Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
1.
Mol Cell ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39002544

ABSTRACT

5-methylcytosine (m5C) is a prevalent RNA modification crucial for gene expression regulation. However, accurate and sensitive m5C sites identification remains challenging due to severe RNA degradation and reduced sequence complexity during bisulfite sequencing (BS-seq). Here, we report m5C-TAC-seq, a bisulfite-free approach combining TET-assisted m5C-to-f5C oxidation with selective chemical labeling, therefore enabling direct base-resolution m5C detection through pre-enrichment and C-to-T transitions at m5C sites. With m5C-TAC-seq, we comprehensively profiled the m5C methylomes in human and mouse cells, identifying a substantially larger number of confident m5C sites. Through perturbing potential m5C methyltransferases, we deciphered the responsible enzymes for most m5C sites, including the characterization of NSUN5's involvement in mRNA m5C deposition. Additionally, we characterized m5C dynamics during mESC differentiation. Notably, the mild reaction conditions and preservation of nucleotide composition in m5C-TAC-seq allow m5C detection in chromatin-associated RNAs. The accurate and robust m5C-TAC-seq will advance research into m5C methylation functional investigation.

2.
RNA Biol ; 21(1): 1-13, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39007883

ABSTRACT

RNA capping is a prominent RNA modification that influences RNA stability, metabolism, and function. While it was long limited to the study of the most abundant eukaryotic canonical m7G cap, the field recently went through a large paradigm shift with the discovery of non-canonical RNA capping in bacteria and ultimately all domains of life. The repertoire of non-canonical caps has expanded to encompass metabolite caps, including NAD, FAD, CoA, UDP-Glucose, and ADP-ribose, alongside alarmone dinucleoside polyphosphate caps, and methylated phosphate cap-like structures. This review offers an introduction into the field, presenting a summary of the current knowledge about non-canonical RNA caps. We highlight the often still enigmatic biological roles of the caps together with their processing enzymes, focusing on the most recent discoveries. Furthermore, we present the methods used for the detection and analysis of these non-canonical RNA caps and thus provide an introduction into this dynamic new field.


Subject(s)
RNA Caps , RNA Caps/metabolism , RNA Caps/chemistry , Humans , RNA Stability , Animals , RNA/chemistry , RNA/metabolism , RNA/genetics , Bacteria/genetics , Bacteria/metabolism
3.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946397

ABSTRACT

Uterine leiomyoma or fibroids are prevalent noncancerous tumors of the uterine muscle layer, yet their origin and development remain poorly understood. We analyzed RNA expression profiles of 15 epigenetic mediators in uterine fibroids compared to myometrium using publicly available RNA sequencing (RNA-seq) data. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key N6-methyladenosine (m6A) modifiers in fibroids and their matched myometrium, showing no significant differences in concordance with our RNA expression profiles. To determine RNA modification abundance, mRNA and small RNA from fibroids and matched myometrium were analyzed by ultra-high performance liquid chromatography-mass spectrometry identifying prevalent m6A and 11 other known modifiers. However, no aberrant expression in fibroids was detected. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic subtype. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression, and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and diverse patient cohort.


Subject(s)
Adenosine , Leiomyoma , Uterine Neoplasms , Leiomyoma/genetics , Leiomyoma/metabolism , Humans , Female , Adenosine/analogs & derivatives , Adenosine/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Myometrium/metabolism , Myometrium/pathology , Middle Aged , Adult , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA/genetics , RNA/metabolism , RNA Processing, Post-Transcriptional , Epigenesis, Genetic
4.
Clin Transl Med ; 14(6): e1666, 2024 Jun.
Article in Italian | MEDLINE | ID: mdl-38880983

ABSTRACT

Dysregulated RNA modifications, stemming from the aberrant expression and/or malfunction of RNA modification regulators operating through various pathways, play pivotal roles in driving the progression of haematological malignancies. Among RNA modifications, N6-methyladenosine (m6A) RNA modification, the most abundant internal mRNA modification, stands out as the most extensively studied modification. This prominence underscores the crucial role of the layer of epitranscriptomic regulation in controlling haematopoietic cell fate and therefore the development of haematological malignancies. Additionally, other RNA modifications (non-m6A RNA modifications) have gained increasing attention for their essential roles in haematological malignancies. Although the roles of the m6A modification machinery in haematopoietic malignancies have been well reviewed thus far, such reviews are lacking for non-m6A RNA modifications. In this review, we mainly focus on the roles and implications of non-m6A RNA modifications, including N4-acetylcytidine, pseudouridylation, 5-methylcytosine, adenosine to inosine editing, 2'-O-methylation, N1-methyladenosine and N7-methylguanosine in haematopoietic malignancies. We summarise the regulatory enzymes and cellular functions of non-m6A RNA modifications, followed by the discussions of the recent studies on the biological roles and underlying mechanisms of non-m6A RNA modifications in haematological malignancies. We also highlight the potential of therapeutically targeting dysregulated non-m6A modifiers in blood cancer.


Subject(s)
Hematologic Neoplasms , Humans , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , RNA Processing, Post-Transcriptional/genetics , RNA/genetics , RNA/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics
5.
Int J Cancer ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935523

ABSTRACT

Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N6-methyladenosine (m6A) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the m6A system, has shown a dramatic impact on cancer development. However, the cellular localization of m6A proteins inside tumor cells has been little studied so far. Interestingly, recent evidence indicates that m6A methyltransferases are not always confined to the nucleus, suggesting that epitranscriptomic factors may also have multiple oncogenic roles beyond m6A that still represent an unexplored field. To date novel epigenetic drugs targeting m6A modifiers, such as METTL3 inhibitors, are entering into clinical trials, therefore, the study of the potential onco-properties of m6A effectors beyond m6A is required. Here we will provide an overview of methylation-independent functions of the m6A players in cancer, describing the molecular mechanisms involved and the future implications for therapeutics.

6.
Mol Cell ; 84(12): 2320-2336.e6, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906115

ABSTRACT

2'-O-methylation (Nm) is a prominent RNA modification well known in noncoding RNAs and more recently also found at many mRNA internal sites. However, their function and base-resolution stoichiometry remain underexplored. Here, we investigate the transcriptome-wide effect of internal site Nm on mRNA stability. Combining nanopore sequencing with our developed machine learning method, NanoNm, we identify thousands of Nm sites on mRNAs with a single-base resolution. We observe a positive effect of FBL-mediated Nm modification on mRNA stability and expression level. Elevated FBL expression in cancer cells is associated with increased expression levels for 2'-O-methylated mRNAs of cancer pathways, implying the role of FBL in post-transcriptional regulation. Lastly, we find that FBL-mediated 2'-O-methylation connects to widespread 3' UTR shortening, a mechanism that globally increases RNA stability. Collectively, we demonstrate that FBL-mediated Nm modifications at mRNA internal sites regulate gene expression by enhancing mRNA stability.


Subject(s)
3' Untranslated Regions , RNA Stability , RNA, Messenger , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methylation , RNA Processing, Post-Transcriptional , Nanopore Sequencing/methods , Transcriptome , Gene Expression Regulation, Neoplastic , Machine Learning
7.
Article in English | MEDLINE | ID: mdl-38912733

ABSTRACT

In cell biology, ribosomal RNA (rRNA) 2'O-methyl (2'-O-Me) is the most prevalent post-transcriptional chemical modification contributing to ribosome heterogeneity. The modification involves a family of small nucleolar RNAs (snoRNAs) and is specified by box C/D snoRNAs (SNORDs). Given the importance of ribosome biogenesis for skeletal muscle growth, we asked if rRNA 2'-O-Me in nascent ribosomes synthesized in response to a growth stimulus is an unrecognized mode of ribosome heterogeneity in muscle. To determine the pattern and dynamics of 2'-O-Me rRNA, we used a sequencing-based profiling method called RiboMeth-seq. We applied this method to tissue-derived rRNA of skeletal muscle and rRNA specifically from the muscle fiber using an inducible myofiber-specific RiboTag mouse in sedentary and mechanically overloaded conditions. These analyses were complemented by myonuclear-specific small RNA sequencing to profile SNORDs and link the rRNA epitranscriptome to known regulatory elements generated within the muscle fiber. We demonstrate for the first time that mechanical overload of skeletal muscle 1) induces decreased 2'-O-Me at a subset of skeletal muscle rRNAand 2) alters the SNORD profile in isolated myonuclei. These findings point to a transient diversification of the ribosome pool via 2'-O-Me during growth and adaptation in skeletal muscle. These findings suggest changes in ribosome heterogeneity at the 2'-O-Me level during muscle hypertrophy and lay the foundation for studies investigating the functional implications of these newly identified "growth-induced" ribosomes.

8.
Cell Rep ; 43(6): 114369, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38878288

ABSTRACT

Epitranscriptomics represents a further layer of gene expression regulation. Specifically, N6-methyladenosine (m6A) regulates RNA maturation, stability, degradation, and translation. Regarding microRNAs (miRNAs), while it has been reported that m6A impacts their biogenesis, the functional effects on mature miRNAs remain unclear. Here, we show that m6A modification on specific miRNAs weakens their coupling to AGO2, impairs their function on target mRNAs, determines their delivery into extracellular vesicles (EVs), and provides functional information to receiving cells. Mechanistically, the intracellular functional impairment is caused by m6A-mediated inhibition of AGO2/miRNA interaction, the EV loading is favored by m6A-mediated recognition by the RNA-binding protein (RBP) hnRNPA2B1, and the EV-miRNA function in the receiving cell requires their FTO-mediated demethylation. Consequently, cells express specific miRNAs that do not impact endogenous transcripts but provide regulatory information for cell-to-cell communication. This highlights that a further level of complexity should be considered when relating cellular dynamics to specific miRNAs.


Subject(s)
Adenosine , Argonaute Proteins , Cell Communication , Extracellular Vesicles , MicroRNAs , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Extracellular Vesicles/metabolism , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , HEK293 Cells , Animals
9.
Trends Parasitol ; 40(7): 541-543, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38910099

ABSTRACT

Small-Saunders et al. uncovered a new facet of artemisinin resistance in Plasmodium in which parasites use a previously underexplored arm of stress response mechanisms. Through altered epitranscriptomic modifications on tRNA, changed translation patterns adapt resistant cells to facilitate entry into a quiescent-like state which provides the parasite an escape from many drugs.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Plasmodium falciparum , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Artemisinins/pharmacology , Drug Resistance/genetics , Antimalarials/pharmacology , Humans , Protein Biosynthesis/drug effects , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy
10.
RNA Biol ; 21(1): 23-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38913872

ABSTRACT

Ribosomes are large macromolecular complexes composed of both proteins and RNA, that require a plethora of factors and post-transcriptional modifications for their biogenesis. In human mitochondria, the ribosomal RNA is post-transcriptionally modified at ten sites. The N4-methylcytidine (m4C) methyltransferase, METTL15, modifies the 12S rRNA of the small subunit at position C1486. The enzyme is essential for mitochondrial protein synthesis and assembly of the mitoribosome small subunit, as shown here and by previous studies. Here, we demonstrate that the m4C modification is not required for small subunit biogenesis, indicating that the chaperone-like activity of the METTL15 protein itself is an essential component for mitoribosome biogenesis.


Subject(s)
Methyltransferases , Mitochondrial Ribosomes , RNA, Ribosomal , Humans , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Ribosomes/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics
11.
J Leukoc Biol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721720

ABSTRACT

N6-methyladenosine (m6A) is the most common modification of eukaryotic RNA. m6A participates in RNA splicing, nuclear export, translation, and degradation through regulation by methyltransferases, methylation readers, and demethylases, affecting mRNA stability and translation efficiency. Through the dynamic and reversible regulatory network composed of " Writers-Erasers-Readers", m6A modification plays a unique role in the process of hematopoiesis. Acute myeloid leukemia (AML) is a heterogeneous disease characterized by malignant proliferation of hematopoietic stem cells/progenitor cells. Many studies have shown that m6A-related proteins are abnormally expressed in AML and play an important role in the occurrence and development of AML, acting as carcinogenic or anticancer factors. Here, we describe the mechanisms of action of reversing m6A modification in hematopoiesis and AML occurrence and progression to provide a basis for further research on the role of m6A methylation and its regulatory factors in normal hematopoiesis and AML, to ultimately estimate its potential clinical value.

12.
Methods Mol Biol ; 2807: 229-242, 2024.
Article in English | MEDLINE | ID: mdl-38743232

ABSTRACT

The identification of RNA modifications at single nucleotide resolution has become an emerging area of interest within biology and specifically among virologists seeking to ascertain how this untapped area of RNA regulation may be altered or hijacked upon viral infection. Herein, we describe a straightforward biochemical approach modified from two original published Ψ mapping protocols, BID-seq and PRAISE, to specifically identify pseudouridine modifications on mRNA transcripts from an HIV-1 infected T cell line. This protocol could readily be adapted for other viral infected cell types and additionally for populations of purified virions from infected cells.


Subject(s)
HIV-1 , Pseudouridine , RNA, Messenger , RNA, Viral , Pseudouridine/metabolism , Pseudouridine/genetics , HIV-1/genetics , Humans , RNA, Viral/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , HIV Infections/virology , HIV Infections/genetics , RNA Processing, Post-Transcriptional , Cell Line
13.
Cell Mol Life Sci ; 81(1): 229, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780787

ABSTRACT

RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.


Subject(s)
Cell Differentiation , Macrophages , Monocytes , Transcriptome , Macrophages/metabolism , Macrophages/cytology , Macrophages/immunology , Cell Differentiation/genetics , Humans , Monocytes/metabolism , Monocytes/cytology , Gene Expression Regulation , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Polarity/genetics , RNA/genetics , RNA/metabolism , Adenosine/metabolism
14.
Int Immunopharmacol ; 134: 112222, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728881

ABSTRACT

Cardiovascular disease is currently the number one cause of death endangering human health. There is currently a large body of research showing that the development of cardiovascular disease and its complications is often accompanied by inflammatory processes. In recent years, epitranscriptional modifications have been shown to be involved in regulating the pathophysiological development of inflammation in cardiovascular diseases, with 6-methyladenine being one of the most common RNA transcriptional modifications. In this review, we link different cardiovascular diseases, including atherosclerosis, heart failure, myocardial infarction, and myocardial ischemia-reperfusion, with inflammation and describe the regulatory processes involved in RNA methylation. Advances in RNA methylation research have revealed the close relationship between the regulation of transcriptome modifications and inflammation in cardiovascular diseases and brought potential therapeutic targets for disease diagnosis and treatment. At the same time, we also discussed different cell aspects. In addition, in the article we also describe the different application aspects and clinical pathways of RNA methylation therapy. In summary, this article reviews the mechanism, regulation and disease treatment effects of m6A modification on inflammation and inflammatory cells in cardiovascular diseases in recent years. We will discuss issues facing the field and new opportunities that may be the focus of future research.


Subject(s)
Cardiovascular Diseases , Epigenesis, Genetic , Inflammation , Humans , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Inflammation/genetics , Animals , Adenine/analogs & derivatives , Transcriptome , Methylation
15.
BMC Genomics ; 25(1): 528, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807060

ABSTRACT

BACKGROUND: Direct RNA sequencing (dRNA-seq) on the Oxford Nanopore Technologies (ONT) platforms can produce reads covering up to full-length gene transcripts, while containing decipherable information about RNA base modifications and poly-A tail lengths. Although many published studies have been expanding the potential of dRNA-seq, its sequencing accuracy and error patterns remain understudied. RESULTS: We present the first comprehensive evaluation of sequencing accuracy and characterisation of systematic errors in dRNA-seq data from diverse organisms and synthetic in vitro transcribed RNAs. We found that for sequencing kits SQK-RNA001 and SQK-RNA002, the median read accuracy ranged from 87% to 92% across species, and deletions significantly outnumbered mismatches and insertions. Due to their high abundance in the transcriptome, heteropolymers and short homopolymers were the major contributors to the overall sequencing errors. We also observed systematic biases across all species at the levels of single nucleotides and motifs. In general, cytosine/uracil-rich regions were more likely to be erroneous than guanines and adenines. By examining raw signal data, we identified the underlying signal-level features potentially associated with the error patterns and their dependency on sequence contexts. While read quality scores can be used to approximate error rates at base and read levels, failure to detect DNA adapters may be a source of errors and data loss. By comparing distinct basecallers, we reason that some sequencing errors are attributable to signal insufficiency rather than algorithmic (basecalling) artefacts. Lastly, we generated dRNA-seq data using the latest SQK-RNA004 sequencing kit released at the end of 2023 and found that although the overall read accuracy increased, the systematic errors remain largely identical compared to the previous kits. CONCLUSIONS: As the first systematic investigation of dRNA-seq errors, this study offers a comprehensive overview of reproducible error patterns across diverse datasets, identifies potential signal-level insufficiency, and lays the foundation for error correction methods.


Subject(s)
Nanopore Sequencing , Sequence Analysis, RNA , Sequence Analysis, RNA/methods , Nanopore Sequencing/methods , Nanopores , Humans , Animals , RNA/genetics , High-Throughput Nucleotide Sequencing/methods
16.
J Leukoc Biol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657004

ABSTRACT

N6-methyladenosine (m6A) is a RNA modification that can regulate post-transcriptional processes including RNA stability, translation, splicing and nuclear export. In CD4+ lymphocytes, m6A modifications have been demonstrated to play a role in early differentiation processes. The role of m6A in CD4+ T cell activation and effector function remains incompletely understood. To assess the role of m6A in CD4+ T lymphocyte activation and function, we assessed the transcriptome-wide m6A landscape of human primary CD4+ T cells by methylated RNA immunoprecipitation (meRIP) sequencing. Stimulation of the T cells impacted the m6A pattern of hundreds of transcripts including tumor necrosis factor (TNF). m6A methylation was increased on TNF mRNA after activation, predominantly in the 3' untranslated region (UTR) of the transcript. Manipulation of m6A levels in primary human T cells, the directly affected the expression of TNF. Furthermore, we identified that the m6A reader protein YT521-B homology domain family-2 (YTHDF2) binds m6A-methylated TNF mRNA, and promotes its degradation. Taken together, this study demonstrates that TNF expression in CD4+ T lymphocytes is regulated via m6A and YTHDF2, thereby providing novel insight into the regulation of T cell effector functions.


T helper cells are immune cells of the adaptive immune system. These cells are activated by antigen presenting cells that have engulfed invading pathogens. When the T helper cell is activated, it will produce and excrete signaling molecules (cytokines) that activate other immune cells in order to eradicate these pathogens. Cytokines are formed after translation of RNA molecules that encode for these cytokines. In this study it was found that a modification (m6A) on RNA molecules is involved in the regulation of the life cycle of these RNA molecules. It was found that the degradation of RNA encoding for cytokine TNF was mediated through m6A and its 'reader' protein YTHDF2 in activated T helper cells. As TNF promotes inflammation, reduction of TNF production through this mechanism dampens the immune response and therefore prevents chronic inflammation.

17.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612806

ABSTRACT

N6-methyladenosine (m6A) is essential for RNA metabolism in cells. The YTH domain, conserved in the kingdom of Eukaryotes, acts as an m6A reader that binds m6A-containing RNA. In plants, the YTH domain is involved in plant hormone signaling, stress response regulation, RNA stability, translation, and differentiation. However, little is known about the YTH genes in tea-oil tree, which can produce edible oil with high nutritional value. This study aims to identify and characterize the YTH domains within the tea-oil tree (Camellia chekiangoleosa Hu) genome to predict their potential role in development and stress regulation. In this study, 10 members of the YTH family containing the YTH domain named CchYTH1-10 were identified from C. chekiangoleosa. Through analysis of their physical and chemical properties and prediction of subcellular localization, it is known that most family members are located in the nucleus and may have liquid-liquid phase separation. Analysis of cis-acting elements in the CchYTH promoter region revealed that these genes could be closely related to abiotic stress and hormones. The results of expression profiling show that the CchYTH genes were differentially expressed in different tissues, and their expression levels change under drought stress. Overall, these findings could provide a foundation for future research regarding CchYTHs in C. chekiangoleosa and enrich the world in terms of epigenetic mark m6A in forest trees.


Subject(s)
Camellia , Camellia/genetics , Cell Differentiation , Droughts , RNA , Tea
18.
Turk J Biol ; 48(1): 24-34, 2024.
Article in English | MEDLINE | ID: mdl-38665783

ABSTRACT

Background/aim: Cancer is a complex disease that involves both genetic and epigenetic factors. While emerging evidence clearly suggests that changes in epitranscriptomics play a crucial role in cancer pathogenesis, a comprehensive understanding of the writers, erasers, and readers of epitranscriptomic processes, particularly under apoptotic conditions remains lacking. The aim of this study was to uncover the changes in the expression of m6A RNA modifiers under apoptotic conditions across various cancer cell lines. Materials and methods: Initially, we quantified the abundance of m6A RNA modifiers in cervical (HeLa and ME180), breast (MCF7 and MDA-MB-231), lung (A549 and H1299), and colon (Caco-2 and HCT116) cancer cell lines using qPCR. Subsequently, we induced apoptosis using cisplatin and tumor necrosis factor-alpha (TNF-α) to activate intrinsic and extrinsic pathways, respectively, and assessed apoptosis rates via flow cytometry. Further, we examined the transcript abundance of m6A RNA modifiers under apoptotic conditions in cervical, breast, and lung cancer cell lines using qPCR. Results: Overall, treatment with cisplatin increased the abundance of m6A modifiers, whereas TNF-α treatment decreased their expression in cervical, breast, and lung cancer cell lines. Specifically, cisplatin-induced apoptosis, but not TNF-α-mediated apoptosis, resulted in decreased abundance of METTL14 and FTO transcripts. Additionally, cisplatin treatment drastically reduced the abundance of IGF2BP2 and IGF2BP3 readers. Conclusion: These results suggest that the differential response of cancer cells to apoptotic inducers may be partially attributed to the expression of m6A RNA modifiers.

19.
Front Oncol ; 14: 1366223, 2024.
Article in English | MEDLINE | ID: mdl-38544837

ABSTRACT

Ovarian Cancer (OC) ranks as a prominent contributor to mortality among female reproductive system associated cancers, particularly the prevalent subtype epithelial Ovarian Cancer (EOC). Despite advancements in treatment modalities, the prognosis for OC patients remains grim due to limitation of current therapeutic methodology such as high cytotoxicity of chemotherapeutic agents and tumor relapse making existing chemotherapy ineffective. Recognizing the limitations of a broad-spectrum approach to treating OC, a shift toward targeted therapies aligning with unique molecular features is imperative. This shift stems from an incomplete understanding of OC's origin, distinguishing it from extensively researched malignancies such as cervical or colon cancer. At the molecular level, postsynthetic modifications-DNA, RNA, and protein-shape transcriptional, posttranscriptional, and posttranslational processes. Posttranscriptional regulatory mechanisms, including RNA modifications are termed epitranscriptomic and play critical roles in this process. For more than five decades, 100+ RNA post-synthetic modifications, notably N6-methyladenosine (m6A), most prevalent RNA modification in mammals, dynamically regulate messenger RNA (mRNA), and non-coding RNA (ncRNA) life orchestrated via writers, erasers, and readers. The disruption of m6A modifications are found in several cancers, including OC, underscores pivotal role of m6A. This review focused on m6A modifications in coding and non-coding RNAs, emphasizing their role as prognostic markers in OC and their impact on development, migration, invasion, and drug resistance. Additionally, RNA-modified regulators have been explored as potential molecular and therapeutic targets, offering an innovative approach to combatting this challenging malignancy.

20.
Methods Mol Biol ; 2784: 147-161, 2024.
Article in English | MEDLINE | ID: mdl-38502484

ABSTRACT

N6-methyladenosine (m6A) is an abundant mRNA modification which plays important roles in regulating RNA function and gene expression. Traditional methods for visualizing mRNAs within cells cannot distinguish m6A-modified and unmodified versions of the target transcript, thus limiting our understanding of how and where methylated transcripts are localized within cells. Here, we describe DART-FISH, a visualization technique which enables simultaneous detection of both m6A-modified and unmodified target transcripts. DART-FISH combines m6A-dependent C-to-U editing with mutation-selective fluorescence in situ hybridization to specifically detect methylated and unmethylated transcript copies, enabling the investigation of m6A stoichiometry and methylated mRNA localization in single cells.


Subject(s)
RNA , In Situ Hybridization, Fluorescence/methods , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...