Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.235
Filter
1.
Oncol Lett ; 28(3): 443, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39091581

ABSTRACT

Glycolytic enzyme enolase 2 (ENO2) is dysregulated in various cancer types. Nevertheless, the role and underlying mechanism of ENO2 in clear cell renal cell carcinoma (ccRCC) remain unclear. Therefore, the current study investigated the effect and mechanism of ENO2 in ccRCC. ENO2 expression in a ccRCC cell line was assessed using reverse transcription-quantitative PCR and western blotting. Analysis of glycolysis was performed by estimating the extracellular acidification rate, lactic acid concentration, glucose uptake and the expression of glucose transporter 1, pyruvate kinase muscle isozyme M2 and hexokinase 2. Moreover, ferroptosis was assessed by detecting the level of total iron, lipid peroxide, reactive oxygen species and the expression of ferroptosis-related protein. In addition, mitochondrial function was assessed using JC-1 staining and detection kits. The results indicated that ENO2 is expressed at high levels in ccRCC cell lines, and interference with ENO2 expression inhibits glycolysis, promotes ferroptosis and affects mitochondrial function in ccRCC cells. Further investigation demonstrated that interference with ENO2 expression affected ferroptosis levels in ccRCC cells by inhibiting the glycolysis process. Mechanistically, the present results indicated that ENO2 may affect ferroptosis, glycolysis and mitochondrial functions by regulating Hippo-yes-associated protein 1 (YAP1) signaling in ccRCC cells. In conclusion, the present study showed that ENO2 affects ferroptosis, glycolysis and mitochondrial functions in ccRCC cells by regulating Hippo-YAP1 signaling, hence demonstrating its potential as a therapeutic target in ccRCC.

2.
Front Neurol ; 15: 1408111, 2024.
Article in English | MEDLINE | ID: mdl-39091979

ABSTRACT

Introduction: Ischemic stroke is a significant global health concern, with reperfusion therapies playing a vital role in patient management. Neuron-specific enolase (NSE) has been suggested as a potential biomarker for assessing stroke severity and prognosis, however, the role of NSE in predicting long-term outcomes in patients undergoing reperfusion therapies is still scarce. Aim: To investigate the association between serum NSE levels at admission and 48 h after reperfusion therapies, and functional outcomes at 90 days in ischemic stroke patients. Methods: This study conducted a prospective cross-sectional analysis on consecutive acute ischemic stroke patients undergoing intravenous fibrinolysis and/or endovascular thrombectomy. Functional outcomes were assessed using the modified Rankin Scale (mRS) at 90 days post-stroke and two groups were defined according to having unfavorable (mRS3-6) or favorable (mRS0-2) outcome. Demographic, clinical, radiological, and laboratory data were collected, including NSE levels at admission and 48 h. Spearman's coefficient evaluated the correlation between analyzed variables. Logistic regression analysis was performed to verify which variables were independently associated with unfavorable outcome. Two ROC curves determined the cut-off points for NSE at admission and 48 h, being compared by Delong test. Results: Analysis of 79 patients undergoing reperfusion treatment following acute stroke revealed that patients with mRS 3-6 had higher NIHSS at admission (p < 0.0001), higher NIHSS at 24 h (p < 0.0001), and higher NSE levels at 48 h (p = 0.008) when compared to those with mRS 0-2. Optimal cut-off values for NSE0 (>14.2 ng/mL) and NSE48h (>26.3 ng/mL) were identified, showing associations with worse clinical outcomes. Adjusted analyses demonstrated that patients with NSE48h > 26.3 ng/mL had a 13.5 times higher risk of unfavorable outcome, while each unit increase in NIHSS24h score was associated with a 22% increase in unfavorable outcome. Receiver operating characteristic analysis indicated similar predictive abilities of NSE levels at admission and 48 h (p = 0.298). Additionally, a strong positive correlation was observed between NSE48h levels and mRS at 90 days (r = 0.400 and p < 0.0001), suggesting that higher NSE levels indicate worse neurological disability post-stroke. Conclusion: Serum NSE levels at 48 h post-reperfusion therapies are associated with functional outcomes in ischemic stroke patients, serving as potential tool for patient long-term prognosis.

3.
Article in English | MEDLINE | ID: mdl-39105798

ABSTRACT

Melatonin is a powerful endogenous antioxidant hormone. Its healing effects on energy balance and neuronal damage associated with oxidative metabolism disorders have been reported in pathologic conditions. We aimed to determinate the utility of melatonin on neuronal damage, synaptic transmission, and energy balance in the brain tissue of rats with sepsis induced with LPS. Rats was divided into four groups such as control, LPS (20 mg/kg i.p.), melatonin (10 mg/kg i.p. × 3), and LPS + Melatonin (LPS + Mel). After 6 h from the first injection, rats were decapitated, and also tissue and serum samples were taken. Lipid peroxidation and neuron-specific enolase (NSE) levels were determined from the serum in all group. High energy compounds, creatine, and creatine phosphate are measured by HPLC methods from the homogenized tissue. Counts of living neurons are marked with NeuN (neuronal nuclei), degenerated neurons are marked with S100-ß and synaptic vesicles transmission is analyzed with synaptophysin antibodies immunoreactivities. One-way ANOVA and post hoc Tukey tests were used to statistical analysis. In LPS group, AMP, ATP, creatine, and creatine phosphate levels were significantly decreased (p < 0.05), and also ADP levels were significantly increased compared with the other groups (p < 0.01). Living neurons counts were significantly decreased in LPS (p < 0.01), melatonin, and LPS + Melatonin (p < 0.05) groups compared with control. Degenerated neurons counts were increased in LPS group compared with control (p < 0.01) and also decreased in both of melatonin and LPS + Melatonin groups (p < 0.01). Synaptophysin immunoreactivity was decreased in LPS group compared with the other groups (p < 0.05). We observed that melatonin administration prevents neuronal damage, regulates energy metabolism, and protects synaptic vesicle proteins from sepsis-induced reduction.

4.
J Clin Med ; 13(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064175

ABSTRACT

Background: Neuron-specific enolase (NSE) has traditionally been used as a biomarker to predict neurologic outcomes after cardiac arrest. This study aimed to evaluate the utility of NSE in predicting neurologic outcomes in patients undergoing extracorporeal cardiopulmonary resuscitation (ECPR). Methods: This observational cohort study included 47 consecutive adult ECPR patients (median age, 59.0 years; 74.5% males) treated between January 2018 and December 2021 at a tertiary extracorporeal life support center. The primary outcome was a poor neurologic outcome, defined as a Cerebral Performance Category score of 3-5 at hospital discharge. Results: Twelve (25.5%) patients had abnormal findings on computed tomography of the brain. A poor neurologic outcome was demonstrated in 22 (46.8%) patients. The NSE level at 72 h after ECPR showed the best prediction power for a poor neurologic outcome compared with NSE at 24 and 48 h. A cutoff value exceeding 61.9 µg/L for NSE at 72 h yielded an area under the curve (AUC) of 0.791 for predicting poor neurologic outcomes and exceeding 62.1 µg/L with an AUC of 0.838 for 30-day mortality. Conclusions: NSE levels at 72 h after ECPR appear to be a reliable biomarker for predicting poor neurologic outcomes and 30-day mortality in ECPR patients.

5.
ACS Infect Dis ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995732

ABSTRACT

Invasive fungal diseases (IFDs) are becoming increasingly acknowledged as a significant concern linked to heightened rates of morbidity and mortality. Regrettably, the available antifungal therapies for managing IFDs are constrained. Emerging evidence indicates that enolase holds promise as a potential target protein for combating IFDs; however, there is currently a deficiency in antifungal medications specifically targeting enolase. This study establishes that isobavachalcone (IBC) exhibits noteworthy antifungal efficacy both in vitro and in vivo. Moreover, our study has demonstrated that IBC effectively targets Eno1 in Candida albicans (CaEno1), resulting in the suppression of the glycolytic pathway. Additionally, our research has indicated that IBC exhibits a higher affinity for CaEno1 compared to human Eno1 (hEno1), with the presence of isoprenoid in the side chain of IBC playing a crucial role in its ability to inhibit enolase activity. These findings contribute to the comprehension of antifungal approaches that target Eno1, identifying IBC as a potential inhibitor of Eno1 in human pathogenic fungi.

6.
Syst Rev ; 13(1): 191, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039544

ABSTRACT

OBJECTIVE: This study aimed to investigate the serum levels of neuron-specific enolase (NSE) in sepsis-associated encephalopathy (SAE) and perform a meta-analysis to assess the diagnostic and prognostic potential of serum NSE in SAE patients. METHODS: We searched English and Chinese databases for studies related to SAE that reported serum NSE levels until November 2023. We extracted information from these studies including the first author and year of publication, the number of samples, the gender and age of patients, the collection time of blood samples in patients, the assay method of serum NSE, the study methods, and the levels of serum NSE with units of ng/mL. The quality assessment of diagnostic accuracy studies 2 (QUADAS-2) tool was used to evaluate the study quality. A meta-analysis was performed using Review Manager version 5.3, employing either a random effects model or a fixed effects model. RESULTS: A total of 17 studies were included in the final meta-analysis, including 682 SAE patients and 946 NE patients. The meta-analysis demonstrated significantly higher serum NSE levels in SAE patients compared to NE patients (Z = 5.97, P < 0.001, MD = 7.79, 95%CI 5.23-10.34), irrespective of the method used for serum NSE detection (Z = 6.15, P < 0.001, mean difference [MD] = 7.75, 95%CI 5.28-10.22) and the study methods (Z = 5.97, P < 0.001, MD = 7.79, 95%CI 5.23-10.34). Furthermore, sepsis patients with a favorable outcome showed significantly lower levels of serum NSE compared to those with an unfavorable outcome (death or adverse neurological outcomes) (Z = 5.44, P < 0.001, MD = - 5.34, 95%CI - 7.26-3.42). CONCLUSION: The Serum level of NSE in SAE patients was significantly higher than that in septic patients without encephalopathy. The higher the serum NSE level in SAE patients, the higher their mortality rate and incidence of adverse neurological outcomes.


Subject(s)
Biomarkers , Phosphopyruvate Hydratase , Sepsis-Associated Encephalopathy , Humans , Phosphopyruvate Hydratase/blood , Sepsis-Associated Encephalopathy/blood , Biomarkers/blood , Prognosis , Sepsis/blood
7.
Clin Neurol Neurosurg ; 244: 108406, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38968812

ABSTRACT

OBJECTIVE: To explore the prognostic value of interleukin-6 (IL-6) combined with serum neuron specific enolase (NSE) in arterial atherosclerotic ischemic stroke. METHODS: 116 patients with arterial atherosclerotic ischemic stroke admitted to the emergency ward of our Hospital were retrospectively analyzed. According to the score of modified Rankin scale (mRS) at 90 days after discharge, the patients were divided into the poor prognosis group (mRS > 2, n = 32) and the good prognosis group (mRS ≤ 2, n = 84). Activities of Daily Living (ADL) was used to evaluate the level of independence in activities of daily living after treatment. RESULTS: The NIHSS score (14.91 ± 5.20 vs. 9.43 ± 4.30, P < 0.001), IL-6 (11.30 ± 3.11 vs. 6.75±1.28, P < 0.001) and NSE levels (12.47 ± 4.69 vs. 6.42 ± 1.32, P<0.001) in poor prognosis group were higher than those in the good prognosis group. At 90 days post-discharge, 100 % of the good prognosis group had ADL scores over 60, while in the poor prognosis group, 46.88 % scored 40-60, 40.63 % scored 20-40, 9.38 % scored under 20, and 3.13 % died. The AUC of NSE was 0.906 (95 % CI: 0.847-0.965, P < 0.001), the best cut-off value was 7.445 ng/mL, and the sensitivity and specificity were 75.0 % and 82.1 %, respectively. The AUC for IL-6 combined with NSE increased to 0.965 (95 %CI: 0.934-0.997, P < 0.001), and the sensitivity and specificity increased to 80.2 % and 92.9 %, respectively. CONCLUSION: IL-6 ≥ 6.805 pg/mL and NSE ≥ 7.445 ng/mL were independently associated with poor prognosis in patients with AIS, and the combined testing of the two indicators had a higher predictive value. These results suggested that the combined assay of IL-6 and NSE could be a novel marker for predicting poor prognosis in AIS.

8.
Curr Res Microb Sci ; 7: 100246, 2024.
Article in English | MEDLINE | ID: mdl-39022313

ABSTRACT

Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.

9.
Article in English | MEDLINE | ID: mdl-39012550

ABSTRACT

PURPOSE: This study aimed to develop a double antigen sandwich ELISA (DAgS-ELISA) method for more efficient, accurate, and quantitative detection of total antibodies against Candida albicans enolase1 (CaEno1) for diagnosing invasive candidiasis (IC). METHODS: DAgS-ELISA was developed using recombinant CaEno1 and a monoclonal antibody as the standard. Performance evaluation included limit of detection, accuracy, and repeatability. Dynamic changes in antibody levels against CaEno1 in serum from systemic candidiasis mice were analyzed using DAgS-ELISA. Patient serum samples from IC, Candida colonization, bacterial infections, and healthy controls were analyzed with DAgS-ELISA and indirect ELISA. RESULTS: DAgS-ELISA outperformed indirect ELISA in terms of linear range and test background. In systemic candidiasis mice, a distinctive 'double-peak' pattern in dynamic antibody levels was observed. Additionally, there was a high level of consistency in the positive rates of CaEno1 antibodies detected by both DAgS-ELISA and indirect ELISA. While the positivity rates differed among patient groups, no significant variations in antibody levels were detected among the various positive patient groups. CONCLUSIONS: DAgS-ELISA offers a reliable novel approach for IC diagnosis, enabling rapid, accurate, and quantitative detection of CaEno1 antibodies. Further validation and optimization are needed for its clinical application and effectiveness.

10.
J Atheroscler Thromb ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048358

ABSTRACT

AIMS: Previous evidence suggests that serum lung cancer biomarkers are associated with inflammatory conditions; however, their relationship with peripheral arterial stiffness remains unclear. Therefore, the present study investigated the relationship between serum lung cancer biomarkers and peripheral arterial stiffness in middle-aged Chinese adults. METHODS: In total, 3878 middle-aged Chinese adults were enrolled in this study. Increased peripheral arterial stiffness was assessed using the brachial-ankle pulse wave velocity and ankle-brachial index. Univariate and multivariate logistic regression analyses were used to determine the independent effects of serum lung cancer biomarkers on the risk of increased peripheral arterial stiffness. A receiver operating characteristic curve analysis was used to assess the diagnostic ability of serum lung cancer biomarkers in distinguishing increased peripheral arterial stiffness. RESULTS: Serum levels of carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), cytokeratin-19 fragment 21-1, and pro-gastrin-releasing peptide were higher in subjects with increased peripheral arterial stiffness than in those without (P<0.05). After adjusting for other risk factors, serum CEA and NSE levels were found to be independently associated with increased peripheral arterial stiffness. The corresponding adjusted odds ratios (ORs) for increased peripheral arterial stiffness in CEA level quartiles were 1.00, 1.57, 2.15, and 6.13. The ORs for increased peripheral arterial stiffness in the quartiles of NSE levels were 1.00, 4.92, 6.65, and 8.01. CONCLUSIONS: Increased serum CEA and NSE levels are closely linked to increased peripheral arterial stiffness, and high serum CEA and NSE levels are potential risk markers for peripheral arterial stiffness in middle-aged Chinese adults.

11.
Front Hum Neurosci ; 18: 1392519, 2024.
Article in English | MEDLINE | ID: mdl-39040086

ABSTRACT

Numerous studies have demonstrated that neuron-specific enolase (NSE) serves as a distinctive indicator of neuronal injury, with its concentration in blood reflecting the extent and magnitude of nervous system damage, and the expression of serum NSE is correlated with cognitive dysfunction. The assessment of NSE holds significant importance in diagnosing cognitive dysfunction, assessing disease severity, predicting prognosis, and guiding treatment. In this review, the research progress of NSE in cognitive dysfunction was reviewed, and the value of serum NSE level in predicting disease severity and prognosis of patients with cognitive dysfunction was discussed.

12.
J Artif Organs ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987390

ABSTRACT

Neuron-specific-enolase is used as a marker of neurological prognosis after cardiopulmonary resuscitation. It is also present in red blood cells and platelets. It is not known whether hemolysis increases the values of neuron-specific-enolase enough to clinically affect its interpretation in critically ill patients who are to be introduced to veno-arterial extracorporeal oxygenation. In this study, we examined the relationships among neuron-specific-enolase and hemolysis indicators such as free hemoglobin and lactate dehydrogenase after the introduction of veno-arterial extracorporeal oxygenation. Of the 91 patients who underwent veno-arterial extracorporeal membrane oxygenation in our hospital from January 1, 2018, to February 24, 2021, 68 patients survived for more than 24 h. Of these, 14 patients who were categorized into the better cerebral performance categories (1-3) and 19 patients who were categorized into the poor neurological prognosis category (4) were included. After the introduction of veno-arterial extracorporeal membrane oxygenation, neuron-specific-enolase was markedly higher in the poor neurological prognosis group than in the good neurological prognosis group (41.6 vs. 92.0, p = 0.04). A significant positive correlation was revealed between neuron-specific-enolase and free hemoglobin in the good neurological prognosis group (rs = 0.643, p = 0.0131). A similar relationship was observed for lactate dehydrogenase and neuron-specific-enolase in both the conscious (rs = 0.737, p = 0.00263) and non-conscious groups (rs = 0.544, p = 0.0176). When neuron-specific-enolase is used as a marker for neuroprognostic evaluation, an abnormally high value is likely to indicate the lack of consciousness, whereas a lower elevation should be interpreted with caution, taking into account the effects of hemolysis.

13.
Scand J Clin Lab Invest ; : 1-5, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853575

ABSTRACT

Neuron-specific enolase (NSE) derived from neurons and peripheral neuroendocrine cells is a biomarker for neuroendocrine tumors and for prognostication in comatose cardiac arrest survivors. However, as platelets and erythrocytes contain NSE, hemolysis causes falsely elevated NSE. We used native serum and hemolysate derived from the same patients to make serial dilutions, and subsequently measured NSE (mNSE) and hemolytic index (HI) in each dilution. An algorithm suitable for the laboratory information system was developed based on the mNSE, HI and the estimated gradient of hemolytic interference from 30 patients. We estimated the associated uncertainty of the corrected NSE (cNSE) results based on the observed range of the gradient and derived an equation for cNSE for samples with limited hemolysis (i.e. 5 < HI ≤ 30): cNSE = mNSE - HI × (0.34 ± 0.23) µg/L. By semi-quantitatively grading the contribution from limited hemolysis, a texted result noting the hemolysis-associated degree of uncertainty can accompany the cNSE result. The major challenge of hemolysis when using serum NSE as a biomarker can be managed using an automated algorithm for correction of NSE results based on degree of hemolysis. However, laboratorians and clinicians should be aware of the limitations associated with in vivo hemolysis.

14.
Front Fungal Biol ; 5: 1399546, 2024.
Article in English | MEDLINE | ID: mdl-38881582

ABSTRACT

Candida albicans is the predominant cause of systemic candidiasis, although other non albicans Candida species are progressively becoming more widespread nowadays. Candida auris has emerged as a deadly multidrug-resistant fungal pathogen, posing a significant threat to global public health. In the absence of effective antifungal therapies, the development of a vaccine against C. auris infections is imperative. Enolase, a key glycolytic enzyme, has emerged as a promising vaccine candidate due to its immunogenic properties and essential role in fungal virulence. Herein, full-length Enolase gene sequences from C. albicans and C. auris were cloned into suitable expression vector and transformed into Escherichia coli expression hosts. Recombinant Enolase proteins were successfully expressed and purified using affinity chromatography under native conditions, followed by SDS-PAGE characterization and Western blot analysis. CD spectroscopy verified the existence of expressed proteins in soluble native conformation. Preliminary in silico studies verified the immunogenicity of recombinant Enolase proteins isolated from both C. albicans and C. auris. Furthermore, bioinformatics analysis revealed conserved B-cell and T-cell epitopes across C. albicans and C. auris Enolase proteins, suggesting potential cross-reactivity and broad-spectrum vaccine efficacy. Our findings are anticipated to play a role in advancing therapeutic as well as diagnostic strategies against systemic candidiasis.

15.
Talanta ; 277: 126346, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38897010

ABSTRACT

A novel dual-mode biosensor was constructed for the ultrasensitive detection of neuron-specific enolase (NSE), utilizing Tb-Cu MOF@Au nanozyme as the signal label to effectively quench the photoelectrochemical (PEC) signals of Bi2O3/Bi2S3/AgBiS2 composites and initiate fluorescent (FL) signals. First, Bi2O3/Bi2S3/AgBiS2 heterojunction with excellent photoelectric activity was selected as the substrate material to provide a stable photocurrent. The well-matched energy levels significantly enhanced the separation and transfer of photogenerated carriers. Second, a strategy of consuming ascorbic acid (AA) by Tb-Cu MOF@Au nanozyme was introduced to improve the sensitivity of the PEC/FL biosensor. Tb-Cu MOF@Au not only could catalyze the oxidation of AA, but the steric effect further reduced the contact of AA with the substrate. More importantly, in the presence of H2O2, a significant fluorescence was produced from Tb3+ sensitized by the oxidation products of AA. Based on the above strategies, a highly stable and sensitive dual-mode biosensor was proposed for accurate NSE determination. Third, the developed dual-mode biosensor demonstrated excellent performance in detecting NSE. In this study, the PEC method demonstrated a wide detection range from 0.00005 to 200 ng/mL with a low detection limit of 20 fg/mL. The FL method exhibited a linear range from 0.001 to 200 ng/mL with a detection limit of 0.65 pg/mL. The designed biosensor showed potential practical implications in the accurate detection of disease markers.


Subject(s)
Biosensing Techniques , Bismuth , Copper , Gold , Phosphopyruvate Hydratase , Terbium , Biosensing Techniques/methods , Bismuth/chemistry , Gold/chemistry , Phosphopyruvate Hydratase/analysis , Phosphopyruvate Hydratase/chemistry , Phosphopyruvate Hydratase/metabolism , Copper/chemistry , Terbium/chemistry , Humans , Metal-Organic Frameworks/chemistry , Fluorescence , Limit of Detection , Sulfides/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Silver/chemistry
16.
Pain Ther ; 13(4): 883-907, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834881

ABSTRACT

INTRODUCTION: Postherpetic neuralgia (PHN), a complication of herpes zoster, significantly impacts the quality of life of affected patients. Research indicates that early intervention for pain can reduce the occurrence or severity of PHN. This study aims to develop a predictive model and scoring table to identify patients at risk of developing PHN following acute herpetic neuralgia, facilitating informed clinical decision-making. METHODS: We conducted a retrospective review of 524 hospitalized patients with herpes zoster at The First Affiliated Hospital of Zhejiang Chinese Medical University from December 2020 to December 2023 and classified them according to whether they had PHN, collecting a comprehensive set of 30 patient characteristics and disease-related indicators, 5 comorbidity indicators, 2 disease score values, and 10 serological indicators. Relevant features associated with PHN were identified using the least absolute shrinkage and selection operator (LASSO). Then, the patients were divided into a training set and a test set in a 4:1 ratio, with comparability tested using univariate analysis. Six models were established in the training set using machine learning methods: support vector machines, logistic regression, random forest, k-nearest neighbor, gradient boosting, and neural network. The performance of these models was evaluated in the test set, and a nomogram based on logistic regression was used to create a PHN prediction score table. RESULTS: Eight non-zero characteristic variables selected from the LASSO regression results were included in the model, including age [area under the curve (AUC) = 0.812, p < 0.001], Numerical Rating Scale (NRS) (AUC = 0.792, p < 0.001), receiving treatment time (AUC = 0.612, p < 0.001), rash recovery time (AUC = 0.680, p < 0.001), history of malignant tumor (AUC = 0.539, p < 0.001), history of diabetes (AUC = 0.638, p < 0.001), varicella-zoster virus immunoglobulin M (AUC = 0.620, p < 0.001), and serum nerve-specific enolase (AUC = 0.659, p < 0,001). The gradient boosting model outperformed other classifier models on the test set with an AUC of 0.931, 95% confidence interval (CI) (0.882-0.980), accuracy of 0.886 (95% CI 0.809-0.940). In the test set, our predictive scoring table achieved an AUC of 0.820 (95% CI 0.869-0.970) with accuracy of 0.790 (95% CI 0.700-0.864). CONCLUSION: This study presents a methodology for predicting the development of postherpetic neuralgia in shingles patients by analyzing historical case data, employing various machine learning techniques, and selecting the optimal model through comparative analysis. In addition, a logistic regression model has been used to create a scoring table for predicting the postherpetic neuralgia.

17.
Cell Biosci ; 14(1): 74, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849850

ABSTRACT

BACKGROUND: The glycolytic enzyme alpha-enolase is a known biomarker of many cancers and involved in tumorigenic functions unrelated to its key role in glycolysis. Here, we show that expression of alpha-enolase correlates with subcellular localisation and tumorigenic status in the MCF10 triple negative breast cancer isogenic tumour progression model, where non-tumour cells show diffuse nucleocytoplasmic localisation of alpha-enolase, whereas tumorigenic cells show a predominantly cytoplasmic localisation. Alpha-enolase nucleocytoplasmic localisation may be regulated by tumour cell-specific phosphorylation at S419, previously reported in pancreatic cancer. RESULTS: Here we show ENO1 phosphorylation can also be observed in triple negative breast cancer patient samples and MCF10 tumour progression cell models. Furthermore, prevention of alpha-enolase-S419 phosphorylation by point mutation or a casein kinase-1 specific inhibitor D4476, induced tumour-specific nuclear accumulation of alpha-enolase, implicating S419 phosphorylation and casein kinase-1 in regulating subcellular localisation in tumour cell-specific fashion. Strikingly, alpha-enolase nuclear accumulation was induced in tumour cells by treatment with the specific exportin-1-mediated nuclear export inhibitor Leptomycin B. This suggests that S419 phosphorylation in tumour cells regulates alpha-enolase subcellular localisation by inducing its exportin-1-mediated nuclear export. Finally, as a first step to analyse the functional consequences of increased cytoplasmic alpha-enolase in tumour cells, we determined the alpha-enolase interactome in the absence/presence of D4476 treatment, with results suggesting clear differences with respect to interaction with cytoskeleton regulating proteins. CONCLUSIONS: The results suggest for the first time that tumour-specific S419 phosphorylation may contribute integrally to alpha-enolase cytoplasmic localisation, to facilitate alpha-enolase's role in modulating cytoskeletal organisation in triple negative breast cancer. This new information may be used for development of triple negative breast cancer specific therapeutics that target alpha-enolase.

18.
Quant Imaging Med Surg ; 14(5): 3581-3592, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720848

ABSTRACT

Background: One in four individuals with Parkinson's disease (PD) experience cognitive impairment (CI). However, few practical models integrating clinical and neuroimaging biomarkers have been developed to address CI in PD. This study aimed to evaluate the correlation between circulating neuron-specific enolase (NSE) levels, substantia nigra hyperechogenicity (SNH), and cognitive function in PD and to develop a nomogram based on clinical and neuroimaging biomarkers for predicting CI in patients with PD. Methods: A total of 385 patients with PD who underwent transcranial sonography (TCS) from January 2021 to December 2022 at Beijing Tiantan Hospital, Capital Medical University, were recruited as the training cohort. For validation, 165 patients with PD treated from January 2023 to December 2023 were enrolled. Data for SNH, plasma NSE, and other clinical measures were collected, and cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Logistic regression analysis was employed to select potential risk factors and establish a nomogram. The receiver operating characteristic curve and calibration curve were generated to evaluate the performance of the nomogram. Results: Patients with PD exhibiting CI displayed advanced age, elevated Unified PD Rating Scale-III (UPDRS-III) score, an increased percentage of SNH, higher levels of plasma NSE and homocysteine (Hcy), a larger SNH area, and lower education levels compared to PD patients without CI. Gender [odds ratio (OR) =0.561, 95% confidence interval (CI): 0.330-0.954, P=0.03], age (OR =1.039; 95% CI: 1.011-1.066; P=0.005), education level (OR =0.892; 95% CI: 0.842-0.954; P<0.001), UPDRS-III scores (OR =1.026; 95% CI: 1.009-1.043; P=0.003), plasma NSE concentration (OR =1.562; 95% CI: 1.374-1.776; P<0.001), and SNH (OR =0.545; 95% CI: 0.330-0.902; P=0.02) were independent predictors of CI in patients with PD. A nomogram developed using these six factors yielded a moderate discrimination performance with an area under the curve (AUC) of 0.823 (95% CI 0.781-0.864; P<0.001). The calibration curve demonstrated acceptable agreement between predicted outcomes and actual values. Validation further confirmed the reliability of the nomogram, with an AUC of 0.864 (95% CI: 0.805-0.922; P<0.001). Conclusions: The level of NSE in plasma and the SNH assessed by TCS are associated with CI in patients with PD. The proposed nomogram has the potential to facilitate the detection of cognitive decline in individuals with PD.

19.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792080

ABSTRACT

Tumor cells in hypoxic conditions control cancer metabolism and angiogenesis by expressing HIF-1α. Tanshinone is a traditional Chinese medicine that has been shown to possess antitumor properties and exerts a therapeutic impact on angiogenesis. However, the precise molecular mechanism responsible for the antitumor activity of 3-Hydroxytanshinone (3-HT), a type of tanshinone, has not been fully understood. Therefore, our study aimed to investigate the mechanism by which 3-HT regulates the expression of HIF-1α. Our findings demonstrate that 3-HT inhibits HIF-1α activity and expression under hypoxic conditions. Additionally, 3-HT inhibits hypoxia-induced angiogenesis by suppressing the expression of VEGF. Moreover, 3-HT was found to directly bind to α-enolase, an enzyme associated with glycolysis, resulting in the suppression of its activity. This inhibition of α-enolase activity by 3-HT leads to the blockade of the glycolytic pathway and a decrease in glycolysis products, ultimately altering HIF1-α expression. Furthermore, 3-HT negatively regulates the expression of HIF-1α by altering the phosphorylation of AMP-activated protein kinase (AMPK). Our study's findings elucidate the mechanism by which 3-HT regulates HIF-1α through the inhibition of the glycolytic enzyme α-enolase and the phosphorylation of AMPK. These results suggest that 3-HT holds promise as a potential therapeutic agent for hypoxia-related angiogenesis and tumorigenesis.


Subject(s)
Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Phosphopyruvate Hydratase , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/genetics , Glycolysis/drug effects , Humans , Abietanes/pharmacology , Cell Hypoxia/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
20.
EJNMMI Rep ; 8(1): 4, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38748049

ABSTRACT

BACKGROUND: Research on the relationship between neuron-specific enolase (NSE) levels and normal organs, particularly the central nervous system, in small cell lung cancer is limited. Therefore, this study aimed to investigate the relationship between positron emission tomography-computed tomography (PET-CT) accumulation at hypothalamic/pituitary regions, tumor activity, and NSE level in limited-stage small cell lung cancer. We retrospectively analyzed patients who were diagnosed with limited-stage small cell lung cancer at Tokyo Medical University Hospital between July 1, 2019, and May 31, 2023, and were treated with chemoradiotherapy or radiotherapy. Leukocytes, erythrocytes, hemoglobin, platelets, total protein, albumin, NSE, and carcinoembryonic antigen were measured in blood samples obtained before treatment initiation. The maximum standardized uptake value (SUVmax), volume, and total lesion glycolysis (TLG) of each hypothalamic /pituitary region, primary tumor, and lymph node metastases were extracted from PET-CT images. The total tumor volume (primary tumor volume plus lymph node metastases volume) and total TLG (primary tumor TLG plus lymph node metastases TLG) were calculated. RESULTS: This study included 19 patients (mean age, 70.1 ± 8.8 years; 13 men and 6 women); the pathology in all patients was small cell lung cancer. Patients were classified into two groups according to the NSE reference value (16.3 ng/mL): six patients having NSE level below the reference value and 13 having NSE level above the reference value. The SUVmax in the hypothalamic/pituitary region was 2.95 in the NSE < 16.3 ng/mL group and 4.10 in the NSE > 16.3 ng/mL group, with a statistically significant difference (p = 0.03). The total tumor volume was 17.8 mL in the NSE < 16.3 ng/mL group and 98.9 mL in the NSE > 16.3 ng/mL group, with a statistically significant difference (p < 0.01). A correlation coefficient of r = 0.458 (p = 0.0486) was observed between SUVmax in the hypothalamus/pituitary and NSE level. A correlation coefficient of r = 0.647 (p < 0.01) was also observed between total tumor volume and NSE level. Finally, a correlation coefficient of r = 0.53 (p = 0.01) was observed between hypothalamic/pituitary TLG and primary tumor TLG. CONCLUSIONS: The findings demonstrated a correlation between hypothalamic/pituitary activity and tumor activity, suggesting the prognostic significance of NSE.

SELECTION OF CITATIONS
SEARCH DETAIL