Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
J Neurol ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110218

ABSTRACT

BACKGROUND AND OBJECTIVES: Non-polyglutamine CACNA1A variants underlie an extremely variable phenotypic spectrum encompassing developmental delay, hemiplegic migraine, epilepsy, psychiatric symptoms, episodic and chronic cerebellar signs. We provide our experience with the long-term follow-up of CACNA1A patients and their response to interval therapy. METHODS: Patients with genetically confirmed non-polyglutamine CACNA1A disease were prospectively followed at the Center for Rare Movement Disorders of the Medical University of Innsbruck from 2004 to 2024. RESULTS: We recruited 41 subjects with non-polyglutamine CACNA1A disease, of which 38 (93%) familial cases. The mean age at the first examination was 35 ± 22 years. Disease onset was in the childhood/adolescence in 31/41 patients (76%). Developmental delay and episodic symptoms were the first disease manifestation in 9/41 (22%) and 32/41 (78%) patients respectively. Chronic neurological signs encompassed a cerebellar syndrome in 35/41 (85%), which showed almost no progression during the observation period, as well as cognitive deficits in 9/20 (45%, MOCA test score < 26), psychiatric and behavioral symptoms in 11/41(27%). Seizures occurred in two patients concomitant to severe hemiplegic migraine. At the last visit, 27/41 patients (66%) required an interval prophylaxis (including acetazolamide, flunarizine, 4-aminopyridine, topiramate), which was efficacious in reducing the frequency and severity of episodic symptoms in all cases. In one patient in his 70ies with progressively therapy resistant hemiplegic migraine, treatment with the anti-CGRP antibody galcanezumab successfully reduced the frequency of migraine days from 4 to 1/month. CONCLUSIONS: Non-polyglutamine CACNA1A disease show an evolving age-dependent presentation. Interval prophylaxis is effective in reducing the burden of episodic symptoms.

2.
Handb Clin Neurol ; 203: 123-133, 2024.
Article in English | MEDLINE | ID: mdl-39174244

ABSTRACT

The primary episodic ataxias (EAs) are a group of autosomal-dominant disorders characterized by transient recurrent incoordination and truncal instability, often triggered by physical exertion or emotional stress and variably associated with progressive baseline ataxia. There are now nine designated subtypes EA1-9 (OMIM) and late onset cerebellar ataxia with episodic features as newly designated SCA27B, based largely on genetic loci. Mutations have been identified in multiple individuals and families in 4 of the 9 EA subtypes, mostly with the onset before adulthood. This chapter focuses on the clinical assessment and management of EA, genetic diagnosis, and neurophysiologic consequences of the causative mutations in the best characterized EA syndromes: EA1 caused by mutations in KCNA1 encoding a neuronal voltage-gated potassium channel, EA2 caused by mutations in CACNA1A encoding a neuronal voltage-gated calcium channel, EA6 caused by mutations in SLC1A3 encoding a glutamate transporter that is also an anion channel, and SCA27B with late onset episodic ataxia caused by an intronic trinucleotide repeat in FGF14 encoding fibroblast growth factor 14 important in regulating the distribution of voltage-gated sodium channels in the cerebellar Purkinje and granule cells. The study of EA has illuminated previously unrecognized but important roles of ion channels and transporters in brain function with shared mechanisms underlying cerebellar ataxia, migraine, and epilepsy.


Subject(s)
Ataxia , Mutation , Humans , Ataxia/genetics , Ataxia/diagnosis , Mutation/genetics , Fibroblast Growth Factors/genetics , Kv1.1 Potassium Channel/genetics , Calcium Channels/genetics , Excitatory Amino Acid Transporter 1
3.
Cureus ; 16(5): e59821, 2024 May.
Article in English | MEDLINE | ID: mdl-38846209

ABSTRACT

The anti-CASPR2 antibody-associated syndrome is a rare immune-mediated disorder. Most case reports describe neurologic symptoms that include encephalic signs, peripheral nerve hyperexcitability, dysautonomia, or neuropathic pain. We report the case of a 70-year-old man, admitted to the emergency department with complaints of slurred speech and imbalance. Neurological examination was relevant for dysarthria, hyperreflexia, and pancerebellar syndrome. Cranial CT and basic laboratory tests were normal and he spontaneously recovered after 14 hours. Over the next four months, the patient experienced three similar episodes in relation to stressful events (emotional and organic disturbances like prolonged fasting and vaccination). A contrast-enhanced MRI was performed, along with extensive laboratory testing, analysis of cerebrospinal fluid (CSF), paraneoplastic investigation, and next-generation sequencing panel for episodic ataxias. The results revealed oligoclonal bands in the CSF and positive anti-CASPR2 antibodies both in serum and CSF. Three-day-IV- methylprednisolone pulse followed by plasmapheresis and monthly intravenous immunoglobulins was performed with good response. In conclusion, the neurological manifestations that led to the diagnosis of anti-CASPR2 antibody-associated syndrome were intermittent self-limiting episodes of ataxia, often triggered by concurrent stress-inducing factors. This case supports the aim of other authors to add paroxysmal cerebellar ataxia to the spectrum of the anti-CASPR2 antibody syndrome.

4.
J Genet Genomics ; 51(8): 801-810, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38570113

ABSTRACT

KCNA1 is the coding gene for Kv1.1 voltage-gated potassium-channel α subunit. Three variants of KCNA1 have been reported to manifest as paroxysmal kinesigenic dyskinesia (PKD), but the correlation between them remains unclear due to the phenotypic complexity of KCNA1 variants as well as the rarity of PKD cases. Using the whole exome sequencing followed by Sanger sequencing, we screen for potential pathogenic KCNA1 variants in patients clinically diagnosed with paroxysmal movement disorders and identify three previously unreported missense variants of KCNA1 in three unrelated Chinese families. The proband of one family (c.496G>A, p.A166T) manifests as episodic ataxia type 1, and the other two (c.877G>A, p.V293I and c.1112C>A, p.T371A) manifest as PKD. The pathogenicity of these variants is confirmed by functional studies, suggesting that p.A166T and p.T371A cause a loss-of-function of the channel, while p.V293I leads to a gain-of-function with the property of voltage-dependent gating and activation kinetic affected. By reviewing the locations of PKD-manifested KCNA1 variants in Kv1.1 protein, we find that these variants tend to cluster around the pore domain, which is similar to epilepsy. Thus, our study strengthens the correlation between KCNA1 variants and PKD and provides more information on genotype-phenotype correlations of KCNA1 channelopathy.


Subject(s)
Dystonia , Kv1.1 Potassium Channel , Mutation, Missense , Pedigree , Humans , Kv1.1 Potassium Channel/genetics , Male , Female , Dystonia/genetics , Dystonia/pathology , Mutation, Missense/genetics , Exome Sequencing , Loss of Function Mutation/genetics , Adult , Gain of Function Mutation/genetics , Child , Adolescent , Genetic Predisposition to Disease , HEK293 Cells , Ataxia , Myokymia
5.
Cerebellum ; 23(2): 833-837, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37460907

ABSTRACT

Potassium channels (KCN) are transmembrane complexes that regulate the resting membrane potential and the duration of action potentials in cells. The opening of KCN brings about an efflux of K+ ions that induces cell repolarization after depolarization, returns the transmembrane potential to its resting state, and enables for continuous spiking ability. The aim of this work was to assess the role of KCN dysfunction in the pathogenesis of hereditary ataxias and the mechanisms of action of KCN opening agents (KCO). In consequence, a review of the ad hoc medical literature was performed. Among hereditary KCN diseases causing ataxia, mutated Kv3.3, Kv4.3, and Kv1.1 channels provoke spinocerebellar ataxia (SCA) type 13, SCA19/22, and episodic ataxia type 1 (EA1), respectively. The K+ efflux was found to be reduced in experimental models of these diseases, resulting in abnormally prolonged depolarization and incomplete repolarization, thereby interfering with repetitive discharges in the cells. Hence, substances able to promote normal spiking activity in the cerebellum could provide symptomatic benefit. Although drugs used in clinical practice do not activate Kv3.3 or Kv4.3 directly, available KCO probably could ameliorate ataxic symptoms in SCA13 and SCA19/22, as verified with acetazolamide in EA1, and retigabine in a mouse model of hypokalemic periodic paralysis. To summarize, ataxia could possibly be improved by non-specific KCO in SCA13 and SCA19/22. The identification of new specific KCO agents will undoubtedly constitute a promising therapeutic strategy for these diseases.


Subject(s)
Cerebellar Ataxia , Channelopathies , Myokymia , Spinocerebellar Ataxias/congenital , Spinocerebellar Degenerations , Mice , Animals , Channelopathies/drug therapy , Channelopathies/genetics , Ataxia/drug therapy , Ataxia/genetics , Mutation
9.
Front Neurol ; 14: 1224241, 2023.
Article in English | MEDLINE | ID: mdl-37965175

ABSTRACT

Hereditary myopathies represent a clinically and genetically heterogeneous group of neuromuscular disorders, characterized by highly variable clinical presentations and frequently overlapping phenotypes with other neuromuscular disorders, likely influenced by genetic and environmental modifiers. Genetic testing is often challenging due to ambiguous clinical diagnosis. Here, we present the case of a family with clinical and Electromyography (EMG) features resembling a myotonia-like disorder in which Whole Exome Sequencing (WES) analysis revealed the co-segregation of two rare missense variants in UBR4 and HSPG2, genes previously associated with episodic ataxia 8 (EA8). A review of the literature highlighted a striking overlap between the clinical and the molecular features of our family and the previously described episodic ataxias (EAs), which raises concerns about the genotype-phenotype correlation, clinical variability, and the confounding overlap in these groups of disorders. This emphasizes the importance of thoroughly framing the patient's phenotype. The more clear-cut the diagnosis, the easier the identification of a genetic determinant, and the better the prognosis and the treatment of patients.

10.
Dystonia ; 22023.
Article in English | MEDLINE | ID: mdl-37800168

ABSTRACT

Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.

11.
Handb Clin Neurol ; 196: 347-365, 2023.
Article in English | MEDLINE | ID: mdl-37620078

ABSTRACT

Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.


Subject(s)
Chorea , Dystonia , Dystonic Disorders , Movement Disorders , Humans , Chorea/diagnosis , Chorea/genetics , Movement Disorders/diagnosis , Movement Disorders/genetics
12.
Cells ; 12(10)2023 05 13.
Article in English | MEDLINE | ID: mdl-37408217

ABSTRACT

Dominantly inherited missense mutations of the KCNA1 gene, which encodes the KV1.1 potassium channel subunit, cause Episodic Ataxia type 1 (EA1). Although the cerebellar incoordination is thought to arise from abnormal Purkinje cell output, the underlying functional deficit remains unclear. Here we examine synaptic and non-synaptic inhibition of Purkinje cells by cerebellar basket cells in an adult mouse model of EA1. The synaptic function of basket cell terminals was unaffected, despite their intense enrichment for KV1.1-containing channels. In turn, the phase response curve quantifying the influence of basket cell input on Purkine cell output was maintained. However, ultra-fast non-synaptic ephaptic coupling, which occurs in the cerebellar 'pinceau' formation surrounding the axon initial segment of Purkinje cells, was profoundly reduced in EA1 mice in comparison with their wild type littermates. The altered temporal profile of basket cell inhibition of Purkinje cells underlines the importance of Kv1.1 channels for this form of signalling, and may contribute to the clinical phenotype of EA1.


Subject(s)
Ataxia , Kv1.1 Potassium Channel , Myokymia , Neural Inhibition , Purkinje Cells , Purkinje Cells/metabolism , Purkinje Cells/pathology , Animals , Mice , Disease Models, Animal , Kv1.1 Potassium Channel/genetics , Kv1.1 Potassium Channel/metabolism , Synapses/physiology , Cell Communication , Synaptic Transmission , Ataxia/genetics , Ataxia/pathology , Ataxia/physiopathology , Myokymia/genetics , Myokymia/pathology , Myokymia/physiopathology , Evoked Potentials , Mice, Inbred C57BL , Male , Female
13.
Eur J Neurol ; 30(10): 3377-3393, 2023 10.
Article in English | MEDLINE | ID: mdl-37422902

ABSTRACT

BACKGROUND: Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS: We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS: Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION: Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.


Subject(s)
Ataxia , Movement Disorders , Humans , Ataxia/genetics , Genotype , Phenotype
14.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446101

ABSTRACT

A five-year-old girl presented with headache attacks, clumsiness, and a history of transient gait disturbances. She and her father, mother, twin sister, and brother underwent neurological evaluation, neuroimaging, and exome sequencing covering 357 genes associated with movement disorders. Sequencing revealed the new variant KCND3 c.838G>A, p.E280K in the father and sisters, but not in the mother and brother. KCND3 encodes voltage-gated potassium channel D3 (Kv4.3) and mutations have been associated with spinocerebellar ataxia type 19/22 (SCA19/22) and cardiac arrhythmias. SCA19/22 is characterized by ataxia, Parkinsonism, peripheral neuropathy, and sometimes, intellectual disability. Neuroimaging, EEG, and ECG were unremarkable. Mild developmental delay with impaired fluid reasoning was observed in both sisters, but not in the brother. None of the family members demonstrated ataxia or parkinsonism. In Xenopus oocyte electrophysiology experiments, E280K was associated with a rightward shift in the Kv4.3 voltage-activation relationship of 11 mV for WT/E280K and +17 mV for E280K/E280K relative to WT/WT. Steady-state inactivation was similarly right-shifted. Maximal peak current amplitudes were similar for WT/WT, WT/E280K, and E280K/E280K. Our data indicate that Kv4.3 E280K affects channel activation and inactivation and is associated with developmental delay. However, E280K appears to be relatively benign considering it does not result in overt ataxia.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Degenerations , Male , Female , Humans , Spinocerebellar Degenerations/genetics , Shal Potassium Channels/genetics , Mutation, Missense , Mutation , Ataxia
15.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Article in English | MEDLINE | ID: mdl-37487086

ABSTRACT

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Subject(s)
Myokymia , Animals , Mice , Drosophila melanogaster , Ataxia , Drosophila , Kv1.2 Potassium Channel
16.
Rev. neurol. (Ed. impr.) ; 76(10)May 16, 2023. ilus, tab, graf
Article in Spanish | IBECS | ID: ibc-220502

ABSTRACT

Objetivo: Describir una serie de pacientes con ataxia episódica tipo 2 (AE2) según variables epidemiológicas, clínicas, radiológicas y terapéuticas. Material y métodos. Revisión retrospectiva de pacientes con diagnóstico molecular de AE2 (mutación en CACNA1A) entre 1988 y 2022, información recogida de la base de datos de la Unidad de Trastornos del Movimiento de nuestro centro. Se realizó un análisis estadístico descriptivo. Resultados: Se analizó a 10 pacientes procedentes de cinco familias. La mediana de edad en el momento del diagnóstico fue 37,5 años, con un retraso diagnóstico de 20 años. El 50% asociaba epilepsia, migraña, distonía o alteraciones neuropsiquiátricas. El 70% tenía una historia familiar de síntomas asociados a CACNA1A. Dos pacientes heterocigotos consanguíneos tuvieron descendencia homocigota con mortalidad infantil por encefalopatía epiléptica de inicio precoz de tipo 42. Se detectaron cinco variantes diferentes de CACNA1A. El 80% mostró factores desencadenantes, y el estrés fue el más común. La frecuencia episódica más habitual fue semanal. Seis pacientes desarrollaron ataxia interepisódica, aunque sólo uno precisó apoyo en la marcha. El 50% de los pacientes con neuroimagen presentó atrofia cerebelosa. El 80% inició acetazolamida durante el seguimiento, con respuesta a dosis altas en el 75%. La nefrolitiasis fue el efecto adverso más frecuente. La 4-aminopiridina fue una alternativa eficaz. Conclusiones: La AE2 presenta una alta variabilidad fenotípica inter- e intrafamiliar. El fenotipo más frecuente fueron episodios de inestabilidad, de horas de duración, semanales, con estrés como desencadenante, ataxia persistente y nistagmo evocado por la mirada. La acetazolamida, aunque es eficaz, no está exenta de complicaciones. El retraso diagnóstico es muy frecuente.(AU)


Objectives: To describe a series of patients with episodic ataxia type 2 (EA2), attending to epidemiological, clinical, radiological, and therapeutic variables. Material and methods: Retrospective revision of patients with molecular diagnosis of EA2 (CACNA1A mutations), between 1988 and 2022. Information achieved from the database of our Movement Disorders clinic. A descriptive statistical analysis was made. Results: Ten patients from five families were analyzed (six women). Median age at diagnosis was 37.5 years-old, with a median diagnostic delay of 20 years. 70% reported familial history of CACNA1A associated symptoms, although 50% presented migraine, epilepsy, dystonia, or neuropsychiatric alterations. Two heterozygous consanguineous patients had homozygotic descendance with infant mortality due to early-onset epileptic encephalopathy type 42. Five pathogenic/probably pathogenic CACNA1A variants were detected. 80% of patients had episodic triggers, being stress the most common. Episodes had a weekly frequency before treatment initiation. Six patients developed chronic ataxia (one patient demand gait support). 50% of patients with neuroimaging presented cerebellar atrophy. Acetazolamide were initiated in 80%, and 75% of them showed improvement of episodic symptoms. Nephrolithiasis was the most frequent side effect. Conclusions: EA2 has a great intrafamilial and interfamilial phenotypic variability. The most frequent phenotype were weekly episodes of unsteadiness, several hours of length, stress as the main trigger, chronic ataxia and gaze-evoked nystagmus. Acetazolamide is effective, although complications are usual. Neurologist must be alert as diagnostic delay is constant.(AU)


Subject(s)
Humans , Male , Female , Adult , Ataxia , Acetazolamide , Myoclonic Cerebellar Dyssynergia , Migraine with Aura , Neurology , Nervous System Diseases
17.
Clin Genet ; 104(3): 365-370, 2023 09.
Article in English | MEDLINE | ID: mdl-37177896

ABSTRACT

Loss of function variants in CACNA1A cause a broad spectrum of neurological disorders, including episodic ataxia, congenital or progressive ataxias, epileptic manifestations or developmental delay. Variants located on the AG/GT consensus splice sites are usually considered as responsible of splicing defects, but exonic or intronic variants located outside of the consensus splice site can also lead to abnormal splicing. We investigated the putative consequences on splicing of 11 CACNA1A variants of unknown significance (VUS) identified in patients with episodic ataxia or congenital ataxia. In silico splice predictions were performed and RNA obtained from fibroblasts was analyzed by Sanger sequencing. The presence of abnormal transcripts was confirmed in 10/11 patients, nine of them were considered as deleterious and one remained of unknown significance. Targeted next-generation RNA sequencing was done in a second step to compare the two methods. This method was successful to obtain the full cDNA sequence of CACNA1A. Despite the presence of several isoforms in the fibroblastic cells, it detected most of the abnormally spliced transcripts. In conclusion, RNA sequencing was efficient to confirm the pathogenicity of nine novel CACNA1A variants. Sanger or Next generation methods can be used depending on the facilities and organization of the laboratories.


Subject(s)
Calcium Channels , Cerebellar Ataxia , Humans , Calcium Channels/genetics , Ataxia/genetics , Cerebellar Ataxia/genetics , Sequence Analysis, RNA
18.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240170

ABSTRACT

The KCNA1 gene encodes Kv1.1 voltage-gated potassium channel α subunits, which are crucial for maintaining healthy neuronal firing and preventing hyperexcitability. Mutations in the KCNA1 gene can cause several neurological diseases and symptoms, such as episodic ataxia type 1 (EA1) and epilepsy, which may occur alone or in combination, making it challenging to establish simple genotype-phenotype correlations. Previous analyses of human KCNA1 variants have shown that epilepsy-linked mutations tend to cluster in regions critical for the channel's pore, whereas EA1-associated mutations are evenly distributed across the length of the protein. In this review, we examine 17 recently discovered pathogenic or likely pathogenic KCNA1 variants to gain new insights into the molecular genetic basis of KCNA1 channelopathy. We provide the first systematic breakdown of disease rates for KCNA1 variants in different protein domains, uncovering potential location biases that influence genotype-phenotype correlations. Our examination of the new mutations strengthens the proposed link between the pore region and epilepsy and reveals new connections between epilepsy-related variants, genetic modifiers, and respiratory dysfunction. Additionally, the new variants include the first two gain-of-function mutations ever discovered for KCNA1, the first frameshift mutation, and the first mutations located in the cytoplasmic N-terminal domain, broadening the functional and molecular scope of KCNA1 channelopathy. Moreover, the recently identified variants highlight emerging links between KCNA1 and musculoskeletal abnormalities and nystagmus, conditions not typically associated with KCNA1. These findings improve our understanding of KCNA1 channelopathy and promise to enhance personalized diagnosis and treatment for individuals with KCNA1-linked disorders.


Subject(s)
Channelopathies , Epilepsy , Myokymia , Humans , Channelopathies/complications , Ataxia , Myokymia/genetics , Mutation , Kv1.1 Potassium Channel/genetics
19.
Epilepsia ; 64(8): 2186-2199, 2023 08.
Article in English | MEDLINE | ID: mdl-37209379

ABSTRACT

OBJECTIVE: KCNA1 mutations are associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1), and epilepsy is a common comorbidity. Current medications provide only partial relief for ataxia and/or seizures, making new drugs needed. Here, we characterized zebrafish kcna1a-/- as a model of EA1 with epilepsy and compared the efficacy of the first-line therapy carbamazepine in kcna1a-/- zebrafish to Kcna1-/- rodents. METHODS: CRISPR/Cas9 mutagenesis was used to introduce a mutation in the sixth transmembrane segment of the zebrafish Kcna1 protein. Behavioral and electrophysiological assays were performed on kcna1a-/- larvae to assess ataxia- and epilepsy-related phenotypes. Real-time quantitative polymerase chain reaction (qPCR) was conducted to measure mRNA levels of brain hyperexcitability markers in kcna1a-/- larvae, followed by bioenergetics profiling to evaluate metabolic function. Drug efficacies were tested using behavioral and electrophysiological assessments, as well as seizure frequency in kcna1a-/- zebrafish and Kcna1-/- mice, respectively. RESULTS: Zebrafish kcna1a-/- larvae showed uncoordinated movements and locomotor deficits, along with scoliosis and increased mortality. The mutants also exhibited impaired startle responses when exposed to light-dark flashes and acoustic stimulation as well as hyperexcitability as measured by extracellular field recordings and upregulated fosab transcripts. Neural vglut2a and gad1b transcript levels were disrupted in kcna1a-/- larvae, indicative of a neuronal excitatory/inhibitory imbalance, as well as a significant reduction in cellular respiration in kcna1a-/- , consistent with dysregulation of neurometabolism. Notably, carbamazepine suppressed the impaired startle response and brain hyperexcitability in kcna1a-/- zebrafish but had no effect on the seizure frequency in Kcna1-/- mice, suggesting that this EA1 zebrafish model might better translate to humans than rodents. SIGNIFICANCE: We conclude that zebrafish kcna1a-/- show ataxia and epilepsy-related phenotypes and are responsive to carbamazepine treatment, consistent with EA1 patients. These findings suggest that kcna1-/- zebrafish are a useful model for drug screening as well as studying the underlying disease biology.


Subject(s)
Epilepsy , Zebrafish , Humans , Mice , Animals , Ataxia/drug therapy , Ataxia/genetics , Ataxia/complications , Seizures/complications , Carbamazepine/pharmacology , Carbamazepine/therapeutic use , Kv1.1 Potassium Channel/genetics
20.
Mov Disord ; 38(6): 1094-1099, 2023 06.
Article in English | MEDLINE | ID: mdl-37023257

ABSTRACT

BACKGROUND: Some paroxysmal movement disorders remain without an identified genetic cause. OBJECTIVES: The aim was to identify the causal genetic variant for a paroxysmal dystonia-ataxia syndrome in Weimaraner dogs. METHODS: Clinical and diagnostic investigations were performed. Whole genome sequencing of one affected dog was used to identify private homozygous variants against 921 control genomes. RESULTS: Four Weimaraners were presented for episodes of abnormal gait. Results of examinations and diagnostic investigations were unremarkable. Whole genome sequencing revealed a private frameshift variant in the TNR (tenascin-R) gene in an affected dog, XM_038542431.1:c.831dupC, which is predicted to truncate more than 75% of the open read frame. Genotypes in a cohort of 4 affected and 70 unaffected Weimaraners showed perfect association with the disease phenotype. CONCLUSIONS: We report the association of a TNR variant with a paroxysmal dystonia-ataxia syndrome in Weimaraners. It might be relevant to include sequencing of this gene in diagnosing humans with unexplained paroxysmal movement disorders. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellar Ataxia , Dystonia , Dystonic Disorders , Humans , Dogs , Animals , Dystonia/genetics , Dystonia/veterinary , Dystonic Disorders/genetics , Genotype , Phenotype , Ataxia
SELECTION OF CITATIONS
SEARCH DETAIL