Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.084
Filter
1.
ACS Nano ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092833

ABSTRACT

The electrochemical reduction of nitrogen to produce ammonia is pivotal in modern society due to its environmental friendliness and the substantial influence that ammonia has on food, chemicals, and energy. However, the current electrochemical nitrogen reduction reaction (NRR) mechanism is still imperfect, which seriously impedes the development of NRR. In situ characterization techniques offer insight into the alterations taking place at the electrode/electrolyte interface throughout the NRR process, thereby helping us to explore the NRR mechanism in-depth and ultimately promote the development of efficient catalytic systems for NRR. Herein, we introduce the popular theories and mechanisms of the electrochemical NRR and provide an extensive overview on the application of various in situ characterization approaches for on-site detection of reaction intermediates and catalyst transformations during electrocatalytic NRR processes, including different optical techniques, X-ray-based techniques, electron microscopy, and scanning probe microscopy. Finally, some major challenges and future directions of these in situ techniques are proposed.

2.
Article in English | MEDLINE | ID: mdl-39093392

ABSTRACT

Being a recognized carcinogen, hexavalent chromium is hazardous to both human and environmental health. Thus, it is imperative to regulate and oversee their levels in a variety of industries, including textiles, dyes, pigments, and metal finishing. This study strives to reduce Cr(VI) in wastewater by using capacitive deionization in conjunction with an activated carbon-based electrode and a continuous electrochemical reactor (CER). Activated carbon derived from rubberwood sawdust demonstrated excellent properties, including a high surface area of 1157 m2 g-1. The electrical conductivity and mechanical stability of the electrode were enhanced by the incorporation of synthesized expanded graphite (EG) into the AC. Key parameters were optimized via systematic batch electroreduction experiments with an optimal response surface design. The efficacy of the fabricated CER was proved when it successfully reduced Cr(VI) in a 5 mg L-1 solution within 15 min under optimized conditions, in contrast to the considerably longer durations anticipated by conventional methods. Validation of these findings was done by treating industrial wastewater of 30 mg L-1 in the CER. The electroreduction of Cr(VI) followed the Langmuir isotherm with a maximum capacity of 13.491 mg g-1 and pseudo-second-order kinetics. These results indicate that the combined use of the modified AC electrode and CER holds potential as a sustainable and economical approach to effectively eliminate Cr(VI) from wastewater.

3.
J Colloid Interface Sci ; 677(Pt A): 178-188, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39089126

ABSTRACT

Developing reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for achieving high-performance rechargeable Zn-air batteries (ZABs). This study introduced an nitrogen-doped carbon confined with a semi-coherent Fe(PO3)2-Co2P2O7 heterojunction for bifunctional oxygen electrocatalysis. This nanocomposite yielded an ORR half-wave potential of 0.908 V and an OER overpotential of 291 mV at 10 mA/cm2. ZABs incorporating this catalyst yielded impressive performance, including a peak power density of 203 mW/cm2, a specific capacity of 737 mAh/gZn, and promoted stability. Both experimental and theoretical simulations demonstrated that the unique electric field between Fe(PO3)2 and Co2P2O7 promoted efficient charge transport across the heterointerface. This interaction likely modulated the d-band center of the heterojunction, expedite the desorption of oxygen intermediates, thus improving oxygen catalysis and, consequently, ZAB performance. This work illustrates a significant design principle for creating efficient bifunctional catalysts in energy conversion technologies.

4.
Appl Spectrosc ; : 37028241267920, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090839

ABSTRACT

Growing demand for pesticides has created an environment prone to deceptive activities, where counterfeit or adulterated pesticide products infiltrate the market, often escaping rapid detection. This situation presents a significant challenge for sensor technology, crucial in identifying authentic pesticides and ensuring agricultural safety practices. Raman spectroscopy emerges as a powerful technique for detecting adulterants. Coupling the electrochemical techniques allows a more specific and selective detection and compound identification. In this study, we evaluate the efficacy of spectroelectrochemical measurements by coupling a potentiostat and Raman spectrograph to identify paraquat, a nonselective herbicide banned in several countries. Our findings demonstrate that applying -0.70 V during measurements yields highly selective Raman spectra, highlighting the primary vibrational bands of paraquat. Moreover, the selective Raman signal of paraquat was discernible in complex samples, including tap water, apple, and green cabbage, even in the presence of other pesticides such as diquat, acephate, and glyphosate. These results underscore the potential of this technique for reliable pesticide detection in diverse and complex matrices.

5.
Article in English | MEDLINE | ID: mdl-39091198

ABSTRACT

Aqueous zinc-ion batteries (AZIBs) are poised to play a pivotal part in meeting the growing demands for energy storage and powering portable electronics for their superior security, affordability, and environmentally friendly characteristics. However, the detrimental side reactions occurring at the zinc anode and the dendrite caused by uneven zinc plating/stripping have greatly compromised the cycling life of AZIBs, thereby impeding their practical prospects. In this study, the interfacial comodulation strategy was employed by combining the "electrostatic shielding" effect of cations with the characteristic adsorption of anions. Two molar ZnSO4 served as the matrix, and sodium hydroxyethyl sulfonate (SHES) was selected as a low-cost, nontoxic additive. Experimental results confirm that SHES and zinc anode exhibit robust interactions that lead to the formation of an electrostatic shield and a dynamic adsorption layer at the interface, thereby suppressing hydrogen evolution and corrosion. The combined "electrostatic shielding" effect of sodium ions and the robust characteristic adsorption of hydroxyethyl sulfonate anions serve to guide the directed three-dimensional (3D) diffusion of Zn2+, facilitating rapid, stable, and uniform deposition of zinc. Due to these effects, incorporating 0.2 M SHES as an additive extends the cycle life beyond 3600 h and enables a highly reversible process of deposition and stripping in symmetric cells. Additionally, the Zn-Cu half-cell exhibits reliable cycling for over 1400 cycles, achieving an average Coulombic efficiency of 99.6%. Moreover, the introduction of this additive substantially enhances the performance of Zn-MnO2 and Zn-NH4V4O10 full cells. This study demonstrates the practical feasibility of achieving anodes with high reversibility in AZIBs through the implementation of a strategy that involves anion adsorption at the interface, which holds paramount significance for the practical application of AZIBs.

6.
Front Neurol ; 15: 1435272, 2024.
Article in English | MEDLINE | ID: mdl-39087013

ABSTRACT

Objective: Gasserian ganglion stimulation (GGS) is a neuromodulation technique that has been extensively applied in treating postherpetic trigeminal neuralgia. However, permanent implantation of GGS was preferred in most treatment approaches. Few studies have investigated temporary GGS for the treatment of acute/subacute herpetic trigeminal neuralgia. Moreover, previous research has reported lead dislocation when utilizing traditional electrodes, which was associated with poor pain relief. In GGS research, preventing the accidental displacement of lead following implantation has consistently been a primary objective. Methods: We report a case of a 70-year-old woman with subacute herpetic trigeminal neuralgia who underwent temporary GGS for 14 days utilizing a sacral neuromodulation (SNM) quadripolar-tined lead. Computed tomography-guided percutaneous foramen ovale (FO) puncture and temporary SNM electrode implantation were performed during the surgery. A telephone interview was conducted to record a 12-month follow-up. Results: At admission, zoster-related trigeminal pain severity was assessed to be 9/10 on the visual analog scale (VAS). After a 14-day GGS treatment, the pain assessed on the VAS score reduced to 1/10 at discharge but increased to 4/10 at the 12-month follow-up after surgery. Additionally, the anxiety level improved from 58 points to 35 points on the Self-Rating Anxiety Scale (SAS), and the depression level improved from 62 points to 40 points on the Self-Rating Depression Scale (SDS). The Physical Component Summary score of the 12-item Short-Form Health Survey (SF-12) increased from 33.9 to 47.0, and the Mental Component Summary (MCS) score of the SF-12 increased from 27.4 to 41.9. Conclusion: Temporary GGS might be a potentially effective treatment for subacute herpetic trigeminal neuralgia, and an SNM electrode might be a good choice for reducing the risk of dislocation.

7.
Small ; : e2402767, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086056

ABSTRACT

Electroactive organic electrode materials exhibit remarkable potential in aqueous zinc ion batteries (AZIBs) due to their abundant availability, customizable structures, sustainability, and high reversibility. However, the research on AZIBs has predominantly concentrated on unraveling the storage mechanism of zinc cations, often neglecting the significance of anions in this regard. Herein, bipolar poly(thionine) is synthesized by a simple and efficient polymerization reaction, and the kinetics of different anions are investigated using poly(thionine) as the cathode of AZIBs. Notably, poly(thionine) is a bipolar organic polymer electrode material and exhibits enhanced stability in aqueous solutions compared to thionine monomers. Kinetic analysis reveals that ClO4 - exhibits the fastest kinetics among SO4 2-, Cl-, and OTF-, demonstrating excellent rate performance (109 mAh g-1 @ 0.5 A g-1 and 92 mAh g-1 @ 20 A g-1). Mechanism studies reveal that the poly(thionine) cathode facilitates the co-storage of both anions and cations in Zn(ClO4)2. Furthermore, the lower electrostatic potential of ClO4 - influences the strength of hydrogen bonding with water molecules, thereby enhancing the overall kinetics in aqueous electrolytes. This work provides an effective strategy for synthesizing high-quality organic materials and offers new insights into the kinetic behavior of anions in AZIBs.

8.
Chem Asian J ; : e202400362, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087987

ABSTRACT

Polycrystalline Pt electrode was employed to selectively convert nitrite ions ([[EQUATION]]) into useful nitrogenous compound through electrochemical reduction reaction in neutral medium. According to adsorptive stripping analysis, the reduction process produced nitric oxide (NO) on the surface of Pt electrode. The spectroscopic test and gas chromatographic studies discovered the presence of ammonia (NH3) in the electrolyzed solution, suggesting the transformation of adsorbed NO into NH3 during the reverse scan. Scan rate dependent investigation was performed to elucidate kinetic information relating to this reaction on Pt surface. From Ep vs scan rate (υ) and jp vs υ (logarithmic plot), it was found that the conversion of [[EQUATION]] ion into NO is an irreversible reaction which relies on the diffusion of [[EQUATION]] ions to electrode surface. The Tafel analysis unveiled that the first electron transfer sets the overall reaction rate, having formal reduction potential, E0' = -0.46 V and standard heterogeneous rate constant, k0 = [[EQUATION]] cm s-1. Reductive transfer coefficient (α) is another kinetics parameter, which was found to be approximate 0.77 from the difference between Ep and Ep/2 of the voltammograms obtained over scan rate range 0.005 V s-1 to 0.250 V s-1, indicating a stepwise process.

9.
Mikrochim Acta ; 191(8): 502, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39093358

ABSTRACT

An electrochemical sensor assisted by primer exchange reaction (PER) and CRISPR/Cas9 system (PER-CRISPR/Cas9-E) was established for the sensitive detection of dual microRNAs (miRNAs). Two PER hairpin (HP) were designed to produce a lot of extended PER products, which could hybridize with two kinds of hairpin probes modified on the electrode and initiate the cleavage of two CRISPR/Cas9 systems guided by single guide RNAs (sgRNAs) with different recognition sequences. The decrease of the two electrochemical redox signals indicated the presence of dual-target miRNAs. With the robustness and high specificity of PER amplification and CRISPR/Cas9 cleavage system, simultaneous detection of two targets was achieved and the detection limits for miRNA-21 and miRNA-155 were 0.43 fM and 0.12 fM, respectively. The developed biosensor has the advantages of low cost, easy operation, and in-situ detection, providing a promising platform for point-of-care detection of multiple miRNAs.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Electrochemical Techniques , Limit of Detection , MicroRNAs , MicroRNAs/analysis , MicroRNAs/genetics , CRISPR-Cas Systems/genetics , Electrochemical Techniques/methods , Biosensing Techniques/methods , Humans , RNA, Guide, CRISPR-Cas Systems/genetics
10.
Nano Lett ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39094116

ABSTRACT

Component modulation endows Mn-based electrodes with prominent energy storage properties due to their adjustable crystal structure characteristics. Herein, ZnMn2(PO4)2·nH2O (ZMP·nH2O) was obtained by a hydration reaction from ZnMn2(PO4)2 (ZMP) during an electrode-aging evolution. Benefiting from the introduction of lattice H2O molecules into the ZMP structure, the ion transmission path has been expanded along with the extended d-spacing, which will further facilitate the ZMP → ZMP·nH2O phase evolution and electrochemical reaction kinetics. Meanwhile, the hydrogen bond can be generated between H2O and O in PO43-, which strengthens the structure stability of ZMP·nH2O and lowers the conversion barrier from ZMP to ZMP·4H2O during the Zn2+ uptake/removal process. Thereof, ZMP·nH2O delivers enhanced electrochemical reaction kinetics with robust structure tolerance (106.52 mA h g-1 at 100 mA g-1 over 620 cycles). This high-energy aqueous Zn||ZMP·nH2O battery provides a facile strategy for engineering and exploration of high-performance ZIBs to realize the practical application of Mn-based cathodes.

11.
Biosens Bioelectron ; 263: 116609, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39094289

ABSTRACT

Developing non-passivating and fully integrated electrode arrays for point-of-care testing of carcinoembryonic antigen (CEA) is crucial, as the serum level of CEA is closely associated with colorectal cancer. Herein, we propose a simple, low-cost, and eco-friendly template-assisted filtration method for the scalable preparation of carbon nanotube-bridged Ti3C2Tx MXene (MX@CNT) electrode arrays with a conductive network. Furthermore, we fabricate a homogeneous electrochemical (HEC) sensor for CEA detection by integrating a magnetic-bead-based alkaline phosphatase-linked immunoassay (MB-aElisa), which enables the in-situ generation of the electroactive substance 1-naphthol (1-NP). Benefiting from the unique electrochemical characteristics of a MX@CNT electrode array, such as ultra-low background signal and superior electrocatalytic activity towards the hydrolyzed 1-NP, the MB-aElisa-based HEC sensor specifically measures CEA within a detection range spanning from 0.005 to 1.0 ng mL-1, achieving a detection limit of 1.6 pg mL-1. Subsequently, this biosensing prototype is successfully utilized for the detection of CEA in serum specimens obtained from colorectal cancer patients. More importantly, the integration of MB-aElisa with a MX@CNT electrode array not only marks a significant advancement but also enables the creation of a one-step homogeneous electrochemical immunosensing platform, serving as a paradigm for the highly sensitive and selective measurement of trace tumor markers in complex biological samples.

12.
Talanta ; 279: 126614, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094532

ABSTRACT

Miniaturization and mass-production of potentiometric sensor systems is paving the way towards distributed environmental sensing, on-body measurements and industrial process monitoring. Inkjet printing is gaining popularity as a highly adaptable and scalable production technique. Presented here is a scalable and low-cost route for flexible solid-contact ammonium ion-selective electrode fabrication by inkjet printing. Utilization of inkjet-printed melamine-intercalated graphene nanosheets as the solid-contact material significantly improved charge transport, while evading the detrimental water-layer formation. External polarization was investigated as a means of improving the inter-electrode reproducibility: the standard deviations of E0 values were reduced after electrode polarization, the linear region of the response was extended to the range 10-1-10-6 M of NH4Cl and LODs reduced to 0.88 ± 0.17 µM. Finally, we have shown that the electrodes are adequate for measurements in a complex real sample: ammonium concentration was determined in landfill leachate water, with less than 4 % deviation from the reference method.

13.
Small ; : e2404919, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096112

ABSTRACT

Electrochemical conversion of nitrate (NO3 -) to ammonia (NH3) is an effective approach to reduce nitrate pollutants in the environment and also a promising low-temperature, low-pressure method for ammonia synthesis. However, adequate H* intermediates are highly expected for NO3 - hydrogenation, while suppressing competitive hydrogen evolution. Herein, the effect of H* coverage on the NO3RR for ammonia synthesis by Cu electrocatalysts is investigated. The H* coverage can be adjusted by changing Pd nanoparticle sizes. The optimized Pd@Cu with an average Pd size of 2.88 nm shows the best activity for NO3RR, achieving a maximum Faradaic efficiency of 97% (at -0.8 V vs RHE) and an NH3 yield of 21 mg h-1 cm- 2, from an industrial wastewater level of 500 ppm NO3 -. In situ electrochemical experiments indicate that Pd particles with 2.88 nm can promote NO3 - hydrogenation to NH3 via well-modulated coverage of adsorbed H* species. Coupling the anodic glycerol oxidation reaction, ammonium and formate are successfully obtained as value-added products in a membrane electrode assembly electrolyzer. This work provides a feasible strategy for obtaining size-dependent H* intermediates for hydrogenation.

14.
Food Chem ; 460(Pt 2): 140548, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096799

ABSTRACT

Electrochemical sensors and electroanalytical techniques become emerging as effective and low-cost tools for rapid assessment of special parameters of the food quality. Chemically modified electrodes are developed to change properties and behaviour, particularly sensitivity and selectivity, of conventional electroanalytical sensors. Within this comprehensive review, novel trends in chemical modifiers material structure, electrodes construction and flow analysis platforms are described and evaluated. Numerous recent application examples for the detection of food specific analytes are presented in a form of table to stimulate further development in both, the basic research and commercial field.

15.
Mikrochim Acta ; 191(8): 499, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39088080

ABSTRACT

The main goal of our study is to demonstrate the applicability of the PPy-cryogel-modified electrodes for electrochemical detection of DNA. First, a polysaccharide-based cryogel was synthesized. This cryogel was then used as a template for chemical polypyrrole synthesis. This prepared polysaccharide-based conductive cryogel was used for electrochemical biosensing on DNA. Carrageenan (CG) and sodium alginate (SA) polysaccharides, which stand out as biocompatible materials, were used in cryogel synthesis. Electron transfer was accelerated by polypyrrole (PPy) synthesized in cryogel networks. A 2B pencil graphite electrode with a diameter of 2.00 mm was used as a working electrode. The prepared polysaccharide solution was dropped onto a working electrode as a support material to improve the immobilization capacity of biomolecules and frozen to complete the cryogelation step. PPy synthesis was performed on the electrodes whose cryogelation process was completed. In addition, the structures of cryogels synthesized on the electrode surface were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Surface characterization of the modified electrodes was performed by energy-dispersive X-ray spectroscopy (EDX) analysis. Electrochemical determination of fish sperm DNA (fsDNA) was performed using a PPy-cryogel-modified electrode. The use of a porous 3D cryogel intermediate material enhanced the signal by providing a large surface area for the synthesis of PPy and increasing the biomolecule immobilization capacity. The detection limit was 0.98 µg mL-1 in the fsDNA concentration range 2.5-20 µg mL-1. The sensitivity of the DNA biosensor was estimated to 14.8 µA mM-1 cm-2. The stability of the biosensor under certain storage conditions was examined and observed to remain 66.95% up to 45 days.


Subject(s)
Alginates , Biosensing Techniques , Cryogels , DNA , Electrochemical Techniques , DNA/chemistry , Electrochemical Techniques/methods , Animals , Cryogels/chemistry , Alginates/chemistry , Biosensing Techniques/methods , Electrodes , Fishes , Male , Carrageenan/chemistry , Polysaccharides/chemistry , Polysaccharides/analysis , Pyrroles/chemistry , Spermatozoa/chemistry , Limit of Detection , Polymers
16.
Mikrochim Acta ; 191(8): 500, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39088046

ABSTRACT

Detecting lipopolysaccharide (LPS) using electrochemical methods is significant because of their exceptional sensitivity, simplicity, and user-friendliness. Two-dimensional metal-organic framework (2D-MOF) that merges the benefits of MOF and 2D nanostructure has exhibited remarkable performance in constructing electrochemical sensors, notably surpassing traditional 3D-MOFs. In this study, Cu[tetrakis(4-carboxylphenyl)porphyrin] (Cu-TCPP) and Cu(tetrahydroxyquinone) (Cu-THQ) 2D nanosheets were synthesized and applied on a glassy carbon electrode (GCE). The 2D-MOF nanosheets, which serve as supporting layers, exhibit improved electron transfer and electronic conductivity characteristics. Subsequently, the modified electrode was subjected to electrodeposition with Au nanostructures, resulting in the formation of Au/Cu-TCPP/GCE and Au/Cu-THQ/GCE. Notably, the Au/Cu-THQ/GCE demonstrated superior electrochemical activity because of the 2D morphology, redox ligand, dense Cu sites, and improved deposition of flower-like Au nanostructure based on Cu-THQ. The electron transfer specific surface area was increased by the improved deposition of Au nanostructures, which facilitates enriched binding of LPS aptamer and significantly improved the detection performance of Apt/Au/Cu-THQ/GCE electrochemical aptasensor. The limit of detection for LPS reached 0.15 fg/mL with a linear range of 1 fg/mL - 100 pg/mL. The proposed aptasensor demonstrated the ability to detect LPS in serum samples with satisfactory accuracy, indicating significant potential for clinical diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Copper , Electrochemical Techniques , Gold , Limit of Detection , Lipopolysaccharides , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Gold/chemistry , Copper/chemistry , Electrochemical Techniques/methods , Lipopolysaccharides/analysis , Lipopolysaccharides/blood , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Electrodes , Nanostructures/chemistry , Porphyrins/chemistry , Humans
17.
Sci Rep ; 14(1): 16125, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997310

ABSTRACT

The practical applications of underwater optical devices, such as cameras or sensors, often suffer from widespread surface biofouling. Current antifouling techniques are primarily hindered by low efficiency, poor compatibility, as well as environmental pollution issues. This paper presents a transparent electrode coating as antifouling system of underwater optics as potential substitute for alternating current electrokinetic (ACEK)-based systems. A strong-coupling model is established to predict the Joule heating induced fluid flows and the negative dielectrophoretic (nDEP) effect for mobilizing organisms or deposited sediments on optic surfaces. The performance of the proposed antifouling system is numerically evaluated through simulations of electrostatic, fluid and temperature fields as well as trajectories of submicron particles, which is then experimentally verified and found to be in good agreement. A parametric study revealed that the degree of electrodes asymmetry is the key factor affecting the flow pattern and therefore the overall performance of the system. This ACEK-based universal strategy is expected to shed light on designing high performance and non-toxic platforms toward energy-efficient surface antifouling applications of underwater optics.

18.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000155

ABSTRACT

Transition metal oxides are a great alternative to less expensive hydrogen evolution reaction (HER) catalysts. However, the lack of conductivity of these materials requires a conductor material to support them and improve the activity toward HER. On the other hand, carbon paste electrodes result in a versatile and cheap electrode with good activity and conductivity in electrocatalytic hydrogen production, especially when the carbonaceous material is agglomerated with ionic liquids. In the present work, an electrode composed of multi-walled carbon nanotubes (MWCNTs) and cobalt ferrite oxide (CoFe2O4) was prepared. These compounds were included on an electrode agglomerated with the ionic liquid N-octylpyridinium hexafluorophosphate (IL) to obtain the modified CoFe2O4/MWCNTs/IL nanocomposite electrode. To evaluate the behavior of each metal of the bimetallic oxide, this compound was compared to the behavior of MWCNTs/IL where a single monometallic iron or cobalt oxides were included (i.e., α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL). The synthesis of the oxides has been characterized by X-ray diffraction (XRD), RAMAN spectroscopy, and field emission scanning electronic microscopy (FE-SEM), corroborating the nanometric character and the structure of the compounds. The CoFe2O4/MWCNTs/IL nanocomposite system presents excellent electrocatalytic activity toward HER with an onset potential of -270 mV vs. RHE, evidencing an increase in activity compared to monometallic oxides and exhibiting onset potentials of -530 mV and -540 mV for α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL, respectively. Finally, the system studied presents excellent stability during the 5 h of electrolysis, producing 132 µmol cm-2 h-1 of hydrogen gas.


Subject(s)
Cobalt , Ferric Compounds , Hydrogen , Ionic Liquids , Nanocomposites , Nanotubes, Carbon , Oxides , Cobalt/chemistry , Nanotubes, Carbon/chemistry , Ionic Liquids/chemistry , Nanocomposites/chemistry , Catalysis , Hydrogen/chemistry , Ferric Compounds/chemistry , Oxides/chemistry , Electrodes , Electrochemical Techniques/methods , X-Ray Diffraction , Spectrum Analysis, Raman
19.
Surg Neurol Int ; 15: 190, 2024.
Article in English | MEDLINE | ID: mdl-38974543

ABSTRACT

Background: Subdural electrode (SDE) implantation is an important method of diagnosing epileptogenic lesions and mapping brain function, even with the current preference for stereoelectroencephalography. We developed a novel method to assess SDEs and the brain surface during the electrode implantation procedure using brain images printed onto permeable films and intraoperative fluoroscopy. This method can help verify the location of the electrode during surgery and improve the accuracy of SDE implantation. Methods: We performed preoperative imaging by magnetic resonance imaging and computed tomography. Subsequently, the images were edited and fused to visualize the gyrus and sulcus better. We printed the images on permeable films and superimposed them on the intraoperative fluoroscopy display. The intraoperative and postoperative coordinates of the electrodes were obtained after the implantation surgery, and the differences in the locations were calculated. Results: Permeable films were created for a total of eight patients with intractable epilepsy. The median difference of the electrodes between the intraoperative and postoperative images was 4.6 mm (Interquartile range 2.9-7.1). The locations of electrodes implanted outside the operation field were not significantly different from those implanted inside. Conclusion: Our new method may guide the implantation of SDEs into their planned location.

20.
Adv Sci (Weinh) ; : e2405474, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049687

ABSTRACT

Conventional strategies for highly selective and active hydrogen peroxide (H2O2) electrosynthesis primarily focus on catalyst design. Electrocatalytic reactions take place at the electrified electrode-electrolyte interface. Well-designed electrolytes, when combined with commercial catalysts, can be directly applied to high-efficiency H2O2 electrosynthesis. However, the role of electrolyte components is equally crucial but is significantly under-researched. In this study, anionic surfactant n-tetradecylphosphonic acid (TDPA) and its analogs are used as electrolyte additives to enhance the selectivity of the two-electron oxygen reduction reaction. Mechanistic studies reveal that TDPA assembled over the electrode-electrolyte interface modulates the electrical double-layer structure, which repels interfacial water and weakens the hydrogen-bond network for proton transfer. Additionally, the hydrophilic phosphonate moiety affects the coordination of water molecules in the solvation shell, thereby directly influencing the proton-coupled kinetics at the interface. The TDPA-containing catalytic system achieves a Faradaic efficiency of H2O2 production close to 100% at a current density of 200 mA cm-2 using commercial carbon black catalysts. This research provides a simple strategy to enhance H2O2 electrosynthesis by adjusting the interfacial microenvironment through electrolyte design.

SELECTION OF CITATIONS
SEARCH DETAIL