Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.372
Filter
1.
J Mol Histol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105940

ABSTRACT

The molecular mechanism of sterility in cattleyak is still unresolved. The related factors of infertility in cattleyak were studied by tissue section, SERPINA5 gene cloning and bioinformatics technology. Tissue sections of the epididymis showed poorly structured and disorganized epithelial cells in the corpus of the epididymis compared to the caput of the epididymis, while in the cauda part of the epididymis, the extra basal smooth muscle was thinner, the surface of the epithelial lumen was discontinuous and the epithelium was markedly degenerated. The results of gene cloning showed that the coding sequence (CDS) region of the SERPINA5 gene in cattleyak was 1215 bp in length, encoding a total of 404 amino acids, of which the isoleucine content was the highest, accounting for a total of 49 amino acids (12.1%). The results of real-time fluorescence quantitative PCR (qPCR) showed that the expression of the SERPINA5 gene in the epididymis caput in cattleyak was significantly higher than that in the corpus and cauda (P < 0.05), but there were no significant differences between the corpus and cauda. In the current study, histological and bioinformatics analysis, physicochemical properties, and the expression analysis of the SERPINA5 gene in different regions of the epididymis in cattleyak were carried out to explore the biological complications of cattleyak infertility.

2.
Genomics ; 116(5): 110912, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117249

ABSTRACT

Sperm undergo a series of changes in the epididymis region before acquiring the ability to move and fertilize, and the identification of genes expressed in a region-specific manner in the epididymis provides a valuable insight into functional differences between regions. We collected epididymal tissue from three yaks and cultured epithelial cells from the caput, corpus and cauda regions of the yak epididymis using the tissue block method. RNA sequencing analysis (RNA-seq) technology was used to detect gene expression in yak epididymal caput, corpus and cauda epithelial cells. The results showed that the DEGs were highest in the caput vs. corpus comparison, and lowest in the corpus vs. cauda comparison. Six DEGs were verified by real-time fluorescence quantitative PCR (qRT-PCR), consistent with transcriptome sequencing results. The significantly enriched DNA replication pathway in the caput vs. corpus was coordinated with cell proliferation, while upregulated DEGs such as POLD1 and MCM4 were found in the DNA replication pathway. The AMPK signaling pathway was found significantly enriched in the caput vs cauda, suggesting its involvement in sperm maturation and capacitation. The TGF beta signaling pathway was screened in the corpus vs cauda and is crucial for mammalian reproductive regulation. Upregulated DEGs (TGFB3, INHBA, INHBB) are involved in the TGF beta signaling pathway. This study provides a reference for culturing yak epididymal epithelial cells in vitro, and elucidates the transcriptional profiles of epithelial cells in different segments of the epididymis, revealing the regulatory and functional differences between different segments, providing basic data for exploring the molecular mechanism of yak sperm maturation and improving the reproductive capacity of high-altitude mammals.

3.
Andrology ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087751

ABSTRACT

BACKGROUND: The endoplasmic reticulum (ER) is the central hub for protein quality control, where the protein disulfide isomerases (PDIs), encoded by at least 21 genes, play a pivotal role. These multifunctional proteins contribute to disulfide bond formation, proper folding, and protein modifications, and may act as hormone-binding proteins (e.g., steroids), influencing hormone biology. The interplay between ER proteostasis, PDIs, and epididymis-a crucial site for sperm maturation-remains largely understudied. OBJECTIVES: This study characterizes transcriptional signatures of Pdi genes in the epididymis. MATERIAL AND METHODS: Transcriptional profiles of selected Pdi genes were assessed in adult Wistar rat tissues, and epididymis under different experimental conditions (developmental stages, surgical castration, and efferent ductules ligation [EDL]). In silico bioinformatic analyses identified expression trends of this gene family in human epididymal segments. RESULTS: P4hb, Pdia3, Pdia5, Pdia6, Erp44, Erp29, and Casq1 transcripts were detected in both reproductive and non-reproductive tissues, while Casq2 exhibited higher abundance in vas deferens, prostate, and heart. Pdilt, highly expressed in testis, and Pdia2, highly expressed in heart, showed minimal mRNA levels in the epididymis. In the mesonephric duct, epididymal embryonic precursor, P4hb, Pdia3, Pdia5, Pdia6, and Erp29 mRNAs were found at gestational day (GD) 17.5. Except for Erp29, which remained stable, these Pdi transcript levels increased from GD17.5 to GD20.5, when epididymal morphogenesis occurs, and were maintained to varying degrees in the epididymis during postnatal development. Surgical castration downregulated P4hb, Pdia3, Pdia5, Pdia6, Pdilt and Erp29 transcripts, an effect reversed by testosterone replacement. Conversely, transcript levels remained unaffected by EDL, except P4hb, which was reduced in caput epididymis. All 21 PDI genes exhibited diverse transcriptional profiles across the human epididymis. DISCUSSION AND CONCLUSION: The findings lay the foundations to explore Pdi genes in epididymal biology. As a considerable proportion of male infertility cases are idiopathic, targeting hormonal regulation of protein quality control in epididymis represents a route to address male infertility and advance therapeutic interventions in this domain.

4.
Andrology ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092868

ABSTRACT

BACKGROUND: Sleep deprivation (SD) can cause damage to the male reproductive system. However, the duration required for such damage and the specific sequence and severity of damage to the testis and epididymis remain unclear. OBJECTIVE: To investigate the effects of different durations of SD on different parts of the testis and epididymis caput, corpus, and cauda. METHODS: Adult ICR mice were randomly assigned to five groups: the SD group (SD for 18 h/day for 1, 2, 3, or 4 weeks), the SD + Vit E group (supplemented with Vit E 50 mg/kg/d during 4 weeks of SD, the SD+NS group (saline supplementation during 4 weeks of SD), the SD + RS group (5 weeks of recovery sleep after 4 weeks of SD), and a normal sleep control (Ctrl) group. Following the interventions, sperm parameters, testicular and epididymal histopathology, inflammatory response, and oxidative stress markers were compared between the groups. RESULTS: Compared to the Ctrl group, the SD group showed a decrease in sperm motility and concentration from SD 2 W and SD 3 W, respectively. Decreases in sperm concentration and motility were more pronounced in the cauda compared to the caput and corpus. Pathological damage was less severe in the epididymis caput than in the corpus and cauda. After 4 weeks of SD, inflammation and oxidative stress increased in both testes and epididymis. Both sleep recovery and vitamin E supplementation showed significant improvements, though they did not fully reach the level of the Ctrl group. CONCLUSION: Chronic SD for more than 2 weeks causes varying degrees of damage to the testis, epididymis caput, corpus, and cauda in male mice. This damage is not fully reversible after 5 weeks of sleep recovery and antioxidant stress treatment. These findings help us to identify and prevent SD damage to the male reproduction at an early stage.

5.
Andrology ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988181

ABSTRACT

BACKGROUND: The epididymis is important for sperm maturation and without its proper development, male infertility will result. Biomechanical properties of tissues/organs play key roles during their morphogenesis, including the Wolffian duct. It is hypothesized that structural/bulk stiffness of the capsule and mesenchyme/extracellular matrix that surround the duct is a major biomechanical property that regulates Wolffian duct morphogenesis. These data will provide key information as to the mechanisms that regulate the development of this important organ. OBJECTIVES: To measure the structural/bulk stiffness in Pascals (force/area) of the capsule and the capsule and mesenchyme together that surrounds the Wolffian duct during the development. To examine the relative membrane tension of mesenchymal cells during the Wolffian duct development. Since Ptk7 was previously shown to regulate ECM integrity and Wolffian duct elongation and coiling, the hypothesis that Ptk7 regulates structural/bulk stiffness and mesenchymal cell membrane tension was tested. MATERIALS AND METHODS: Atomic force microscopy and a microsquisher compression apparatus were used to measure the structural stiffness. Biomechanical properties within the membranes of cells within the capsule and mesenchyme were examined using a membrane-tension fluorescent probe. RESULTS AND DISCUSSION: The structural stiffness (Pascals) of the capsule and underlying mesenchyme was relatively constant during development, with a significant increase in the capsule at the later stages. However, this increase may reflect the ECM and associated mesenchyme being close to the capsule because the coiling of the duct pushed or compressed them into that space. Keeping the capsule and mesenchyme/ECM at constant stiffness would ensure that the duct will continue to coil under similar biomechanical forces throughout the development. Cells within the capsule and mesenchyme at different Wolffian duct regions during the development had varying degrees of membrane lipid tension. It is hypothesized that the dynamic changes ensure the duct is kept at a constant stiffness regardless of any external forces. Loss of Ptk7 resulted in an increase in stiffness at E18.5, which was presumable due to the loss of integrity of the ECM within the mesenchyme. CONCLUSION: Biomechanical properties of the capsule and the mesenchyme/extracellular matrix that surround the Wolffian duct play an important role toward Wolffian duct morphogenesis, thereby allowing for the proper development of the epididymis and subsequent male fertility.

6.
Reprod Domest Anim ; 59(7): e14678, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031030

ABSTRACT

The scenario of the fertile spermatozoa with high fertilizing capability is basically dependent on gene expression-based epididymal function. The current investigation aimed to declare the varied expression of different candidate genes (PLA2G4D, LCN15, CLUAP1, SPP1, AQP12B, DEFB110 and ESR1) relevant to spermatozoa features between the different epididymal segments in the mature dromedary camels (n = 30). Scrotal contents were collected post-slaughtering, during the breeding season and the epididymis was separated from the testicles and divided into three segments (caput, corpus and cauda) based on its morphology and anatomical characteristics. Epididymal spermatozoa were harvested from each epididymal portion and evaluated for motility, count, viability and morphology. Samples were grouped depending on their epididymal sperm cells features into high-fertile (n = 15) and low-fertile (n = 15) groups. The gene expression of the candidate genes was defined in the isolated RNA from each epididymal portion tissue. The segmental sperm motion and count were significantly (p < .05 and p < .01) higher in the three epididymal parts of high-fertile camels than the lower ones. There were some candidate genes markedly up-regulated in its expression in epididymal head of high-fertile camels (PLA2G4D and LCN15) and low fertile (CLUAP1), while others in the body region of the high-fertile group (SPP1, AQP12B and DEFB110). Nevertheless, ER1 did not differ in the expression among the epididymal segments. In conclusion, the variant expression patterns of these epididymal genes in relation to the regional spermatozoa features might suggest important roles of these genes in sperm maturation process in the epididymis and focusing more interest on their potential utility as markers for male camel fertility prediction.


Subject(s)
Camelus , Epididymis , Fertility , Spermatozoa , Animals , Male , Epididymis/metabolism , Camelus/genetics , Spermatozoa/metabolism , Fertility/genetics , Sperm Motility , Transcriptome
7.
Exp Gerontol ; 195: 112528, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067197

ABSTRACT

With the increase of the aged population in modern society, research on aging and aging-related diseases has attracted increasing attention. Unlike women, men experience changes gradually in the reproductive system during aging. The epididymis is an important organ for sperm maturation and storage, but less study has been conducted to investigate cellular senescence in aging epididymis and the corresponding influences on sperm. This study aims to explore cellular and molecular mechanisms underlying aging changes in epididymal tissues. Cellular senescence in the epididymis of 18-month-old C57BL/6 J mice was evaluated with SA (senescence-associated)-ß-galactosidase staining and molecular markers such as P21 and Lamin B, compared to the 2-month-old young group. Western blot analysis and immunofluorescence staining were performed to examine the proteins expressions involved in AMPKα/SIRT1 pathway, autophagy/mitophagy, mitochondrial dynamics and lipolysis. The results showed that in old mice AMPKα/ SIRT1 pathway was downregulated with increased acetylation in the epididymal tissues. Reduced expressions of autophagy related genes and PINK1/PARK2 were detected as well as increased P62 protein level and decreased colocalization of LC3 and LAMP2, which indicated deficient autophagy and mitophagy occurred in aging epididymal tissues. Significant decreased expressions of MFN1, MFN2, p-DRP1(Ser637) and FIS1 showed an imbalance in mitochondrial dynamics in aging epididymal tissues. Additionally, intracellular lipid droplets accumulation occurred in epididymal epithelial cells in old mice, with reduced expressions of the lipolysis enzymes ATGL, HSL and Ascl4. Lipophagy impairment was further detected by minimal colocalization of lipid droplets with either LC3 or LAMP2 in the epididymal ductal epithelial cells of old mice. Our study provides new insights into the molecular mechanisms of impaired autophagy, imbalanced mitochondrial dynamics and disrupted lipolysis, which together contribute to senescent changes and may be detrimental to the epididymal function during aging.

8.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062896

ABSTRACT

Aquaporins (AQPs), also known as water channels, appear to be particularly promising in maintaining male reproductive potential. Therefore, this study aimed to determine the presence of classical AQPs in the bovine (Bos taurus) reproductive system and analyze changes in their expression with age using immunohistochemistry and Western blotting. Of the six classical AQPs, AQP0, AQP1, AQP4, AQP5 and AQP6 were detected, while AQP2 was absent. In the testis, AQP0 was visible in Leydig cells in selected animals, while AQP1 was found in myoid cells surrounding the seminiferous tubules of mature individuals. This characteristic expression patterns of AQP0, limited only to certain bulls, is difficult to explain unequivocally. It is possible that AQP0 expression in cattle is subject to individual variability or changes in response to specific physiological conditions. In the caput and corpus epididymis, AQP0 showed weak expression in epithelial cells of immature animals and stronger expression in basal and principal cells of reproductive bulls. In all animals, AQP1 was present on the apical surface of epithelial cells in the initial segment of the caput epididymis. AQP4, AQP5 and AQP6 were identified in principal and basal cells along the entire epididymis of reproductive bulls. The abundance of AQP4 and AQP6 increased from the caput to the cauda epididymis with the growth and development of the animals. In all males, AQP4, AQP5 and AQP6 were observed in epithelial cells of the vas deferens, and their expression in this section increased with age. In conclusion, the abundance and distribution of the classical AQPs in various cell types and parts of the male reproductive system indicate their crucial role in maintaining water homeostasis, which is essential for normal reproductive function in cattle.


Subject(s)
Aquaporins , Animals , Male , Cattle , Aquaporins/metabolism , Aquaporins/genetics , Epididymis/metabolism , Genitalia, Male/metabolism , Testis/metabolism , Immunohistochemistry
9.
Biosens Bioelectron ; 262: 116541, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38959719

ABSTRACT

Human epididymis protein 4 (HE4), a diagnostic biomarker of ovarian cancer, is crucial for monitoring the early stage of the disease. Hence, it is highly important to develop simple, inexpensive, and user-friendly biosensors for sensitive and quantitative HE4 assays. Herein, a new sandwich-type electrochemical immunosensor based on Prussian blue (PB) as a signal indicator and functionalized metal-organic framework nanocompositesas efficient signal amplifiers was fabricated for quantitative analysis of HE4. In principle, ketjen black (KB) and AuNPs modified on TiMOF (TiMOF-KB@AuNPs) could accelerate electron transfer on the electrode surface and act as a matrix for the immobilization of antibodies via cross-linking to improve the determination sensitivity. The PB that covalently binds to labeled antibodies endows the biosensors with intense electrochemical signals. Furthermore, the concentration of HE4 could be indirectly detected by monitoring the electroactivity of PB. Benefiting from the high signal amplification ability of the PB and MOF nanocomposites, this strategy displayed a wide linear range (0.1-80 ng mL-1) and a lower detection limit (0.02 ng mL-1). Hence, this study demonstrated great promise for application in clinical ovarian cancer diagnosis and treatment, and provided a new platform for detecting other cancer biomarkers.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Ferrocyanides , Gold , Limit of Detection , Metal-Organic Frameworks , Ovarian Neoplasms , WAP Four-Disulfide Core Domain Protein 2 , Biosensing Techniques/methods , Humans , Metal-Organic Frameworks/chemistry , WAP Four-Disulfide Core Domain Protein 2/analysis , Ferrocyanides/chemistry , Electrochemical Techniques/methods , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/blood , Female , Gold/chemistry , Metal Nanoparticles/chemistry , Biomarkers, Tumor/blood , Biomarkers, Tumor/analysis , Immunoassay/methods , Antibodies, Immobilized/chemistry , Nanocomposites/chemistry
10.
Eur Radiol ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083089

ABSTRACT

OBJECTIVES: The Scrotal and Penile Imaging Working Group (SPIWG) of the European Society of Urogenital Radiology (ESUR) aimed to produce recommendations on the role of the radiologist in the evaluation of male infertility focused on scrotal imaging. METHODS: The authors independently performed an extensive literature Medline search and a review of the clinical practice and consensus opinion of experts in the field. RESULTS: Scrotal ultrasound (US) is useful in investigating male infertility. US abnormalities related to abnormal sperm parameters (sperm concentration, total count, motility, and morphology) are low testicular volume (TV), testicular inhomogeneity (TI), cryptorchidism, testicular microlithiasis (TML), high-grade varicocele, bilateral absence of vas deferens, bilateral dilation and echotexture abnormalities of the epididymis. The proposed ESUR-SPIWG recommendations for imaging in the evaluation of male infertility are therefore: to measure TV; investigate TI; perform annual (US) follow-ups up to age 55 in men with a history of cryptorchidism/orchidopexy and/or in men with TML plus "additional risk factors" or with "starry sky" TML; perform scrotal/inguinal US in men with nonpalpable testis; perform scrotal US in men with abnormal sperm parameters to investigate lesions suggestive of tumors; evaluate varicocele in a standardized way; evaluate the presence or absence of vas deferens; investigate the epididymis to detect indirect signs suggesting obstruction and/or inflammation. CONCLUSIONS: The ESUR-SPIWG recommends investigating infertile men with scrotal US focusing on TV, inhomogeneity, localization, varicocele, vas deferens, and epididymal abnormalities. Cryptorchidism, TML, and lesions should be detected in relation to the risk of testicular tumors. CLINICAL RELEVANCE STATEMENT: The ESUR-SPIWG recommendations on scrotal imaging in the assessment of male infertility are useful to standardize the US examination, focus on US abnormalities most associated with abnormal semen parameters in an evidence-based manner, and provide a standardized report to patients. KEY POINTS: So far, ESUR-SPIWG recommendations on scrotal imaging in the assessment of male infertility were not available. The ESUR-SPIWG recommends investigating infertile men with scrotal US focusing on testicular volume, inhomogeneity, localization, varicocele, vas deferens and epididymal abnormalities, and assessing cryptorchidism, testicular microlithiasis and lesions in relation to the risk of testicular tumors. The ESUR-SPIWG recommendations on scrotal imaging in the assessment of male infertility are useful to standardize the US examination, focus on US abnormalities most associated with abnormal sperm parameters in an evidence-based manner, and provide a standardized report to patients.

11.
Mol Cell Proteomics ; 23(8): 100810, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977202

ABSTRACT

Transcriptionally and translationally silent sperm undergo functional maturation during epididymis traverse, which provides sperm ability to move and is crucial for successful fertilization. However, the molecular mechanisms governing sperm maturation remain poorly understood, especially at the protein post-translational modification level. In this study, we conducted a comprehensive quantitative phosphoproteomic analysis of mouse epididymal sperm from different regions (caput, corpus, and cauda) to unveil the dynamics of protein phosphorylation during sperm maturation. We identified 6447 phosphorylation sites in 1407 phosphoproteins, and 345 phosphoproteins were differentially phosphorylated between caput and cauda sperm. Gene ontology and KEGG pathway analyses showed enrichment of differentially phosphorylated proteins in energy metabolism, sperm motility, and fertilization. Kinase substrate network analysis followed by inhibition assay and quantitative phosphoproteomics analysis showed that TSSK2 kinase is important for sperm motility and progressive motility. This study systemically characterized the intricate phosphorylation regulation during sperm maturation in the mouse epididymis, which can be a basis to elucidate sperm motility acquisition, and to offer potential targets for male contraception and the treatment of male infertility.

12.
Chemosphere ; 363: 142852, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019188

ABSTRACT

Atrazine is currently one of the most commonly used agrochemicals in the United States and elsewhere. Here, we studied the immunoexpression of molecular markers of mammalian testicular functions: androgen receptor (AR), promyelocytic leukemia zinc finger (PLZF), GDNF family receptor alpha-1 (GFRA1), VASA/DDX4 (DEAD-Box Helicase 4) as well as the levels of intratesticular and intra-epididymal estradiol (E2) and dihydrotestosterone (DHT), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukins (IL-1ß and IL-6, IL-10) and testicular chemokines (CXCL-1, CCL-2 and CCL3) in BalB/c mice after a sub-acute gavage treatment with a gonado-toxin, atrazine (50 mg/kg body wt.) for three days. We found high numbers of AR immunopositive Sertoli cells and low numbers of GFRA1, PLZF and VASA/DDX4-positive germ cells in the seminiferous tubule regions of the testes. While TNF-α level in the testes fell and remained unchanged in the epididymides, IFN-γ levels in the testes remained constant but increased in the epididymides. E2 and DHT concentrations remained unaltered in the testes but were changed in the epididymides. There were no significant changes in the levels of interleukins in the testis and epididymis. Intratesticular chemokines were also not significantly altered, except for CCL-4, which was increased in the testis. Light microscopy of the epididymis showed detached epithelium and some detached cells in the lumen. It is concluded that atrazine changed the inflammatory status of the gonads and highlighted Sertoli and undifferentiated spermatogonia as important targets for atrazine's toxic effects in the testis of mice. Concerning the epididymis, atrazine altered the epididymal hormonal concentrations and promoted histopathological modifications in its parenchyma.

13.
Cell Biochem Funct ; 42(5): e4096, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39020527

ABSTRACT

The sperm-associated antigen 11a (Spag11a) gene is exclusively expressed in the caput epididymis. Our previous studies demonstrated that small interfering RNA (siRNA)-mediated ablation of this gene resulted in increased proliferation of epididymal epithelial cells. Further, active immunization-mediated ablation of SPAG11A protein increased the susceptibility of male reproductive tract tissues to diethylnitrosamine (DEN)-induced tumorigenesis. In this study, we report that the caput epididymis of Spag11a knockout mice displayed hyperplasia and inflammation, while the caput epididymis of wild-type mice exhibited normal anatomical structure. Global transcriptome analyses in the caput epididymis of knockout mice indicated differential expression of genes involved in a variety of cellular processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that the absence of Spag11a may activate microRNAs associated with cancer, chemical carcinogenesis-receptor activation, and chemical carcinogenesis-DNA adducts pathways; which may contribute to the promotion of tumorigenesis in the epididymis. The susceptibility of caput epididymis to chemically induced carcinogenesis in Spag11a knockout mice was analyzed. Histological analyses indicated that while the epididymis of wild-type mice did not show any signs of tumorigenesis, knockout mice displayed hyperplasia, anaplasia, dysplasia, neoplasia, and inflammation in the caput epididymis. Our results provide concrete evidence that deletion of Spag11a induces histopathological and molecular changes that contribute to tumorigenesis. It is possible that the expression of Spag11a gene could be one of the reasons for the rarity of epididymal cancers. The involvement of an epididymal gene in tumorigenesis is being demonstrated for the first time.


Subject(s)
Epididymis , Mice, Knockout , Animals , Male , Epididymis/pathology , Epididymis/metabolism , Mice , Mice, Inbred C57BL
14.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000129

ABSTRACT

Tubulin polymerization-promoting protein2 (TPPP2) is one of the three paralogs of mammalian TPPP proteins. Its possible role in spermatogenesis is described in this narrative review. TPPP2 is expressed specifically in the male reproductive system, mainly in testes and sperm, and also in the epididymis. In testes, TPPP2 is exclusively expressed in elongating spermatids; in the epididymis, it is located in the middle piece of the sperm tail. TPPP2 is involved in spermiogenesis, in steps which are determinative for the formation and morphology of spermatids. The inhibition of TPPP2 decreases sperm motility (the curvilinear velocity of sperms), probably due to influencing mitochondrial energy production since TPPP2 knockout mice possess an impaired mitochondrial structure. There are data on the role of TPPP2 in various mammalian species: human, mouse, swine, and various ruminants; there is a significant homology among TPPP2s from different species. Experiments with Tppp2-/--mice show that the absence of TPPP2 results in decreased sperm count and serious dysfunction of sperm, including decreased motility; however, the in vitro capacitation and acrosome reaction are not influenced. The symptoms show that Tppp2-/--mice may be considered as a model for oligoasthenozoospermia.


Subject(s)
Spermatogenesis , Animals , Humans , Male , Sperm Motility/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice, Knockout , Mice , Spermatozoa/metabolism
16.
Curr Issues Mol Biol ; 46(6): 5052-5065, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38920975

ABSTRACT

A low-calcium microenvironment is imperative for spermatozoa maturation within the epididymis. Our previous work has shown that γ-glutamyl carboxylase (GGCX), the carboxylation enzyme of the matrix Gla protein (MGP), plays an essential role in epididymal calcium homeostasis and sperm maturation in rats and that the GGCX SNP mutation rs699664 was associated with asthenozoospermia (AZS) in humans. Here, we investigated the expression patterns of GGCX and MGP in the mouse epididymis and generated GgcxK325Q knock-in (KI) mice. We also tested the effects of this mutation on epididymal calcium homeostasis, sperm function, and male fertility in GgcxK325Q-/- mice. The results showed that both GGCX and MGP were enriched in all regions of the mouse epididymis, especially in the initial segment of the epididymis. Double immunofluorescence staining revealed that GGCX colocalized with MGP in the epithelial cells of the initial segment and caput regions as well as in the lumen of the corpus and cauda regions of the mouse epididymis. However, the GgcxK325Q-/- mice were fertile with normal epididymal morphology, sperm functions, and epididymal calcium concentration. Overall, our findings revealed that the GgcxK325Q mutation does not exert any discernible effect on male fertility in mice.

17.
Oncol Res ; 32(6): 1119-1128, 2024.
Article in English | MEDLINE | ID: mdl-38827327

ABSTRACT

It has been shown that the high expression of human epididymis protein 4 (HE4) in most lung cancers is related to the poor prognosis of patients, but the mechanism of pathological transformation of HE4 in lung cancer is still unclear. The current study is expected to clarify the function and mechanism of HE4 in the occurrence and metastasis of lung adenocarcinoma (LUAD). Immunoblotting evaluated HE4 expression in lung cancer cell lines and biopsies, and through analysis of The Cancer Genome Atlas (TCGA) dataset. Frequent HE4 overexpression was demonstrated in LUAD, but not in lung squamous cell carcinoma (LUSC), indicating that HE4 can serve as a biomarker to distinguish between LUAD and LUSC. HE4 knockdown significantly inhibited cell growth, colony formation, wound healing, and invasion, and blocked the G1-phase of the cell cycle in LUAD cell lines through inactivation of the EGFR signaling downstream including PI3K/AKT/mTOR and RAF/MAPK pathways. The first-line EGFR inhibitor gefitinib and HE4 shRNA had no synergistic inhibitory effect on the growth of lung adenocarcinoma cells, while the third-line EGFR inhibitor osimertinib showed additive anti-proliferative effects. Moreover, we provided evidence that HE4 regulated EGFR expression by transcription regulation and protein interaction in LUAD. Our findings suggest that HE4 positively modulates the EGFR signaling pathway to promote growth and invasiveness in LUAD and highlight that targeting HE4 could be a novel strategy for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , ErbB Receptors , Lung Neoplasms , Neoplasm Invasiveness , Signal Transduction , WAP Four-Disulfide Core Domain Protein 2 , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , WAP Four-Disulfide Core Domain Protein 2/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Animals , Mice , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Proteins/metabolism , Proteins/genetics
18.
Vet Sci ; 11(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38922013

ABSTRACT

Platelet-derived growth factor B (PDGFB), as an important cellular growth factor, is widely involved in the regulation of cellular events such as cell growth, proliferation, and differentiation. Although important, the expression characteristics and biological functions in the mammalian reproductive system remain poorly understood. In this study, the PDGFB gene of Tibetan sheep was cloned by RT-PCR, and its molecular characteristics were analyzed. Subsequently, the expression of the PDGFB gene in the testes and epididymides (caput, corpus, and cauda) of Tibetan sheep at different developmental stages (3 months, 1 year, and 3 years) was examined by qRT-PCR and immunofluorescence staining. A bioinformatic analysis of the cloned sequences revealed that the CDS region of the Tibetan sheep PDGFB gene is 726 bp in length and encodes 241 amino acids with high homology to other mammals, particularly goats and antelopes. With the increase in age, PDGFB expression showed an overall trend of first decreasing and then increasing in the testis and epididymis tissues of Tibetan sheep, and the PDGFB mRNA expression at 3 months of age was extremely significantly higher than that at 1 and 3 years of age (p < 0.05). The PDGFB protein is mainly distributed in testicular red blood cells and Leydig cells in Tibetan sheep at all stages of development, as well as red blood cells in the blood vessel, principal cells, and the pseudostratified columnar ciliated epithelial cells of each epididymal duct epithelium. In addition, PDGFB protein expression was also detected in the spermatocytes of the 3-month-old group, spermatids of the 1-year-old group, spermatozoa and interstitial cells of the 3-year-old group, and loose connective tissue in the epididymal duct space in each developmental period. The above results suggest that the PDGFB gene, as an evolutionarily conserved gene, may play multiple roles in the development and functional maintenance of testicular cells (such as red blood cells, Leydig cells, and germ cells) and epididymal cells (such as red blood cells, principal cells, and ciliated epithelial cells) during testicular and epididymal development, which lays a foundation for the further exploration of the mechanisms by which the PDGFB gene influences spermatogenesis in Tibetan sheep.

19.
Animals (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38929397

ABSTRACT

Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a bromocriptine (BCR, a prolactin inhibitor, 0.06 mg/kg body weight (BW)) treatment group. The experiment was conducted from September to October 2020 in Qinhuangdao City, China, and lasted for 30 days. Blood was collected on the last day before the BCR treatment (day 0) and on the 15th and 30th days after the BCR treatment (days 15 and 30). On the 30th day, all bucks were transported to the local slaughterhouse, where epididymal samples were collected immediately after slaughter. The left epididymis was preserved in 4% paraformaldehyde for histological observation, and the right epididymis was immediately preserved in liquid nitrogen for RNA sequencing (RNA-seq). The results show that the PRL inhibitor reduced the serum PRL and estradiol (E2) concentrations (p < 0.05) and tended to decrease luteinizing hormone (LH) concentrations (p = 0.052) by the 30th day, but no differences (p > 0.05) occurred by either day 0 or 15. There were no differences (p > 0.05) observed in the follicle-stimulating hormone (FSH), testosterone (T), and dihydrotestosterone (DHT) concentrations between the two groups. The PRL receptor (PRLR) protein was mainly located in the cytoplasm and intercellular substance of the epididymal epithelial cells. The PRL inhibitor decreased (p < 0.05) the expression of the PRLR protein in the epididymis. In the BCR group, the height of the epididymal epithelium in the caput and cauda increased, as did the diameter of the epididymal duct in the caput (p < 0.05). However, the diameter of the cauda epididymal duct decreased (p < 0.05). Thereafter, a total of 358 differentially expressed genes (DEGs) were identified in the epididymal tissues, among which 191 were upregulated and 167 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that ESR2, MAPK10, JUN, ACTL7A, and CALML4 were mainly enriched in the estrogen signaling pathway, steroid binding, calcium ion binding, the GnRH signaling pathway, the cAMP signaling pathway, and the chemical carcinogenesis-reactive oxygen species pathway, which are related to epididymal function. In conclusion, the inhibition of PRL may affect the structure of the epididymis by reducing the expression of the PRLR protein and the secretion of E2. ESR2, MAPK10, JUN, ACTL7A, and CALML4 could be the key genes of PRL in its regulation of epididymal reproductive function.

20.
Reprod Biol ; 24(3): 100914, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38875746

ABSTRACT

DIS3L, a catalytic exoribonuclease associated with the cytoplasmic exosome complex, degrades cytoplasmic RNAs and is implicated in cancers and certain other diseases in humans. Epididymis plays a pivotal role in the transport, maturation, and storage of sperm required for male fertility. However, it remains unclear whether DIS3L-mediated cytoplasmic RNA degradation plays a role in epididymis biology and functioning. Herein, we fabricated a Dis3l conditional knockout (Dis3l cKO) mouse line in which DIS3L was ablated from the principal cells of the initial segment (IS). Morphological analyses showed that spermatogenesis and IS differentiation occurred normally in Dis3l cKO mice. Additionally, the absence of DIS3L had no dramatic influence on the transcriptome of IS. Moreover, the sperm count, morphology, motility, and acrosome reaction frequency in Dis3l cKO mice were comparable to that of the control, indicating that the Dis3l cKO males had normal fertility. Collectively, our genetic model demonstrates that DIS3L inactivation in the IS is nonessential for sperm maturation and male fertility.

SELECTION OF CITATIONS
SEARCH DETAIL