Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 362
Filter
1.
Aging Cell ; : e14288, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092674

ABSTRACT

Reactivation of retroelements in the human genome has been linked to aging. However, whether the epigenetic state of specific retroelements can predict chronological age remains unknown. We provide evidence that locus-specific retroelement DNA methylation can be used to create retroelement-based epigenetic clocks that accurately measure chronological age in the immune system, across human tissues, and pan-mammalian species. We also developed a highly accurate retroelement epigenetic clock compatible with EPICv.2.0 data that was constructed from CpGs that did not overlap with existing first- and second-generation epigenetic clocks, suggesting a unique signal for epigenetic clocks not previously captured. We found retroelement-based epigenetic clocks were reversed during transient epigenetic reprogramming, accelerated in people living with HIV-1, and responsive to antiretroviral therapy. Our findings highlight the utility of retroelement-based biomarkers of aging and support a renewed emphasis on the role of retroelements in geroscience.

2.
BMC Med ; 22(1): 289, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987783

ABSTRACT

BACKGROUND: Epigenetic clocks were known as promising biomarkers of aging, including original clocks trained by individual CpG sites and principal component (PC) clocks trained by PCs of CpG sites. The effects of genetic and environmental factors on epigenetic clocks are still unclear, especially for PC clocks. METHODS: We constructed univariate twin models in 477 same-sex twin pairs from the Chinese National Twin Registry (CNTR) to estimate the heritability of five epigenetic clocks (GrimAge, PhenoAge, DunedinPACE, PCGrimAge, and PCPhenoAge). Besides, we investigated the longitudinal changes of genetic and environmental influences on epigenetic clocks across 5 years in 134 same-sex twin pairs. RESULTS: Heritability of epigenetic clocks ranged from 0.45 to 0.70, and those for PC clocks were higher than those for original clocks. For five epigenetic clocks, the longitudinal stability was moderate to high and was largely due to genetic effects. The genetic correlations between baseline and follow-up epigenetic clocks were moderate to high. Special unique environmental factors emerged both at baseline and at follow-up. PC clocks showed higher longitudinal stability and unique environmental correlations than original clocks. CONCLUSIONS: For five epigenetic clocks, they have the potential to identify aging interventions. High longitudinal stability is mainly due to genetic factors, and changes of epigenetic clocks over time are primarily due to changes in unique environmental factors. Given the disparities in genetic and environmental factors as well as longitudinal stability between PC and original clocks, the results of studies with original clocks need to be further verified with PC clocks.


Subject(s)
Epigenesis, Genetic , Humans , Male , Female , Epigenesis, Genetic/genetics , Middle Aged , Longitudinal Studies , Adult , Twins/genetics , Aged , Gene-Environment Interaction , China , DNA Methylation , Aging/genetics
3.
Front Genet ; 15: 1431769, 2024.
Article in English | MEDLINE | ID: mdl-39055257

ABSTRACT

The existence of a shared genetic basis for mental disorders has long been documented, yet research on whether acquired epigenetic modifications exhibit common alterations across diseases is limited. Previous studies have found that abnormal methylation of cg14631053 at the SSTR4 promoter region mediates the onset of alcohol use disorder. However, whether aberrant methylation of the SSTR4 gene promoter is involved in other mental health disorders remains unclear. In this study, leveraging publicly available data, we identified that changes in methylation of cg14631053 from the SSTR4 promoter region are involved in the development of bipolar disorder and schizophrenia. Furthermore, the direction of methylation changes in the SSTR4 promoter region is disease-specific: hypomethylation is associated with the onset of bipolar disorder and schizophrenia, rather than major depressive disorder. Methylation levels of cg14631053 correlate with chronological age, a correlation that can be disrupted in patients with mental health disorders including schizophrenia and bipolar disorder. In conclusion, SSTR4 promoter methylation may serve as a marker for identifying bipolar disorder and schizophrenia, providing insights into a transdiagnostic mechanism for precision medicine in the future.

4.
Geroscience ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060678

ABSTRACT

Biological age (BA) captures detrimental age-related changes. The best-known and most-used BA indicators include DNA methylation-based epigenetic clocks and telomere length (TL). The most common biological sample material for epidemiological aging studies, whole blood, is composed of different cell types. We aimed to compare differences in BAs between blood cell types and assessed the BA indicators' cell type-specific associations with chronological age (CA). An analysis of DNA methylation-based BA indicators, including TL, methylation level at cg16867657 in ELOVL2, as well as the Hannum, Horvath, DNAmPhenoAge, and DunedinPACE epigenetic clocks, was performed on 428 biological samples of 12 blood cell types. BA values were different in the majority of the pairwise comparisons between cell types, as well as in comparison to whole blood (p < 0.05). DNAmPhenoAge showed the largest cell type differences, up to 44.5 years and DNA methylation-based TL showed the lowest differences. T cells generally had the "youngest" BA values, with differences across subsets, whereas monocytes had the "oldest" values. All BA indicators, except DunedinPACE, strongly correlated with CA within a cell type. Some differences such as DNAmPhenoAge-difference between naïve CD4 + T cells and monocytes were constant regardless of the blood donor's CA (range 20-80 years), while for DunedinPACE they were not. In conclusion, DNA methylation-based indicators of BA exhibit cell type-specific characteristics. Our results have implications for understanding the molecular mechanisms underlying epigenetic clocks and underscore the importance of considering cell composition when utilizing them as indicators for the success of aging interventions.

5.
Cancers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39001419

ABSTRACT

Bladder cancer is an age-related disease, with over three-quarters of cases occurring in individuals aged 65 years and older. Accelerated biological aging has been linked to elevated cancer risks. Epigenetic clocks serve as excellent predictors of biological age, yet it remains unclear whether they are associated with bladder cancer risk. In this large case-control study, we assessed the associations between four well-established epigenetic clocks-HannumAge, HorvathAge, GrimAge, and PhenoAge-and bladder cancer risk. Utilizing single nucleotide polymorphisms (SNPs), which were identified in a genome-wide association study (GWAS), linked to these clocks as instruments, we constructed a weighted genetic risk score (GRS) for each clock. We discovered that higher HannumAge and HorvathAge GRS were significantly associated with increased bladder cancer risk (OR = 1.69 per SD increase, 95% CI, 1.44-1.98, p = 1.56 × 10-10 and OR = 1.09 per SD increase, 95% CI, 1.00-1.19, p = 0.04, respectively). Employing a summary statistics-based Mendelian randomization (MR) method, inverse-variance weighting (IVW), we found consistent risk estimates for bladder cancer with both HannumAge and HorvathAge. Sensitivity analyses using weighted median analysis and MR-Egger regression further supported the validity of the IVW method. However, GrimAge and PhenoAge were not associated with bladder cancer risk. In conclusion, our data provide the first evidence that accelerated biological aging is associated with elevated bladder cancer risk.

6.
Ageing Res Rev ; 100: 102418, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39002646

ABSTRACT

We present a systematic analysis of epigenetic age acceleration based on by far the largest collection of publicly available DNA methylation data for healthy samples (93 datasets, 23 K samples), focusing on the geographic (25 countries) and ethnic (31 ethnicities) aspects around the world. We employed the most popular epigenetic tools for assessing age acceleration and examined their quality metrics and ability to extrapolate to epigenetic data from different tissue types and age ranges different from the training data of these models. In most cases, the models proved to be inconsistent with each other and showed different signs of age acceleration, with the PhenoAge model tending to systematically underestimate and different versions of the GrimAge model tending to systematically overestimate the age prediction of healthy subjects. Referring to data availability and consistency, most countries and populations are still not represented in GEO, moreover, different datasets use different criteria for determining healthy controls. Because of this, it is difficult to fully isolate the contribution of "geography/environment", "ethnicity" and "healthiness" to epigenetic age acceleration. Among the explored metrics, only the DunedinPACE, which measures aging rate, appears to adequately reflect the standard of living and socioeconomic indicators in countries, although it has a limited application to blood methylation data only. Invariably, by epigenetic age acceleration, males age faster than females in most of the studied countries and populations.

8.
Article in English | MEDLINE | ID: mdl-38969335

ABSTRACT

OBJECTIVE: To examine longitudinal associations between early life threat and deprivation on epigenetic age acceleration at ages 9 and 15 years, and to examine associations of age acceleration on later internalizing and externalizing symptoms. METHOD: The study examines a large (n = 2,039) and racially diverse (Black/African American = 44%, Latino = 18%, White = 5%) sample from a national dataset. Epigenetic age acceleration was estimated using the pediatric buccal epigenetic clock. Early life threat and deprivation were measured using composites from the Parent-Child Conflict Tactics Scale and county-level violent and property crime rate data. Internalizing and externalizing symptoms came from parent-reported Child Behavior Checklist. Path analysis models examined associations of threat and deprivation at age 3 years on epigenetic age acceleration at ages 9 and 15. Experiences of threat were further broken down into threat experienced in the home and in the community. RESULTS: Home threat experienced at age 3 years predicted age acceleration at 9 and 15, and community threat experienced at 3 predicted age acceleration at 15, but not at 9. Deprivation was not a significant predictor of accelerated aging. Age acceleration at age 9 predicted externalizing, but not internalizing, symptoms at age 15. Community threat had a direct effect on externalizing. No association emerged with internalizing. CONCLUSION: Findings revealed that threat, not deprivation, was predictive of age acceleration, demonstrating support for this pattern longitudinally, using an epigenetic clock that is accurate in children. The findings provide critical nuance to the examination of threat, and highlight associated risks and possible intervention points for externalizing symptoms.

9.
Genome Med ; 16(1): 85, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956711

ABSTRACT

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Subject(s)
Aging , DNA Methylation , Longevity , Humans , Animals , DNA Methylation/drug effects , Longevity/drug effects , Aging/drug effects , Epigenesis, Genetic/drug effects , Drug Discovery/methods , Cellular Senescence/drug effects , Drug Evaluation, Preclinical/methods , Drosophila , Cells, Cultured , Sirolimus/pharmacology
10.
Arch Med Res ; 55(5): 103033, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955096

ABSTRACT

Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.


Subject(s)
Aging , DNA Methylation , Epigenesis, Genetic , Humans , Aging/genetics , Epigenomics/methods , Biological Clocks/genetics
11.
Res Sq ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39011115

ABSTRACT

Psychological stress during pregnancy is known to have a range of long-lasting negative consequences on the development and health of offspring. Here, we tested whether a measure of prenatal early-life stress was associated with a biomarker of physiological development at birth, namely epigenetic gestational age, using foetal cord-blood DNA-methylation data. Longitudinal cohorts from the Netherlands (Generation R Study [Generation R], n = 1,396), the UK (British Avon Longitudinal Study of Parents and Children [ALSPAC], n = 642), and Norway (Mother, Father and Child Cohort Study [MoBa], n1 = 1,212 and n2 = 678) provided data on prenatal maternal stress and genome-wide DNA methylation from cord blood and were meta-analysed (pooled n = 3,928). Measures of epigenetic age acceleration were calculated using three different gestational epigenetic clocks: "Bohlin", "EPIC overlap" and "Knight". Prenatal stress exposure, examined as an overall cumulative score, was not significantly associated with epigenetically-estimated gestational age acceleration or deceleration in any of the clocks, based on the results of the pooled meta-analysis or those of the individual cohorts. No significant associations were identified with specific domains of prenatal stress exposure, including negative life events, contextual (socio-economic) stressors, parental risks (e.g., maternal psychopathology) and interpersonal risks (e.g., family conflict). Further, no significant associations were identified when analyses were stratified by sex. Overall, we find little support that prenatal psychosocial stress is associated with variation in epigenetic age at birth within the general paediatric population.

12.
Sci Rep ; 14(1): 17439, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075111

ABSTRACT

The quality of romantic relationships can predict health consequences related to aging. DNA methylation-based biomarkers of aging accurately estimate chronological age. We developed several highly accurate epigenetic aging clocks, based on highly conserved mammalian CpGs, for the socially monogamous prairie vole (Microtus ochrogaster). In addition, our dual-species human-vole clock accurately measured relative age and illustrates high species conservation of epigenetic aging effects. Next, we assessed how pair bonding impacts epigenetic aging. We did not find evidence that pair-bonded voles exhibit accelerated or decelerated epigenetic aging effects in blood, ear, liver, or brain tissue. Our epigenome wide association study identified CpGs in five genes strongly associated with pair bonding: Foxp4, Phf2, Mms22l, Foxb1, and Eif1ad. Overall, we present accurate DNA methylation-based estimators of age for a species of great interest to researchers studying monogamy in animals. We did not find any evidence that sex-naive animals age differently from pair-bonded animals.


Subject(s)
Aging , Arvicolinae , DNA Methylation , Epigenesis, Genetic , Animals , Arvicolinae/genetics , Aging/genetics , Female , Male , Pair Bond , CpG Islands
13.
Front Transplant ; 3: 1356948, 2024.
Article in English | MEDLINE | ID: mdl-38993782

ABSTRACT

While chronologic age can be precisely defined, clinical manifestations of advanced age occur in different ways and at different rates across individuals. The observed phenotype of advanced age likely reflects a superposition of several biological aging mechanisms which have gained increasing attention as the world contends with an aging population. Even within the immune system, there are multiple age-associated biological mechanisms at play, including telomere dysfunction, epigenetic dysregulation, immune senescence programs, and mitochondrial dysfunction. These biological mechanisms have associated clinical syndromes, such as telomere dysfunction leading to short telomere syndrome (STS), and optimal patient management may require recognition of biologically based aging syndromes. Within the clinical context of lung transplantation, select immune aging mechanisms are particularly pronounced. Indeed, STS is increasingly recognized as an indication for lung transplantation. At the same time, common aging phenotypes may be evoked by the stress of transplantation because lung allografts face a potent immune response, necessitating higher levels of immune suppression and associated toxicities, relative to other solid organs. Age-associated conditions exacerbated by lung transplant include bone marrow suppression, herpes viral infections, liver cirrhosis, hypogammaglobulinemia, frailty, and cancer risk. This review aims to dissect the molecular mechanisms of immune aging and describe their clinical manifestations in the context of lung transplantation. While these mechanisms are more likely to manifest in the context of lung transplantation, this mechanism-based approach to clinical syndromes of immune aging has broad relevance to geriatric medicine.

15.
Clin Epigenetics ; 16(1): 94, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026267

ABSTRACT

INTRODUCTION: Walking stands as the most prevalent physical activity in the daily lives of individuals and is closely associated with physical functioning and the aging process. Nonetheless, the precise cause-and-effect connection between walking and aging remains unexplored. The epigenetic clock emerges as the most promising biological indicator of aging, capable of mirroring the biological age of the human body and facilitating an investigation into the association between walking and aging. Our primary objective is to investigate the causal impact of walking with epigenetic age acceleration (EAA). METHODS: We conducted a two-sample two-way Mendelian randomization (MR) study to investigate the causal relationship between walking and EAA. Walking and Leisure sedentary behavior data were sourced from UK Biobank, while EAA data were gathered from a total of 28 cohorts. The MR analysis was carried out using several methods, including the inverse variance weighted (IVW), weighted median, MR-Egger, and robust adjusted profile score (RAPS). To ensure the robustness of our findings, we conducted sensitivity analyses, which involved the MR-Egger intercept test, Cochran's Q test, and MR-PRESSO, to account for and mitigate potential pleiotropy. RESULTS: The IVW MR results indicate a significant impact of usual walking pace on GrimAge (BETA = - 1.84, 95% CI (- 2.94, - 0.75)), PhenoAge (BETA = - 1.57, 95% CI (- 3.05, - 0.08)), Horvath (BETA = - 1.09 (- 2.14, - 0.04)), and Hannum (BETA = - 1.63, 95% CI (- 2.70, - 0.56)). Usual walking pace is significantly associated with a delay in epigenetic aging acceleration (EAA) (P < 0.05). Moreover, the direction of effect predicted by the gene remained consistent across RAPS outcomes and sensitivity MR analyses. There is a lack of robust causal relationships between other walking conditions, such as walking duration and walking frequency, on EAA (P > 0.05). CONCLUSION: Our evidence demonstrates that a higher usual walking pace is associated with a deceleration of the acceleration of all four classical epigenetic clocks acceleration.


Subject(s)
Aging , Epigenesis, Genetic , Mendelian Randomization Analysis , Walking , Humans , Mendelian Randomization Analysis/methods , Walking/physiology , Epigenesis, Genetic/genetics , Aging/genetics , Aging/physiology , Female , Male , Aged , Middle Aged , United Kingdom , Sedentary Behavior , DNA Methylation/genetics
16.
Mol Ecol Resour ; : e14003, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075891

ABSTRACT

Understanding the demography of wildlife populations is a key component for ecological research, and where necessary, supporting the conservation and management of long-lived animals. However, many animals lack phenological changes with which to determine individual age; therefore, gathering this fundamental information presents difficulties. More so for species that are rare, highly mobile, migratory and those that reside in inaccessible habitats. Until recently, the primary method to measure demography is through labour intensive mark-recapture approaches, necessitating decades of effort for long-lived species. Gadfly petrels (genus: Pterodroma) are one such taxa that are overrepresented with threatened and declining species, and for which numerous aspects of their ecology present challenges for research, monitoring and recovery efforts. To overcome some of these challenges, we developed the first DNA methylation (DNAm) demography technique to estimate the age of petrels, using the epigenetic clock of Gould's petrels (Pterodroma leucoptera). We collected reference blood samples from known-aged Gould's petrels at a long-term monitored population on Cabbage Tree Island, Australia. Epigenetic ages were successfully estimated for 121 individuals ranging in age from zero (fledgling) to 30 years of age, showing a mean error of 2.24 ± 0.17 years between the estimated and real age across the population. This is the first development of an epigenetic clock using multiplex PCR sequencing in a bird. This method enables demography to be measured with relative accuracy in a single sampling trip. This technique can provide information for emerging demographic risks that can mask declines in long-lived seabird populations and be applied to other Pterodroma populations.

17.
J Nutr Health Aging ; 28(9): 100324, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067141

ABSTRACT

BACKGROUND: Along with the ageing of society, the absolute prevalence of age-related diseases is expected to rise, leading to a substantial burden on healthcare systems and society. Thus, there is an urgent need to promote healthy ageing. As opposed to chronological age, biological age was introduced to accurately represent the ageing process, as it considers physiological deterioration that is linked to morbidity and mortality risk. Furthermore, biological age responds to various factors, including nutritional factors, which have the potential to mitigate the risk of age-related diseases. As a result, a promising biomarker of biological age known as the epigenetic clock has emerged as a suitable measure to investigate the direct relations between nutritional factors and ageing, thereby identifying potential intervention targets to improve healthy ageing. METHODS: In this study, we analysed data from 3,969 postmenopausal women from the Women's Health Initiative to identify nutrients that are associated with the rate of ageing by using an accurate measure of biological age called the PhenoAge epigenetic clock. We used Copula Graphical Models, a data-driven exploratory analysis tool, to identify direct relationships between nutrient intake and age-acceleration, while correcting for every variable in the dataset. RESULTS: We revealed that increased dietary intakes of coumestrol, beta-carotene and arachidic acid were associated with decelerated epigenetic ageing. In contrast, increased intakes of added sugar, gondoic acid, behenic acid, arachidonic acid, vitamin A and ash were associated with accelerated epigenetic ageing in postmenopausal women. CONCLUSION: Our study discovered direct relations between nutrients and epigenetic ageing, revealing promising areas for follow-up studies to determine the magnitude and causality of our estimated diet-epigenetic relationships.

18.
Proc Natl Acad Sci U S A ; 121(24): e2319179121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833467

ABSTRACT

To test the hypothesis that early-life adversity accelerates the pace of biological aging, we analyzed data from the Dutch Hunger Winter Families Study (DHWFS, N = 951). DHWFS is a natural-experiment birth-cohort study of survivors of in-utero exposure to famine conditions caused by the German occupation of the Western Netherlands in Winter 1944 to 1945, matched controls, and their siblings. We conducted DNA methylation analysis of blood samples collected when the survivors were aged 58 to quantify biological aging using the DunedinPACE, GrimAge, and PhenoAge epigenetic clocks. Famine survivors had faster DunedinPACE, as compared with controls. This effect was strongest among women. Results were similar for GrimAge, although effect-sizes were smaller. We observed no differences in PhenoAge between survivors and controls. Famine effects were not accounted for by blood-cell composition and were similar for individuals exposed early and later in gestation. Findings suggest in-utero undernutrition may accelerate biological aging in later life.


Subject(s)
Aging , DNA Methylation , Famine , Prenatal Exposure Delayed Effects , Humans , Female , Prenatal Exposure Delayed Effects/epidemiology , Pregnancy , Middle Aged , Netherlands/epidemiology , Male , Epigenesis, Genetic , Starvation
19.
Front Bioinform ; 4: 1356509, 2024.
Article in English | MEDLINE | ID: mdl-38855141

ABSTRACT

Introduction: Persons living with HIV (PLWH) experience the early onset of age-related illnesses, even in the setting of successful human immunodeficiency virus (HIV) suppression with highly active antiretroviral therapy (HAART). HIV infection is associated with accelerated epigenetic aging as measured using DNA methylation (DNAm)-based estimates of biological age and of telomere length (TL). Methods: DNAm levels (Infinium MethylationEPIC BeadChip) from peripheral blood mononuclear cells from 200 PLWH and 199 HIV-seronegative (SN) participants matched on chronologic age, hepatitis C virus, and time intervals were used to calculate epigenetic age acceleration, expressed as age-adjusted acceleration residuals from 4 epigenetic clocks [Horvath's pan-tissue age acceleration residual (AAR), extrinsic epigenetic age acceleration (EEAA), phenotypic epigenetic age acceleration (PEAA), and grim epigenetic age acceleration (GEAA)] plus age-adjusted DNAm-based TL (aaDNAmTL). Epigenetic age acceleration was compared for PLWH and SN participants at two visits: up to 1.5 years prior and 2-3 years after HAART (or equivalent visits). Flow cytometry was performed in PLWH and SN participants at both visits to evaluate T-cell subsets. Results: Epigenetic age acceleration in PLWH decreased after the initiation of HAART but remained greater post-HAART than that in age-matched SN participants, with differences in medians of 6.6, 9.1, and 7.7 years for AAR, EEAA, and PEAA, respectively, and 0.39 units of aaDNAmTL shortening (all p < 0.001). Cumulative HIV viral load after HAART initiation was associated with some epigenetic acceleration (EEAA, PEAA, and aaDNAmTL), but even PLWH with undetectable HIV post-HAART showed persistent epigenetic age acceleration compared to SN participants (p < 0.001). AAR, EEAA, and aaDNAmTL showed significant associations with total, naïve, and senescent CD8 T-cell counts; the total CD4 T-cell counts were associated with AAR, EEAA, and PEAA (p = 0.04 to <0.001). In an epigenome-wide analysis using weighted gene co-methylation network analyses, 11 modules demonstrated significant DNAm differences pre- to post-HAART initiation. Of these, nine were previously identified as significantly different from pre- to post-HIV infection but in the opposite direction. Discussion: In this large longitudinal study, we demonstrated that, although the magnitude of the difference decreases with HAART is associated with the cumulative viral load, PLWH are persistently epigenetically older than age-matched SN participants even after the successful initiation of HAART, and these changes are associated with changes in T-cell subsets.

20.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895434

ABSTRACT

Significant links between aging and DNA methylation are emerging from recent studies. On the one hand, DNA methylation undergoes changes with age, a process termed as epigenetic drift. On the other hand, DNA methylation serves as a readily accessible and accurate biomarker for aging. A key missing piece of information, however, is the molecular mechanisms underlying these processes, and how they are related, if any. Addressing the limitations of previous research due to the limited number of investigated CpGs and the heterogeneous nature of tissue samples, here we have examined DNA methylation of over 20 million CpGs across a broad age span in neurons and non-neuronal cells, primarily oligodendrocytes. We show that aging is a primary predictor of DNA methylation variation, surpassing the influence of factors such as sex and schizophrenia diagnosis, among others. On the genome-wide scale, epigenetic drift manifests as significant yet subtle trends that are influenced by the methylation level of individual CpGs. We reveal that CpGs that are highly differentiated between cell types are especially prone to age-associated DNA methylation alterations, leading to the divergence of epigenetic cell type identities as individuals age. On the other hand, CpGs that are included in commonly used epigenetic clocks tend to be those sites that are not highly cell type differentiated. Therefore, dysregulation of epigenetic cell-type identities and current DNA epigenetic clocks represent distinct features of age-associated DNA methylation alterations.

SELECTION OF CITATIONS
SEARCH DETAIL