Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.037
Filter
1.
Vis Neurosci ; 41: E003, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291699

ABSTRACT

Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-Cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.


Subject(s)
Electroretinography , Mice, Knockout , Retina , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Synaptotagmins , Animals , Synaptotagmins/metabolism , Synaptotagmins/genetics , Retina/metabolism , Retina/physiology , Mice , Retinal Rod Photoreceptor Cells/physiology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/metabolism , Photic Stimulation , Mice, Inbred C57BL
2.
Doc Ophthalmol ; 149(2): 99-113, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39251480

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the age-dependency of amplitudes and implicit times in the electroretinograms (ERGs) of healthy individuals and provide clinicians and researchers with a reference for a variety of stimulus paradigms. DESIGN AND METHODS: Full-field electroretinography was conducted on 73 healthy participants aged 14-73 using an extended ISCEV standard protocol that included an additional 9 Hz flicker stimulus for assessing rod function and special paradigms for isolated On-Off and S-cone responses. Correlation coefficients and best-fit regression models for each parameter's age-dependency were calculated. RESULTS: Dark-adapted ERGs, in particular, displayed notable age-related alterations. The attenuation and delay of the b-wave with higher age were most significant in the dark-adapted, rod-driven 0.001 cd s/m2 flash ERG. The age-dependent reduction of the a-wave amplitude was strongest in the standard dark-adapted 3 cd s/m2 flash condition. Cone-driven, light-adapted responses to either flash or flicker stimuli displayed comparatively small alterations at higher age. S-cone function tended to diminish at an early age, but the effect was not significant in the whole population. CONCLUSION: The results suggest that rod and cone function decline at different rates with age, with rods being generally more affected by aging. Nonetheless, response amplitudes displayed a wide variability across the whole sample.


Subject(s)
Aging , Dark Adaptation , Electroretinography , Healthy Volunteers , Photic Stimulation , Retinal Cone Photoreceptor Cells , Humans , Electroretinography/methods , Adult , Male , Female , Adolescent , Young Adult , Middle Aged , Aged , Dark Adaptation/physiology , Aging/physiology , Retinal Cone Photoreceptor Cells/physiology , Reference Values , Retinal Rod Photoreceptor Cells/physiology
3.
J Clin Med ; 13(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39200733

ABSTRACT

Background/Objectives: Cone dystrophy with supernormal rod response (CDSRR) is a rare autosomal recessive retinal disorder characterized by a delayed and markedly decreased photoreceptor response. In this article, we aim to describe the clinical course and associated molecular findings in children with cone dystrophy with supernormal rod response associated with recessive mutations in the KCNV2 gene, which encodes a subunit (Kv8.2) of the voltage-gated potassium channel. Methods: The genetic testing of two patients included the next-generation sequencing of a retinal dystrophy panel and direct Sanger sequencing to confirm KCNV2 gene variants, in addition to an electroretinogram (ERG) and spectral domain optical coherence tomography (SD-OCT). Results: Cone dystrophy with supernormal rod response is associated with identified variants in the KCNV2 gene. The genetic analysis of the first case identified a compound heterozygous mutation in the KCNV2 gene, including a de novo nonsense duplication at cDNA position 1109, which led to the premature termination of the p.Lys371Ter codon in the second extracellular domain of the protein. Two patients showed changes in the full-field electroretinogram, especially in the first case, which demonstrated a close to supernormal total electroretinogram amplitude. This study increased the range of the KCNV2 mutation database, added an unreported de novo substitution pattern to KCNV2 gene variants, and linked it to the evaluated clinical studies. Conclusions: The initial clinical manifestations were varied, but both patients presented with hypermetropia and slight exotropia. The ERG findings are characteristic of KCNV2 mutations, and patients exhibited an increased b-wave latency in DA3.0 ERG (combined rod-cone response).

4.
Exp Eye Res ; 247: 110049, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151774

ABSTRACT

The retina has low dopamine levels early in diabetes. To determine how low dopamine levels affected dopamine signaling, the effects of dopamine receptor agonists and mRNA localization were measured after 6 weeks of diabetes. Whole retina ex vivo electroretinogram (ERG) recordings were used to analyze how dopamine type 1 receptor (D1R) and type 4 (D4R) agonists change the light-evoked retinal responses of non-diabetic and 6-week diabetic (STZ injected) mouse retinas. Fluorescence in situ hybridization was utilized to analyze D4R and D1R mRNA locations and expression levels. D4R activation reduced A- and B-wave ERG amplitudes and increased B-wave implicit time and rise-time in the non-diabetic group without a corresponding change in the diabetic group. D1R activation increased B-wave rise-time and oscillatory potential peak time in the non-diabetic group also with no change in the diabetic group. The lack of responsivity to D1R or D4R agonists shows an impairment of dopamine signaling in the diabetic retina. D4R mRNA was found primarily in the outer nuclear layer where photoreceptor cell bodies reside. D1R mRNA was found in the inner nuclear layer and ganglion cell layer that contain bipolar, amacrine, horizontal and ganglion cells. There was no change in D4R or D1R mRNA expression between the non-diabetic and diabetic retinas. This suggests that the significant dopamine signaling changes observed were not from lower receptor expression levels but could be due to changes in dopamine receptor activity or protein levels. These studies show that changes in retinal dopamine signaling could be an important mechanism of diabetic retinal dysfunction.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Dopamine Agonists , Receptors, Dopamine D1 , Receptors, Dopamine D4 , Retina , Animals , Male , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Dopamine/metabolism , Dopamine Agonists/pharmacology , Electroretinography , In Situ Hybridization, Fluorescence , Mice, Inbred C57BL , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/agonists , Receptors, Dopamine D4/metabolism , Receptors, Dopamine D4/genetics , Receptors, Dopamine D4/agonists , Retina/metabolism , Retina/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
5.
Doc Ophthalmol ; 149(2): 63-75, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39141279

ABSTRACT

PURPOSE: To present a series of patients with RPE65-related retinal dystrophy showing a partial rescue of the full-field electroretinogram (ERG) following gene replacement therapy with voretigene neparovec-rzyl (Luxturna®). METHODS: This retrospective chart review examined 17 patients treated with voretigene neparovec-rzyl (VN) at the Casey Eye Institute (2018-2022). The last pre-operative ERG and all available post-operative ERGs were analyzed to identify subjects with functional rescue. Measurements of amplitudes and implicit times were compared to data from age-matched controls and the attenuation relative to the lower limit of normal (LLN) was calculated. For comparison with other functional exams, the last pre-operative and all post-treatment best-corrected visual acuity (BCVA) data, visual field (VF) tests and full-field threshold stimulus tests (FST) were also described. RESULTS: Of patients who underwent ERGs, most had unrecordable ERGs that did not change after treatment. However, we identified three patients, treated bilaterally, who demonstrated partial rescue of the full-field ERG in both eyes which was sustained during the course of the study. CONCLUSIONS: This is the largest series of patients treated with VN showing a partial rescue of the ERG. This is also the first report of bilateral ERG rescue, as well as the first description of ERG recovery occurring in non-pediatric subjects. Full-field ERG could be used in combination with other psychophysical tests and imaging modalities to detect and deepen our understanding of the response to this gene therapy approach.


Subject(s)
Electroretinography , Genetic Therapy , Retinal Dystrophies , Visual Acuity , cis-trans-Isomerases , Humans , Retrospective Studies , cis-trans-Isomerases/genetics , Male , Female , Retinal Dystrophies/genetics , Retinal Dystrophies/physiopathology , Visual Acuity/physiology , Adult , Visual Fields/physiology , Adolescent , Young Adult , Retina/physiopathology , Child , Middle Aged , Genetic Vectors , Dependovirus/genetics
6.
Percept Mot Skills ; : 315125241272512, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108229

ABSTRACT

Bright light impacts the human circadian system such that exposure to bright light at night can suppress melatonin secretion, and exposure to bright light in the morning prevents light-induced melatonin suppression at night. The preventive effect of morning light may attenuate the prior history of light sensitivity of intrinsically photosensitive retinal ganglion cells (ipRGCs) that regulate the circadian system. In this study, we evaluated electroretinogram (ERG) responses to red and blue flickering lights following dim and bright daylight conditions. Eleven healthy females underwent ERG measurements during exposure to 33 Hz flickering red or blue light under dim and bright daytime conditions. We averaged ERG waves for 50 flickering light pulses of the trigger signal data. We obtained the amplitude of the signal-averaged ERG by calculating the difference between the waves' peaks and bottoms. Although there was no significant dim and bright light difference in the amplitude of ERG waves, the ERG amplitude to flickering blue light under the bright light condition was significantly lower than to flickering blue light under the dim light condition. In this study, blue light stimulated mainly ipRGCs and S-cones. Since S-cones may contribute minimally to the light-adapted 33 Hz flicker ERG results, our findings suggest that bright light during the daytime attenuates the sensitivity of human ipRGCs.

7.
Clin Ophthalmol ; 18: 2167-2174, 2024.
Article in English | MEDLINE | ID: mdl-39100695

ABSTRACT

Purpose: To determine the physiological status of the retina by electroretinography (ERG) using skin electrodes and the RETevalTM system in eyes that had undergone pars plana vitrectomy (PPV) with silicone oil (SO) tamponade. The vitrectomy was performed for a retinal detachment and proliferative diabetic retinopathy (PDR). Design: Retrospective case series. Methods: ERGs were recorded with the RETevalTM system (LKC Technologies Inc. Gaithersburg, MD; Welch Allyn, Inc. Skaneateles Falls, NY) from eight eyes with PDR before and after the SO removal. The amplitudes and implicit times of the a- and b-waves of the ERGs before the SO removal were compared to that after the SO removal. Results: ERGs were recordable in four eyes before and after the SO removal and the a- and b-amplitudes improved in three eyes and worsened in one eye after the SO removal. In the remaining four eyes, ERGs were non-recordable both before and after the SO removal. Conclusion: These results indicate that ERGs picked up by skin electrodes can be used to assess the physiology of the retina in eyes with a SO tamponade. The flat ERGs in the SO-filled eye indicated the presence of diffuse retinal damage which was confirmed by the flat ERGs after the SO removal.


There has been an increasing number of reports on evaluating the retinal function using electroretinography (ERG) with skin electrodes. The main advantage of this system is the ability to record ERGs with a skin electrode that does not touch the cornea and ocular surface. This reduces the risk of infection especially in the postoperative period and in clinical situations where infection is suspected. In addition, there have been only a few reports evaluating the function of the retina by ERG in SO-filled eyes. We recorded ERGs with the RETeval (LKC Technologies Inc. Gaithersburg, MD; Welch Allyn Inc. Skaneateles Falls, NY) device, a relatively new ERG recording system that uses skin electrodes and is less invasive. We recorded ERGs from eight SO-filled eyes with proliferative diabetic retinopathy (PDR). In 4 SO filled eyes, the amplitudes increased in three eyes after the SO removal. In the other four eyes, ERGs were non-recordable before and after the SO removal. These results suggest that the RETeval system that uses skin electrodes can be used to assess the retinal function in PDR eyes with a SO tamponade. We suggest that the absence of ERGs in the SO filled eyes was not due to the electrical non-conductive effects of SO but may indicate the presence of diffuse retinal damage which was confirmed after the SO removal.

8.
Am J Ophthalmol Case Rep ; 36: 102023, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39175931

ABSTRACT

Purpose: Unexplained vision loss after silicone oil removal is a well-documented but incompletely understood entity for which there is no effective treatment described in the existing literature. We present a case where intensive oral and periocular steroid treatment resulted in significant subjective and objective clinical improvement. Observations: After successful pars plana vitrectomy with silicone oil endotamponade to repair a macula sparing retinal detachment, the patient's best corrected visual acuity was 20/20 with silicone oil in the operative eye. However, seven weeks after uncomplicated combined silicone oil removal and cataract extraction with intraocular lens insertion, best corrected visual acuity was 20/250 with no new ophthalmic pathology to explain the vision loss. After a four week course of oral prednisone and three periocular triamcinolone injections over a period of nine weeks, visual acuity improved to 20/25 -2 in the operative eye. Serial multifocal electroretinography initially showed severely diminished amplitudes but improved markedly over the course of steroid treatment. Conclusions and Importance: Although no effective treatments are described in the existing literature, improvement in visual acuity, visual field, and electroretinogram in this case suggests that intensive steroid treatment (periocular and systemic) may be efficacious in treating unexplained vision loss after silicone oil removal.

9.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125629

ABSTRACT

Photoreceptor degeneration is a major cause of untreatable blindness worldwide and has recently been targeted by emerging technologies, including cell- and gene-based therapies. Cell types of neural lineage have shown promise for replacing either photoreceptors or retinal pigment epithelial cells following delivery to the subretinal space, while cells of bone marrow lineage have been tested for retinal trophic effects following delivery to the vitreous cavity. Here we explore an alternate approach in which cells from the immature neural retinal are delivered to the vitreous cavity with the goal of providing trophic support for degenerating photoreceptors. Rat and human retinal progenitor cells were transplanted to the vitreous of rats with a well-studied photoreceptor dystrophy, resulting in substantial anatomical preservation and functional rescue of vision. This work provides scientific proof-of-principle for a novel therapeutic approach to photoreceptor degeneration that is currently being evaluated in clinical trials.


Subject(s)
Retina , Retinal Degeneration , Stem Cell Transplantation , Animals , Rats , Retinal Degeneration/therapy , Retinal Degeneration/pathology , Stem Cell Transplantation/methods , Humans , Retina/pathology , Retina/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/transplantation , Disease Models, Animal
10.
Front Ophthalmol (Lausanne) ; 4: 1349234, 2024.
Article in English | MEDLINE | ID: mdl-38984112

ABSTRACT

Purpose: To determine the structure of the cone photoreceptor mosaic in the macula in eyes with retinitis pigmentosa related to Usher syndrome using adaptive optics fundus (AO) imaging and to correlate these findings with those of the standard clinical diagnostics. Methods: Ten patients with a genetically confirmed retinitis pigmentosa in Usher syndrome due to biallelic variants in MYO7A or USH2A were enrolled in the study. All patients underwent a complete ophthalmological examination including best corrected visual acuity (BCVA), spectral-domain optical coherence tomography (SD-OCT) with fundus autofluorescence photography (FAF), full-field (ffERG) and multifocal electroretinography (mfERG) and Adaptive Optics Flood Illuminated Ophthalmoscopy (AO, rtx1™, Imagine Eyes, Orsay, France). The cone density was assessed centrally and at each 0.5 degree horizontally and vertically from 1-4 degree of eccentricity. Results: In the AO images, photoreceptor cell death was visualized as a disruption of the cone mosaic and low cone density. In the early stage of the disease, cones were still visible in the fovea, whereas outside the fovea a loss of cones was recognizable by blurry, dark patches. The blurry patches corresponded to the parafoveal hypofluorescent ring in the FAF images and the beginning loss of the IS/OS line and external limiting membrane in the SD-OCT images. FfERGs were non-recordable in 7 patients and reduced in 3. The mfERG was reduced in all patients and correlated significantly (p <0.001) with the cone density. The kinetic visual field area, measured with III4e and I4e, did not correlate with the cone density. Conclusion: The structure of the photoreceptors in Usher syndrome patients were detectable by AO fundus imaging. The approach of using high-resolution technique to assess the photoreceptor structure complements the established clinical examinations and allows a more sensitive monitoring of early stages of retinitis pigmentosa in Usher syndrome.

11.
Insects ; 15(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39057265

ABSTRACT

In this study, the morphology and ultrastructure of the compound eye of Asi. xanthospilota were examined by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-computed tomography (µCT), and 3D reconstruction. Spectral sensitivity was investigated by electroretinogram (ERG) tests and phototropism experiments. The compound eye of Asi. xanthospilota is of the apposition type, consisting of 611.00 ± 17.53 ommatidia in males and 634.8 0 ± 24.73 ommatidia in females. Each ommatidium is composed of a subplano-convex cornea, an acone consisting of four cone cells, eight retinular cells along with the rhabdom, two primary pigment cells, and about 23 secondary pigment cells. The open type of rhabdom in Asi. xanthospilota consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells (R1~R6) and two distally attached rhabdomeric segments generated solely by R7, while R8 do not contribute to the rhabdom. The orientation of microvilli indicates that Asi. xanthospilota is unlikely to be a polarization-sensitive species. ERG testing showed that both males and females reacted to stimuli from red, yellow, green, blue, and ultraviolet light. Both males and females exhibited strong responses to blue and green light but weak responses to red light. The phototropism experiments showed that both males and females exhibited positive phototaxis to all five lights, with blue light significantly stronger than the others.

12.
J Clin Med ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38999396

ABSTRACT

This review covers the utility of electrophysiological studies relevant to inflammatory diseases of the retina in conditions such as acute posterior multifocal placoid pigment epitheliopathy, acute zonal occult outer retinopathy, Adamantiades-Behçet disease, autoimmune retinopathy and neuro-retinopathy, birdshot chorioretinopathy, multiple evanescent white dot syndrome, and Vogt-Koyanagi-Harada disease. Electrophysiological studies can help with the diagnosis, prognostication, evaluation of treatment effects, and follow-up for these conditions.

13.
Doc Ophthalmol ; 149(2): 133-138, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39078565

ABSTRACT

PURPOSE: Bardet-Biedl Syndrome (BBS) is an autosomal recessive disorder characterized by pleiotropism that affects multiple organ systems. The primary features of BBS include rod-cone dystrophy, renal anomalies, post axial polydactyly, and neurologic deficits. The clinical picture of BBS is extensively heterogenous, with inter and intra familial patients varying in levels of syndromic manifestations and severity of symptoms. METHODS: In this study we examined a monocular BBS patient who was compound heterozygous for mutations in the ARL6 (BBS3) gene. RESULTS: The patient reported visual complaints consistent with a clinical picture of cone or cone-rod dystrophy. Fundus imaging showed retinal mottling on color photos and a parafoveal hyperfluorescent ring on short wave autofluorescence (SW-AF). Full field electroretinogram (ffERG) revealed normal scotopic step tracings and diminished amplitudes in the photopic steps. CONCLUSION: This rod-sparing result was consistent with cone-dystrophy and is the first known case of a rod-sparing ffERG phenotype in a BBS patient with mutations in the ARL6 gene. This contributes to the existing phenotype and may potentially contribute to furthering our understanding of BBS pathophysiology.


Subject(s)
ADP-Ribosylation Factors , Bardet-Biedl Syndrome , Electroretinography , Mutation , Humans , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/physiopathology , ADP-Ribosylation Factors/genetics , Male , Female , Phenotype , Retinal Rod Photoreceptor Cells/physiology , DNA Mutational Analysis , Fluorescein Angiography , Visual Acuity/physiology
14.
J. optom. (Internet) ; 17(2): [100502], Abr-Jun, 2024. graf
Article in English | IBECS | ID: ibc-231625

ABSTRACT

Background: Silicone oil is used as endotamponade following vitreoretinal surgery to maintain the retina reattached when indicated. This study investigates the hypothesis that silicone oil causes insulation effects on the retina by affecting its response to light. Methods: Electrophysiological responses to a flash stimulus were recorded using full-field electroretinography (ERG) and visual evoked potentials (VEP). Recordings were performed in 9 patients who underwent surgery for retinal detachment, before (1–2 days) and after (2–3 weeks) silicone oil removal (SOR) in both the study and the control eye. Flash ERG and VEP recordings were performed according to the ISCEV standard protocol. Results: Statistically significant differences were found in the study eye in the amplitudes of the ERG responses and their corresponding ratios, i.e. the amplitude after SOR over the amplitude before SOR, in all conditions tested. No differences were observed in the control eye. The mean ratio of photopic ERG response was 3.4 ± 2.4 for the study and 1.0 ± 0.3 for the control eye (p<0.001). The mean ratio of ERG flicker response was 3.1 ± 2.4 and 1.0 ± 0.3, respectively (p = 0.003). Scotopic flash ERG ratio was 5.0 ± 4.4 for the study and 1.3 ± 0.6 for the control eye (p = 0.012). No differences were observed for the amplitude and latency of flash VEP response after SOR. Conclusions: Silicone oil causes a reduction in flash ERG responses; no effect was found on flash VEP responses. ERGs in eyes filled with silicone oil should not be considered representative of retinal functionality, in contrast to VEPs, which are not affected by silicone oil presence.(AU)


Subject(s)
Humans , Male , Female , Retinal Detachment/surgery , Silicone Oils/administration & dosage , Silicone Oils/adverse effects , Electroretinography , Vitreoretinal Surgery , Optometry , Vision, Ocular , Retina/surgery , Evoked Potentials, Visual
15.
Front Med (Lausanne) ; 11: 1347599, 2024.
Article in English | MEDLINE | ID: mdl-38938378

ABSTRACT

Purpose: Previous studies have reported Caspase-1 (Casp1) is upregulated in mouse models of Juvenile X-linked Retinoschisis (XLRS), however no functional role for Casp1 in disease progression has been identified. We performed electroretinogram (ERG) and standardized optical coherence tomography (OCT) in mice deficient in the Retinoschisin-1 (Rs1) and Casp1 and Caspase-11 (Casp11) genes (Rs1-KO;Casp1/11-/- ) to test the hypothesis that Casp1 may play a role in disease evolution and or severity of disease. Currently, no studies have ventured to investigate the longer-term effects of Casp1 on phenotypic severity and disease progression over time in XLRS, and specifically the effect on electroretinogram. Methods: Rs1-KO;Casp1/11-/- mice were generated by breeding Rs1-KO mice with Casp1/11-/- mice. OCT imaging was analyzed at 2-, 4-, and 15-16 months of age. Outer nuclear layer (ONL) thickness and adapted standardized cyst severity score were measured and averaged from 4 locations 500 µm from the optic nerve. Adapted standardized cyst severity score was 1: absent cysts, 2: <30 µm, 3: 30-49 µm, 4: 50-69 µm, 5: 70-99 µm, 6: >99 µm. Electroretinograms (ERG) were recorded in dark-adapted and light-adapted conditions at 2 and 4 months. Results obtained from Rs1-KO and Rs1-KO;Casp1/11-/- eyes were compared with age matched WT control eyes at 2 months. Results: Intraretinal schisis was not observed on OCT in WT eyes, while schisis was apparent in most Rs1-KO and Rs1-KO;Casp1/11-/- eyes at 2 and 4 months of age. There was no difference in the cyst severity score from 2 to 4 months of age, or ONL thickness from 2 to 16 months of age between Rs1-KO and Rs1-KO;Casp1/11-/- eyes. ERG amplitudes were similarly reduced in Rs1-KO and Rs1-KO;Casp1/11-/- compared to WT controls at 2 months of age, and there was no difference between Rs1-KO and Rs1-KO;Casp1/11-/- eyes at 2 or 4 months of age, suggesting no impact on the electrical function of photoreceptors over time in the absence of Casp1. Conclusion: Although Casp1 has been reported to be significantly upregulated in Rs1-KO mice, our preliminary data suggest that removing Casp1/11 does not modulate photoreceptor electrical function or alter the trajectory of the retinal architecture over time.

16.
Glia ; 72(9): 1555-1571, 2024 09.
Article in English | MEDLINE | ID: mdl-38829008

ABSTRACT

As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.


Subject(s)
Clemastine , Glaucoma , Mice, Inbred C57BL , Remyelination , Retina , Animals , Clemastine/pharmacology , Clemastine/therapeutic use , Glaucoma/pathology , Glaucoma/drug therapy , Retina/pathology , Retina/drug effects , Remyelination/drug effects , Remyelination/physiology , Mice , Optic Nerve/drug effects , Optic Nerve/pathology , Disease Models, Animal , Optic Nerve Diseases/drug therapy , Optic Nerve Diseases/pathology , Oligodendroglia/drug effects , Oligodendroglia/pathology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology
17.
Proc Biol Sci ; 291(2023): 20232708, 2024 May.
Article in English | MEDLINE | ID: mdl-38808443

ABSTRACT

The ambient daylight variation is coded by melanopsin photoreceptors and their luxotonic activity increases towards midday when colour temperatures are cooler, and irradiances are higher. Although melanopsin and cone photoresponses can be mediated via separate pathways, the connectivity of melanopsin cells across all levels of the retina enables them to modify cone signals. The downstream effects of melanopsin-cone interactions on human vision are however, incompletely understood. Here, we determined how the change in daytime melanopsin activation affects the human cone pathway signals in the visual cortex. A 5-primary silent-substitution method was developed to evaluate the dependence of cone-mediated signals on melanopsin activation by spectrally tuning the lights and stabilizing the rhodopsin activation under a constant cone photometric luminance. The retinal (white noise electroretinogram) and cortical responses (visual evoked potential) were simultaneously recorded with the photoreceptor-directed lights in 10 observers. By increasing the melanopsin activation, a reverse response pattern was observed with cone signals being supressed in the retina by 27% (p = 0.03) and subsequently amplified by 16% (p = 0.01) as they reach the cortex. We infer that melanopsin activity can amplify cone signals at sites distal to retinal bipolar cells to cause a decrease in the psychophysical Weber fraction for cone vision.


Subject(s)
Retinal Cone Photoreceptor Cells , Rod Opsins , Visual Cortex , Humans , Rod Opsins/metabolism , Retinal Cone Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/metabolism , Visual Cortex/physiology , Adult , Electroretinography , Evoked Potentials, Visual , Female , Male , Young Adult , Photic Stimulation
18.
Article in English | MEDLINE | ID: mdl-38805071

ABSTRACT

The electroretinogram (ERG), a non-invasive electrophysiological tool used in ophthalmology, is increasingly applied to investigate neural correlates of depression. The present study aimed to reconsider previous findings in major depressive disorder (MDD) reporting (1) a diminished contrast sensitivity and (2) a reduced patten ERG (PERG) amplitude ratio, and additionally, to assess (3) the photopic negative response (PhNR) from the flash ERG (fERG), with the RETeval® device, a more practical option for clinical routine use. We examined 30 patients with a MDD and 42 healthy controls (HC), assessing individual contrast sensitivity thresholds with an optotype-based contrast test. Moreover, we compared the PERG ratio, an established method for early glaucoma detection, between both groups. The handheld ERG device was used to measure amplitudes and peak times of the fERG components including a-wave, b-wave and PhNR in both MDD patients and HCs. MDD patients exhibited diminished contrast sensitivity together with a reduced PERG ratio, compared to HC. With the handheld ERG device, we found reduced a-wave amplitudes in MDD, whereas no significant differences were observed in the fERG b-wave or PhNR between patients and controls. The reduced contrast sensitivity and PERG ratio in MDD patients supports the hypothesis that depression is associated with altered visual processing. The findings underscore the PERG's potential as a possible objective marker for depression. The reduced a-wave amplitude recorded with the RETeval® system in MDD patients might open new avenues for using handheld ERG devices as simplified approaches for advancing depression research compared to the PERG.

19.
Gene ; 922: 148562, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38754567

ABSTRACT

BACKGROUND: Previously, we discovered a strain of Kunming mice, referred to as the KMush/ush strain, that exhibited notably abnormal electroretinogram (ERG) readings and elevated thresholds for auditory brainstem responses (ABRs), which resembled the characteristics of Usher Syndrome (USH). We successfully identified the pathogenic genes, Pde6b and Adgrv1, after KMush/ush crossbred with CBA/CaJ mice, referred to as CBA-1ush/ush, CBA-2ush/ush or CBA-2ush/ush. In this investigation, we crossbred KMush/ush and CBA/J mice to establish novel recombinant inbred lines and analysed their phenotypic and genotypic characteristics. METHODS: ERG readings, ABR testing, fundus morphology, histological examination of the retina and inner ear, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, DNA sequence analysis and behavioural experiments were performed to assess the phenotypes and genotypes of the progeny lines. RESULTS: No obvious waveforms in the ERG were detected in F1 hybrid mice while normal ABR results were recorded. The F2 hybrids, which were called J1ush/ush or J2ush/ush, exhibited segregated hearing-loss phenotypes. J1ush/ush mice had a retinitis pigmentosa (RP) phenotype with elevated ABR thresholds, whereas J2ush/ush mice exhibited only the RP phenotype. Interestingly, J1ush/ush mice showed significantly higher ABR thresholds than wild-type mice at 28 days post born (P28), and RT-qPCR and DNA-sequencing analysis showed that Adgrv1 gene expression was significantly altered in J1ush/ush mice, but histological analysis showed no significant structural changes in the organ of Corti or spiral ganglia. Further elevation of ABR-related hearing thresholds by P56 manifested only as a reduced density of spiral ganglion cells, which differed significantly from the previous pattern of cochlear alterations in CBA-2ush/ush mice. CONCLUSIONS: We successfully introduced the hearing-loss phenotype of inbred mice with USH into CBA/J mice, which provides a good animal model for future studies on the important physiological roles of the Adgrv1 gene in inner-ear structure and for therapeutic studies targeting Adgrv1-mutated USH.


Subject(s)
Disease Models, Animal , Electroretinography , Evoked Potentials, Auditory, Brain Stem , Mice, Inbred CBA , Usher Syndromes , Animals , Usher Syndromes/genetics , Usher Syndromes/pathology , Mice , Male , Female , Phenotype , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Retina/pathology , Retina/metabolism , Crosses, Genetic
20.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38752980

ABSTRACT

The effects of hypoxia on brain function remain largely unknown. This study aimed to clarify this issue by visual-stimulated functional magnetic resonance imaging design. Twenty-three college students with a 30-d high-altitude exposure were tested before, 1 week and 3 months after returning to sea level. Brain functional magnetic resonance imaging and retinal electroretinogram were acquired. One week after returning to sea level, decreased blood oxygenation level dependent in the right lingual gyrus accompanied with increased blood oxygenation level dependent in the frontal cortex and insular cortex, and decreased amplitude of electroretinogram a-wave in right eye; moreover, the bilateral lingual gyri showed increased functional connectivity within the dorsal visual stream pathway, and the blood oxygenation level dependent signals in the right lingual gyrus showed positive correlation with right retinal electroretinogram a-wave. Three months after returning to sea level, the blood oxygenation level dependent signals recovered to normal level, while intensively increased blood oxygenation level dependent signals in a broad of brain regions and decreased retinal electroretinogram were also existed. In conclusion, hypoxic exposure has long-term effects on visual cortex, and the impaired retinal electroretinogram may contribute to it. The increased functional connectivity of dorsal stream may compensate for the decreased function of retinal photoreceptor cells to maintain normal visual function.


Subject(s)
Electroretinography , Magnetic Resonance Imaging , Neuronal Plasticity , Visual Pathways , Humans , Male , Young Adult , Female , Neuronal Plasticity/physiology , Visual Pathways/physiology , Visual Pathways/diagnostic imaging , Hypoxia/physiopathology , Adult , Oxygen/blood , Visual Cortex/diagnostic imaging , Visual Cortex/physiology , Brain/physiology , Brain/diagnostic imaging , Photic Stimulation/methods , Retina/physiology , Retina/diagnostic imaging , Brain Mapping/methods
SELECTION OF CITATIONS
SEARCH DETAIL