded with a higher removal rates compared with the ones determined in the Na2SO4 synthetic solutions assays; the oxygenation enhanced the TOC and COD removal. The acute toxicity of spiked secondary effluent was reduced from the first few minutes of the electrochemical oxidation process.


Subject(s)
Electrochemical Techniques , Pharmaceutical Preparations/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Kinetics , Oxidation-Reduction , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/chemistry
19.
Environ Technol ; 40(1): 1-10, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28876166

ABSTRACT

The capacity of the photo electro-Fenton (PEF) process to degrade a mixture of seven polychlorinated biphenyl (PCB) congeners was studied. Boron-doped diamond (BDD) sheets were used as anode and cathode in the experimental electrolytic cell that contained Na2SO4 0.05 M at pH 3 as supporting electrolyte for the electro generation of H2O2 at the cathode. The effects of UV light intensity (254 and 365 nm), current density (8, 16 and 24 mA cm-2) and ferrous ion dosage (0.1, 0.2 and 0.3 mM) on PCB (C0 = 50 µg L-1) degradation were evaluated. The highest level of PCB degradation (97%) was achieved with 16 mA cm-2 of current density, 0.1 mM of ferrous ion and UV light at 365 nm as irradiation source after 6 h of reaction. PCB28, PCB52 and PCB101 were not detected after 0.5, 1.5 and 3 h of reaction, respectively. The degradation of PCB138, PCB153, PCB180 and PCB209 was also high (>95%). The PEF system outperformed other oxidation processes (electro-Fenton, anodic oxidation, Fenton, photo-Fenton and UV photolysis) in terms of reaction rate and degradation efficiency. These results demonstrate for the first time the degradation of PCB209, the most highly chlorinated PCB congener, by an advanced electrochemical oxidation process.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Boron , Diamond , Electrodes , Hydrogen Peroxide , Oxidation-Reduction
20.
Environ Technol ; 40(26): 3456-3466, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29770731

ABSTRACT

Antibiotics are not efficiently removed in conventional wastewater treatments. In fact, different advanced oxidation process (AOPs), including ozone, peroxide, UV radiation, among others, are being investigated in the elimination of microcontaminants. Most of AOPs proved to be efficient on the degradation of antibiotics, but the mineralization is on the one hand not evaluated or on the other hand not high. At this work, the UV-based hybrid process, namely Photo-assisted electrochemical oxidation (PEO), was applied, aiming the mineralization of microcontaminants such as the antibiotics Amoxicillin (AMX), Norfloxacin (NOR) and Azithromycin (AZI). The influence of the individual contributions of electrochemical oxidation (EO) and the UV-base processes on the hybrid process (PEO) was analysed. Results showed that AMX and NOR presented higher mineralization rate under direct photolysis than AZI due to the high absorption of UV radiation. For the EO processes, a low mineralization was found for all antibiotics, what was associated to a mass-transport limitation related to the low concentration of contaminants (200 µg/L). Besides that, an increase in mineralization was found, when heterogeneous photocatalysis and EO are compared, due to the influence of UV radiation, which overcomes the mass-transport limitations. Although the UV-based processes control the reaction pathway that leads to mineralization, the best results to mineralize the antibiotics were achieved by PEO hybrid process. This can be explained by the synergistic effect of the processes that constitute them. A higher mineralization was achieved, which is an important and useful finding to avoid the discharge of microcontaminants in the environment.


Subject(s)
Ultraviolet Rays , Water Pollutants, Chemical , Anti-Bacterial Agents , Hydrogen Peroxide , Oxidation-Reduction , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL