Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
Add more filters











Publication year range
1.
Nano Lett ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365276

ABSTRACT

Atomically precise Pd-thiolate clusters are well-known for their well-defined structures and diverse applications involving catalysis, sensors, and biomedicine. While many of these clusters have been studied, their molecular structures typically feature a tiara-like arrangement. In this study, we present the first example of a non-tiara-like Pd-thiolate cluster: the octahedral Pd6(SC6H11)12 (denoted as Pd6-Oct). The composition and geometric structure of the cluster were characterized using electrospray ionization mass spectrometry (ESI-MS) together with single-crystal X-ray diffraction (SXRD). Despite having a similar chemical composition to tiara-like Pd6(SC2H4Ph)12 (denoted as Pd6-Tia), Pd6-Oct exhibits a distinctly different geometric structure. Additionally, UV-vis-NIR absorption spectroscopy combined with quantum chemical calculations provided valuable insights into the electronic structures of these clusters. The excited-state dynamics, host-guest chemistry, and the catalytic properties of Pd6-Oct and Pd6-Tia were examined to compare their structure-property relationships. This research represents significant advances in the synthesis and understanding of structure-property correlations in Pd-thiolate clusters.

2.
Angew Chem Int Ed Engl ; : e202408704, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39388344

ABSTRACT

Ultra-fast magic-angle spinning (100+ kHz) has revolutionized solid-state NMR of biomolecular systems but has so far failed to gain ground for the analysis of paramagnetic organic and inorganic powders, despite the potential rewards from substantially improved spectral resolution. The principal blockages are that the smaller fast-spinning rotors present significant barriers for sample preparation, particularly for air/moisture-sensitive systems, and are associated with lower sensitivity from the reduced sample volumes. Here these difficulties are overcome by improvements in rotor ceramics and handling methods that enable the routine use of this setup for repetitive, high-throughput analysis of sensitive samples. Furthermore, we demonstrate that the sensitivity penalty is less severe than expected for highly paramagnetic solids and is more than offset by the associated improved resolution. While previous approaches employing slower MAS are often unsuccessful in providing sufficient resolution, we show that ultra-fast 100+ kHz MAS allows site-specific assignments of all resonances from complex paramagnetic solids. This opens the way to routine characterisation of geometry and electronic structures of functional paramagnetic systems in chemistry, including catalysts and battery materials. We benchmark this approach on a hygroscopic luminescent Tb3+ complex, an air-sensitive homogeneous high-spin Fe2+ catalyst, and a series of mixed Fe2+/Mn2+/Mg2+ olivine-type cathode materials.

3.
ACS Nano ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377230

ABSTRACT

Rechargeable magnesium batteries are attractive candidates for large-scale energy storage applications because of the low cost and high safety, but the scarcity and inferior performance of the cathode materials are hindering the development. In the present study, a kind of copper tetrathiovanadate (Cu3VS4) cathode is designed and developed with a comprehensive consideration of the chemical and electronic structures. The vanadium and sulfur atoms form chemical bonds with high covalent proportion, facilitating electron delocalization via the vanadium-sulfur bonds. This reduces the interaction with the bivalent magnesium cation and induces the coredox of vanadium and sulfur. The crystal structure of Cu3VS4 has interlaced 3D tunnels for solid-state magnesium cation transport. The Cu3VS4 cathode shows a high capacity of 350 mA h g-1 at 100 mA g-1, an outstanding rate performance of 67 mA h g-1 at 10 A g-1, and stable cycling for 1000 cycles at 5 A g-1 without obvious capacity fading. Prominently, a high areal mass load of 3.5 mg cm-2 could be achieved without obvious rate capability decay, which is quite favorable to pair with the high-capacity magnesium metal anode in practical application. The mechanism investigation and theoretical computation demonstrate that Cu3VS4 undergoes first a magnesium intercalation and then a displacement reaction, during which the crystal structure is maintained, assisting the reaction reversibility and cycling stability. All the copper, vanadium, and sulfur elements experience redox and contribute to the high capacity. Moreover, the weakened interaction with magnesium cations, well-kept 3D cation transport tunnels, and high electronic conductivity result in the superior rate performance and high areal active material loading. The present study develops a high-performance cathode for rechargeable magnesium batteries and reveal the design principle based on both of chemical and electronic structures.

4.
Article in English | MEDLINE | ID: mdl-39321837

ABSTRACT

The stability, electronic structures and optical properties of g-ZnO/CdX (X = S, Se, Te) heterostructures are studied by density functional theory. It is found that the stable monolayers spacing of the corresponding heterostructure decreases with the increase of the X atomic radius in the CdX monolayers. The constructed g-ZnO/CdX heterostructures all belong to direct band gap, 2.12 eV, 2.09 eV and 1.99 eV, respectively. Electrostatic potential results show that the two monolayers form an internal electric field at the heterostructure interface, and can inhibit the recombination of photogenerated electron hole pairs, and effectively extend the carrier lifetime. Charge density difference analysis shows that charge redistribution mainly occurs in the interfacial region. The optical properties show that the absorption of g-ZnO in the visible range is achieved by heterostructure. In general, with the smallest band gap and the strongest built-in electric field, g-ZnO/CdTe could have the best carrier separation efficiency. And the optical property analysis proves that the g-ZnO/CdTe heterostructure system has the highest utilization ratio of visible light. The above results show that the electronic structure and optical properties of g-ZnO/CdTe heterostructure are the best, and it can be inferred that this heterostructure will be the most beneficial to improve the photocatalytic activity of g-ZnO, providing a new direction for its application in the field of photocatalysis.

5.
Molecules ; 29(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39064882

ABSTRACT

Heterostructure catalysts are highly anticipated in the field of photocatalytic water splitting. AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are proposed in this work, and the electronic structures were revealed with the first-principles method to explore their photocatalytic properties for water splitting. The results found that the thermodynamically stable AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are indirect semiconductors with reduced band gaps of 1.75 eV and 1.84 eV, respectively. These two heterostructures have been confirmed to have type-Ⅰ band alignments, with both VBM and CBM contributed to by the Sc2CF2 layer. AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures exhibit the potential for photocatalytic water splitting as their VBM and CBM stride over the redox potential of water. Gibbs free energy changes in HER occurring on AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are as low as -0.31 eV and -0.59 eV, respectively. The Gibbs free energy change in HER on the AlN (GaN) layer is much lower than that on the Sc2CF2 surface, owing to the stronger adsorption of H on AlN (GaN). The AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures possess significant improvements in absorption range and intensity compared to monolayered AlN, GaN, and Sc2CF2. In addition, the band gaps, edge positions, and absorption properties of AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures can be effectively tuned with strains. All the results indicate that AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are suitable catalysts for photocatalytic water splitting.

6.
Small ; : e2403859, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030860

ABSTRACT

The electrocatalytic production of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (2e- ORR) has garnered significant research attention in recent years due to its numerous appealing advantages, such as being eco-friendly and exhibiting high energy conversion efficiency. Metal-free carbon materials with specific catalytic sites have been recognized as potential electrocatalysts for 2e- ORR; however, the design of highly efficient catalysts with well-defined structures and long-term stability for large-scale H2O2 production remains unsatisfactory. In this study, three covalent organic frameworks (COFs) - imine-linked LZU-1, oxazole-linked LZU-190, and thiazole-linked LZU-190(S), are successfully synthesized to explore their catalytic activity in electrocatalytic H2O2 production. Among these, the carbon sites LZU-190(S) are predominantly activated by the introduced adjacent heteroatoms via electronic effects, resulting in much higher H2O2 selectivity compared to the oxazole and imine linkages. This work provides new insights into developing COFs-based electrocatalysts for efficient H2O2 generation.

7.
J Colloid Interface Sci ; 676: 680-690, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39053415

ABSTRACT

The design strategy of designing effective local electronic structures of active sites to improve the oxygen evolution reaction (OER) performance is the key to the success of sustainable alkaline water electrolysis processes. Herein, a series of manganese-doped nickel molybdate porous nanosheets with rich oxygen vacancies on the nickel foam (Mn-NiMoO4/NF PNSs) synthesized by the facile hydrothermal and following annealing routes are used as high-efficiency and robust catalysts towards OER. By virtue of unique nanosheets architectures, more exposed active site, rich oxygen vacancies, tailored electronic structures, and improved electrical conductivity induced by Mn incorporation, as predicted, the optimized Mn0.10-NiMoO4/NF PNSs catalyst exhibits superior the OER performance with a low overpotential of 211 mV at 10 mA‧cm-2, a small Tafel slope of 41.7 mV‧dec-1, and an excellent stability for 100 h operated at 100 mA‧cm-2 in 1.0 M KOH electrolyte. The in-situ Raman measurements reveal the surface dynamic reconstruction. Besides, the results of density functional theory (DFT) calculations unveil the reaction mechanism. This study provides an effective design strategy via Mn incorporation to synergistically engineer electronic structures and oxygen vacancies of metal oxides for efficiently boosting the OER performance.

8.
Nano Lett ; 24(27): 8386-8393, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38934731

ABSTRACT

Auger recombination is a pivotal process for semiconductor nanocrystals (NCs), significantly affecting charge carrier generation and collection in optoelectronic devices. This process depends mainly on the NCs' electronic structures. In our study, we investigated Auger recombination dynamics in manganese (Mn2+)-doped CsPbI3 NCs using transient absorption (TA) spectroscopy combined with theoretical and experimental structural characterization. Our results show that Mn2+ doping accelerates Auger recombination, reducing the biexciton lifetime from 146 to 74 ps with increasing Mn doping concentration up to 10%. This accelerated Auger recombination in Mn-doped NCs is attributed to increased band edge wave function overlap of excitons and a larger density of final states of Auger recombination due to Mn orbital involvement. Moreover, Mn doping reduces the dielectric screening of the excitons, which also contributes to the accelerated Auger recombination. Our study demonstrates the potential of element doping to regulate Auger recombination rates by modifying the materials' electronic structure.

9.
J Mol Model ; 30(7): 214, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884859

ABSTRACT

CONTEXT: The electronic and magnetic properties of non-metallic (NM) elements doping defective graphene-like ZnO (g-ZnO) monolayer including O vacancy (VO) and Zn vacancy (VZn) are studied. The results show that VO-g-ZnO is a semiconductor and VZn-g-ZnO is a magnetic semiconductor. B, C, N, Si, P, 2S, and 2Si doping VO-g-ZnO systems present half-metal and magnetic semiconductors, and the magnetism mainly originates from the spin polarization of doping atoms. For single or double NM elements doping VZn-g-ZnO, 2P doping system presents a semiconductor, while other systems present ferromagnetic metal, half-metal, and magnetic semiconductor. The magnetism of single NM elements doping VZn-g-ZnO mainly comes from the spin polarization of O atoms near the defect point. For double NM elements doping VZn-g-ZnO, spin splitting occurs mainly in p orbitals of O atoms, dopant atoms, and d orbitals of Zn atoms. NM elements doping defect g-ZnO can effectively regulate the electronic and magnetic properties of the system. METHODS: The software package VASP 5.4.1 (Vienna ab initio Simulation Package) is used for calculations in this paper. The local density approximation (LDA) is adopted as an exchange and correlation function to perform the structural optimization and analysis of electronic structure and magnetic properties.

10.
J Phys Condens Matter ; 36(36)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38830373

ABSTRACT

Electronic structures and quantum transport properties of the monolayer InSe nanoribbons are studied by adopting the tight-binding model in combination with the lattice Green function method. Besides the normal bulk and edge electronic states, a unique electronic state dubbed as edge-surface is found in the InSe nanoribbon with zigzag edge type. In contrast to the zigzag InSe nanoribbon, a singular electronic state termed as bulk-surface is observed along with the normal bulk and edge electronic states in the armchair InSe nanoribbons. Moreover, the band gap, the transversal electron probability distributions in the two sublayers, and the electronic state of the topmost valence subband can be manipulated by adding a perpendicular electric field to the InSe nanoribbon. Further study shows that the charge conductance of the two-terminal monolayer InSe nanoribbons can be switched on or off by varying the electric field strength. In addition, the transport of the bulk electronic state is delicate to even a weak disorder strength, however, that of the edge and edge-surface electronic states shows a strong robustness against to the disorders. These findings may be helpful to understand the electronic characteristics of the InSe nanostructures and broaden their potential applications in two-dimensional nanoelectronic devices as well.

11.
Materials (Basel) ; 17(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793247

ABSTRACT

Both microvoids and helium (He) impurities are widely present in tungsten (W) plasma-facing materials (PFMs), where the interaction between microvoids and He atoms has led to the intriguing development of microvoids. In this paper, we comprehensively investigated the interaction between He atoms and trivacancy (V3), a fundamental microvoid in W-PFMs, at the level of tight-binding theory. Our study showed that He atoms can catalyze the decomposition of the original V3 or facilitate its transformation into another V3 variant. We propose that a He atom near the V3 defect induces significant changes in the distribution of d-electron charges within the W atoms lining the inner wall of the V3 defect, making the W atom nearest to this He atom cationic and the other W atoms anionic. The attractive interaction between them promotes the decomposition and deformation of V3. As electronic excitation increases, the ionization of W atoms on the V3 wall gradually intensifies, thereby enhancing the cationic characteristics of the W atoms closest to the He atom. This process also prompts other W atoms to shift from anions to cations, leading to a transition in the electrostatic interactions between them from attraction to repulsion. This transformation, driven by electronic excitation, plays a significant inhibitory role in the decomposition and deformation of V3.

12.
Small ; 20(40): e2402050, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38801298

ABSTRACT

Electrocatalysis is a very attractive way to achieve a sustainable carbon cycle by converting CO2 into organic fuels and feedstocks. Therefore, it is crucial to design advanced electrocatalysts by understanding the reaction mechanism of electrochemical CO2 reduction reaction (eCO2RR) with multiple electron transfers. Among electrocatalysts, dual-atom catalysts (DACs) are promising candidates due to their distinct electronic structures and extremely high atomic utilization efficiency. Herein, the eCO2RR mechanism and the identification of intermediates using advanced characterization techniques, with a particular focus on regulating the critical intermediates are systematically summarized. Further, the insightful understanding of the functionality of DACs originates from the variable metrics of electronic structures including orbital structure, charge distribution, and electron spin state, which influences the active sites and critical intermediates in eCO2RR processes. Based on the intrinsic relationship between variable metrics and critical intermediates, the optimized strategies of DACs are summarized containing the participation of synergistic atoms, engineering of the atomic coordination environment, regulation of the diversity of central metal atoms, and modulation of metal-support interaction. Finally, the challenges and future opportunities of atomically dispersed catalysts for eCO2RR processes are discussed.

13.
J Mol Model ; 30(5): 119, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564023

ABSTRACT

CONTEXT: In this study, the electronic structure and diffusion barrier of Ca adsorbed MoTe2 system under different degrees of shear deformation were calculated based on the first-principles method. The results show that both the pure MoTe2 system and Ca-adsorbed MoTe2 system are affected by shear deformation. The pure MoTe2 undergoes a transition from direct to indirect band gap under shear deformation. The adsorption of Ca makes MoTe2 changes from semiconductor to quasi-metal. The results of the density of states show that Ca insertion makes the conduction band part of the adsorption system significantly enhanced. The diffusion barrier of Ca through MoTe2 indicates that the shear deformation promotes the diffusion of Ca on the surface of MoTe2. Shear deformation can effectively modulate the electronic properties of the MoTe2 system, which provides a theoretical basis for the application of MoTe2 materials in the field of ion batteries. METHODS: In this study, Materials Studio 8.0 software was used to construct the MoTe2 model and Ca adsorbed MoTe2 model, and the CASTEP module was used for first-principles calculation.

14.
ACS Appl Mater Interfaces ; 16(15): 19369-19378, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587821

ABSTRACT

Nanotubes have established a new paradigm in nanoscience because of their atomically thin geometries and intriguing properties. However, because of their typical metastability compared to their 2D and 3D counterparts, it is still fundamentally challenging to synthesize nanotubes with controlled size. New strategies have been suggested for synthesizing nanotubes with a controlled geometry. One of these is considering Janus 2D layers, which can self-roll to form a nanotube. Herein, we study 412 nanotubes (along the armchair and zigzag directions) based on 36 Janus IV-VI compounds using density functional theory (DFT) calculations. By investigating the energy-radius relationship using structural models and Bayesian predictions, the most stable nanotubes show negative strain energies and radii below 20 Å, where curvature effects can play a significant role. The band structures show that the selected nanotubes exhibit sizable band gaps and size-dependent electronic properties. More strikingly, the flexoelectricity along the in-plane directions and radial directions in these nanotubes is significantly larger than that in other nanotubes and their 2D counterparts. This work opens up an avenue of structure-property relationships of Janus IV-VI nanotubes and demonstrates giant flexoelectricity in these nanotubes for future electronic and energy applications.

15.
Chemphyschem ; 25(12): e202300605, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38517984

ABSTRACT

The extensive applications of MXenes, a novel type of layered materials known for their favorable characteristics, have sparked significant interest. This research focuses on investigating the influence of surface functionalization on the behavior of Mn2NTx (Tx=O2, F2) MXenes monolayers using the "Density functional theory (DFT) based full-potential linearized augmented-plane-wave (FP-LAPW)" method. We elucidate the differences in the physical properties of Mn2NTx through the influence of F and O surface functional groups. We found that O-termination results in half-metallic behavior, whereas the F-termination evolves metallic characteristics within these MXene systems. Similarly, surface termination has effectively influenced their optical absorption efficiency. For instance, Mn2NO2 and Mn2NF2 effectively absorb UV light ~50.15×104 cm-1 and 37.71×104 cm-1, respectively. Additionally, they demonstrated prominent refraction and reflection characteristics, which are comprehensively discussed in the present work. Our predictions offer valuable perspectives into the optical and electronic characteristics of Mn2NTx-based MXenes, presenting the promising potential for implementing them in diverse optoelectronic devices.

16.
Adv Sci (Weinh) ; 11(20): e2307995, 2024 May.
Article in English | MEDLINE | ID: mdl-38468444

ABSTRACT

Heterogeneous structures and doping strategies have been intensively used to manipulate the catalytic conversion of polysulfides to enhance reaction kinetics and suppress the shuttle effect in lithium-sulfur (Li-S) batteries. However, understanding how to select suitable strategies for engineering the electronic structure of polar catalysts is lacking. Here, a comparative investigation between heterogeneous structures and doping strategies is conducted to assess their impact on the modulation of the electronic structures and their effectiveness in catalyzing the conversion of polysulfides. These findings reveal that Co0.125Zn0.875Se, with metal-cation dopants, exhibits superior performance compared to CoSe2/ZnSe heterogeneous structures. The incorporation of low Co2+ dopants induces the subtle lattice strain in Co0.125Zn0.875Se, resulting in the increased exposure of active sites. As a result, Co0.125Zn0.875Se demonstrates enhanced electron accumulation on surface Se sites, improved charge carrier mobility, and optimized both p-band and d-band centers. The Li-S cells employing Co0.125Zn0.875Se catalyst demonstrate significantly improved capacity (1261.3 mAh g-1 at 0.5 C) and cycle stability (0.048% capacity delay rate within 1000 cycles at 2 C). This study provides valuable guidance for the modulation of the electronic structure of typical polar catalysts, serving as a design directive to tailor the catalytic activity of advanced Li-S catalysts.

17.
Angew Chem Int Ed Engl ; 63(22): e202403472, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38502777

ABSTRACT

Covalent organic frameworks (COFs) provide a molecular platform for designing a novel class of functional materials with well-defined structures. A crucial structural parameter is the linkage, which dictates how knot and linker units are connected to form two-dimensional polymers and layer frameworks, shaping ordered π-array and porous architectures. However, the roles of linkage in the development of ordered π electronic structures and functions remain fundamental yet unresolved issues. Here we report the designed synthesis of COFs featuring four representative linkages: hydrazone, imine, azine, and C=C bonds, to elucidate their impacts on the evolution of π electronic structures and functions. Our observations revealed that the hydrazone linkage provides a non-conjugated connection, while imine and azine allow partial π conjugation, and the C=C bond permits full π-conjugation. Importantly, the linkage profoundly influences the control of π electronic structures and functions, unraveling its pivotal role in determining key electronic properties such as band gap, frontier energy levels, light absorption, luminescence, carrier density and mobility, and magnetic permeability. These findings highlight the significance of linkage chemistry in COFs and offer a general and transformative guidance for designing framework materials to achieve electronic functions.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124146, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38503256

ABSTRACT

The photoelectron spectroscopies of RhOn- (n = 1-2) were obtained via using the photoelectron velocity-map imaging (PE-VMI) approach. The experimental values of the adiabatic detachment energy (ADE) and vertical detachment energy (VDE) for RhO- were reported to be 1.58 ± 0.02 eV. The experimental AED and VDE values of RhO2- were reported to be 2.70 ± 0.02 eV and 2.79 ± 0.02 eV, respectively. The vibrational frequencies of RhO- and RhO2- measured from photoelectron spectra (PES) were 817(76) cm-1 and 932(55) cm-1, respectively. Based on the density functional theory (DFT), the RhOn-1/0 (n = 1-4) clusters were investigated. The optimized configurations of corresponding ground states and low-lying clusters were discovered. Meanwhile, the simulated photoelectron spectroscopy (PES) of RhOn- (n = 1-4) and the theoretical ADE and VDE values of RhOn- (n = 1-4) clusters were unveiled to assist future experimental studies of Rhodium oxide clusters. Moreover, the associated molecular orbitals (MOs), natural population analysis (NPA) and bond order analysis have been utilized to investigate the chemical bonding in these groups.

19.
Proc Natl Acad Sci U S A ; 121(7): e2320030121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315861

ABSTRACT

Transition metals and related compounds are known to exhibit high catalytic activities in various electrochemical reactions thanks to their intriguing electronic structures. What is lesser known is their unique role in storing and transferring electrons in battery electrodes which undergo additional solid-state conversion reactions and exhibit substantially large extra capacities. Here, a full dynamic picture depicting the generation and evolution of electrochemical interfaces in the presence of metallic nanoparticles is revealed in a model CoCO3/Li battery via an in situ magnetometry technique. Beyond the conventional reduction to a Li2CO3/Co mixture under battery operation, further decomposition of Li2CO3 is realized by releasing interfacially stored electrons from its adjacent Co nanoparticles, whose subtle variation in the electronic structure during this charge transfer process has been monitored in real time. The findings in this work may not only inspire future development of advanced electrode materials for next-generation energy storage devices but also open up opportunities in achieving in situ monitoring of important electrocatalytic processes in many energy conversion and storage systems.

20.
Small ; 20(25): e2310611, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38212278

ABSTRACT

Rational tailoring of the electronic structure at the defined active center of reconstructed metal (oxy)hydroxides (MOOH) during oxygen evolution reaction (OER) remains a challenge. With the guidance of density functional theory (DFT), herein a dual-site regulatory strategy is reported to tailor the d-band center of the Co site in CoOOH via the controlled electronic transfer at the Ru─O─Co─O─Fe bonding structure. Through the bridged O2- site, electrons are vastly flowed from the t2g-orbital of the Ru site to the low-spin orbital of the Co site in the Ru-O-Co coordination and further transfer from the strong electron-electron repulsion of the Co site to the Fe site by the Co-O-Fe coordination, which balancing the electronic configuration of Co sites to weaken the over-strong adsorption energy barrier of OH* and O*, respectively. Benefiting from the highly active of the Co site, the constructed (Ru2Fe2Co6)OOH provide an extremely low overpotential of 248 mV and a Tafel slope of 32.5 mV dec-1 at 10 mA cm-2 accompanied by long durability in alkaline OER, far superior over the pristine and Co-O-Fe bridged CoOOH catalysts. This work provides guidance for the rational design and in-depth analysis of the optimized role of metal dual-sites.

SELECTION OF CITATIONS
SEARCH DETAIL