Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Cell Physiol Biochem ; 58(4): 445-457, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39230349

ABSTRACT

BACKGROUND/AIMS: Lemons (Citrus limon ) contain various nutrients and are among the most popular citrus fruit. Besides their antioxidant, anticancer, antibacterial, and anti-inflammatory properties, clinical studies have indicated their anti-allergic properties. METHODS: Using the differential-interference contrast (DIC) microscopy, we examined the effects of lemon juice and peel constituents, such as citric acid, ascorbic acid, hesperetin and eriodictyol, on the degranulation from rat peritoneal mast cells. Using fluorescence imaging with a water-soluble dye, Lucifer Yellow, we also examined their effects on the deformation of the plasma membrane. RESULTS: Lemon juice dose-dependently decreased the number of degranulated mast cells. At concentrations equal to or higher than 0.25 mM, citric acid, hesperetin, and eriodictyol significantly reduced the number of degranulating mast cells in a dose-dependent manner, while ascorbic acid required much higher doses to exert significant effects. At 1 mM, citric acid, hesperetin, and eriodictyol almost completely inhibited exocytosis and washed out the Lucifer Yellow trapped on the mast cell surface, while ascorbic acid did not. CONCLUSION: This study provides in vitro evidence for the first time that lemon constituents, such as citric acid, hesperetin, and eriodictyol, potently exert mast cell-stabilizing properties. These properties are attributable to their inhibitory effects on plasma membrane deformation in degranulating mast cells.


Subject(s)
Ascorbic Acid , Citrus , Flavanones , Hesperidin , Mast Cells , Animals , Mast Cells/drug effects , Mast Cells/metabolism , Citrus/chemistry , Rats , Ascorbic Acid/pharmacology , Male , Hesperidin/pharmacology , Hesperidin/chemistry , Flavanones/pharmacology , Flavanones/chemistry , Citric Acid/pharmacology , Citric Acid/chemistry , Cell Degranulation/drug effects , Fruit and Vegetable Juices/analysis , Peritoneum/cytology , Rats, Sprague-Dawley , Exocytosis/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Fruit/chemistry , Isoquinolines
2.
J Ethnopharmacol ; 337(Pt 1): 118761, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216775

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Blossom of Citrus aurantium L. var. amara Engl. (CAVA) has been popularly consumed as folk medicine and dietary supplement owing to its various beneficial effects and especially anti-obesity potential. Our previous study predicted that eriodictyol was probably one of the key active compounds of the total flavonoids from blossom of CAVA. However, effects of eriodictyol in anti-obesity were still elusive. AIM OF THE STUDY: This study was performed to explore the precise role of eriodictyol in white adipose tissue (WAT) browning and hepatic lipid metabolism, and simultaneously, to verify the impact of eriodictyol on the total flavonoids of CAVA in losing weight. MATERIALS AND METHODS: The pancreas lipase assay was conducted and oleic acid-induced HepG2 cells were established to preliminarily detect the lipid-lowering potential of eriodictyol. Then, high fat diet-induced obesity (DIO) mouse model was established for in vivo studies. The biochemical indicators of mice were tested by commercial kits. The histopathological changes of WAT and liver in mice were tested by H&E staining, Oil Red O staining and Sirius Red staining. Immunohistochemical, Western blot assay, as well as RT-qPCR analysis were further performed. Additionally, molecular docking assay was used to simulate the binding of eriodictyol with potential target proteins. RESULTS: In vitro studies showed that eriodictyol intervention potently inhibited pancreatic lipase activity and reversed hepatic steatosis in oleic acid-induced HepG2 cells. Consistently, long-term medication of eriodictyol also effectively prevented obesity and improved lipid and glucose metabolism in diet-induced obesity mice. Obesity-induced histopathological changes in iWAT, eWAT and BAT, and abnormal expression levels of IL-10, IL-6 and TNF-α in iWAT of DIO mice were also significantly reversed by eriodictyol treatment. Eriodictyol administration significantly and potently promoted browning of iWAT by increasing expression levels of thermogenic marker protein of UCP1, as well as brown adipocyte-specific genes of PGC-1α, SIRT1 and AMPKα1. Further assays revealed that eriodictyol enhanced mitochondrial function, as shown by an increase in compound IV activity and the expression of tricarboxylic acid cycle-related genes. Besides, eriodictyol addition markedly reversed hepatic damages and hepatic inflammation, and enhanced hepatic lipid metabolism in DIO mice, as evidenced by its regulation on p-ACC, CPT1-α, UCP1, PPARα, PGC-1α, SIRT1 and p-AMPKα expression. Molecular docking results further validated that AMPK/SIRT1 pathway was probably the underlying mechanisms by which eriodictyol acted. CONCLUSION: Eriodictyol exhibited significant anti-obesity effect, which was comparable to that of the total flavonoids from blossom of CAVA. These findings furnished theoretical basis for the application of eriodictyol in weight loss.

3.
Sci Rep ; 14(1): 18853, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143134

ABSTRACT

Eriodictyol, a flavonoid distributed in citrus fruits, has been known to exhibit anti-inflammatory activity. In this study, destabilized medial meniscus (DMM)-induced OA model was used to investigate the protective role of eriodictyol on OA. Meanwhile, we used an IL-1ß-stimulated human osteoarthritis chondrocytes model to investigate the anti-inflammatory mechanism of eriodictyol on OA. The production of nitric oxide was detected by Griess reaction. The productions of MMP1, MMP3, and PGE2 were detected by ELISA. The expression of LXRα, ABCA1, PI3K, AKT, and NF-κB were measured by western blot analysis. The results demonstrated that eriodictyol could alleviate DMM-induced OA in mice. In vitro, eriodictyol inhibited IL-1ß-induced NO, PGE2, MMP1, and MMP3 production in human osteoarthritis chondrocytes. Eriodictyol also suppressed the phosphorylation of PI3K, AKT, NF-κB p65, and IκBα induced by IL-1ß. Meanwhile, eriodictyol significantly increased the expression of LXRα and ABCA1. Furthermore, eriodictyol disrupted lipid rafts formation through reducing the cholesterol content. And cholesterol replenishment experiment showed that adding water-soluble cholesterol could reverse the anti-inflammatory effect of eriodictyol. In conclusion, the results indicated eriodictyol inhibited IL-1ß-induced inflammation in human osteoarthritis chondrocytes through suppressing lipid rafts formation, which subsequently inhibiting PI3K/AKT/NF-κB signaling pathway.


Subject(s)
Chondrocytes , Flavanones , NF-kappa B , Osteoarthritis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Flavanones/pharmacology , Animals , Humans , Signal Transduction/drug effects , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Mice , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Interleukin-1beta/metabolism , Liver X Receptors/metabolism , Male , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Disease Progression , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Nitric Oxide/metabolism , Mice, Inbred C57BL
4.
Curr Pharm Des ; 30(26): 2086-2107, 2024.
Article in English | MEDLINE | ID: mdl-38920073

ABSTRACT

BACKGROUND: At present, drug development for treating Alzheimer's disease (AD) is still highly challenging. Eriodictyol (ERD) has shown great potential in treating AD, but its molecular mechanism is unknown. OBJECTIVE: We aimed to explore the potential targets and mechanisms of ERD in the treatment of AD through network pharmacology, molecular docking, and molecular dynamics simulations. METHODS: ERD-related targets were predicted based on the CTD, SEA, PharmMapper, Swiss TargetPrediction, and ETCM databases, and AD-related targets were predicted through the TTD, OMIM, DrugBank, GeneCards, Disgenet, and PharmGKB databases. Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomics analyses (KEGG) were used to analyse the potential targets and key pathways of the anti-AD effect of ERD. Subsequently, potential DEGs affected by AD were analysed using the AlzData database, and their relationships with ERD were evaluated through molecular docking and molecular dynamics simulations. RESULTS: A total of 198 ERD-related targets, 3716 AD-related targets, and 122 intersecting targets were identified. GO annotation analysis revealed 1497 biological processes, 78 cellular components, and 132 molecular functions of 15 core targets. KEGG enrichment analysis identified 168 signalling pathways. We ultimately identified 9 DEGs associated with AD through analysis of the AlzData data. Molecular docking results showed good affinity between the selected targets and ERD, with PTGS2, HSP90AA1, and BCL2. The interactions were confirmed by molecular dynamics simulations. CONCLUSION: ERD exerts anti-AD effects through multiple targets, pathways, and levels, providing a theoretical foundation and valuable reference for the development of ERD as a natural anti-AD drug.


Subject(s)
Alzheimer Disease , Flavanones , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Flavanones/pharmacology , Flavanones/chemistry , Molecular Dynamics Simulation , Network Pharmacology
5.
Article in English | MEDLINE | ID: mdl-38847263

ABSTRACT

BACKGROUND: The clinical use of doxorubicin (DOX), an anthracycline antibiotic with broad-spectrum applications against various malignant tumors, is limited by doxorubicininduced cardiotoxicity (DIC). Eriodictyol (ERD) has shown cardioprotective effects, but the mechanism of its protective effect on DIC remains unknown. AIMS: This study aimed to explore the potential mechanisms by which ERD confers protection against DIC. METHODS: ERD and DIC targets were identified from the TCMSP, PharmMaper, SwissTargetPrediction, TargetNet, BATMAN, GeneCards, and PharmGKB databases. Differential gene expression data between DIC and normal tissues were extracted from the GEO database. A protein‒ protein interaction (PPI) network of the intersecting ERD-DIC targets was constructed using the STRING platform and visualized with Cytoscape 3.10.0 software. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for ERD-DIC cross-targets were conducted. Validation included molecular docking with AutoDock Tools software and molecular dynamics simulations with Gromacs 2019.6 software. RESULTS: Network pharmacology analysis revealed 43 intersecting ERD-DIC targets, including 6 key targets. GO functional enrichment analysis indicated that the intersecting targets were enriched in 550 biological processes, 45 cell components, and 41 molecular functions. KEGG pathway enrichment analysis identified 114 enriched signaling pathways. Molecular docking revealed a strong binding affinity between ERD and 6 key targets, as well as multiple targets within the ROS pathway. Molecular dynamics simulations indicated that ERD has favorable binding with 3 crucial targets. CONCLUSION: The systematic network pharmacology analysis suggests that ERD may mitigate DIC through multiple targets and pathways, with the ROS pathway potentially playing a crucial role. These findings provide a reference for foundational research and clinical applications of ERD in treating DIC.

6.
Nat Prod Res ; : 1-5, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712509

ABSTRACT

Pistacia chinensis is used as a decorative tree and currently studied as a source of biofuels. Besides, its parts and extracts are endowed with several therapeutic uses which have been widely explored in traditional medicine and that are related to its rich composition in phytochemicals. Molecular docking and enzymatic inhibition tests were used to study the activity of eriodictyol, a flavonoid extracted from the barks of P. chinensis, against ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and aldose reductase (ALR2). The compound was highlighted as a micromolar inhibitor in vitro (IC50 = 263.76 ± 1.32 µM and 4.21 ± 0.94 µM, respectively) and docking showed that eriodictyol efficiently targets the binding sites of the enzymes. In conclusion, this study unveils the potential of eriodictyol on enzymes that are involved in immunostimulation and in complications of diabetes mellitus.

7.
J Tradit Complement Med ; 14(2): 203-214, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481546

ABSTRACT

Doxorubicin (DOX), an anthracycline chemotherapy, plays a prominent role in the treatment of various cancers. Unfortunately, its nephrotoxic effects limit its dosing and expose cancer survivors to increased morbidity and mortality. This study examined the nephroprotective effects of eriodictyol, a natural polyphenolic flavanone, in DOX-treated rats and the molecular pathways involved. Forty adult rats were divided into five groups (8/group): Control; eriodictyol (20 mg/kg/day); DOX (2.5 mg/kg, twice/week); DOX + Eriodictyol; and DOX + Eriodictyol + Compound C (CC), an AMPK inhibitor (0.2 mg/kg/day). Experiments continued for 21 days. Eriodictyol administration in DOX-treated rats reduced their fasting glucose levels and increased food intake, final body weight, and kidney weight, improved kidney function, prevented glomerular and tubular damage, and reduced collagen deposition and renal TGF-ß1 mRNA levels. Furthermore, eriodictyol reduced their renal levels of Bax, caspase-3, and cytochrome-c; and enhanced the levels of Bcl2. Noticeably, in the kidneys of both controls and DOX-treated rats, eriodictyol increased levels of phosphorylated-AMPK(Thr172) but not AMPK mRNA nor protein levels. Also, in the same two groups, eriodictyol increased mRNA and nuclear Nrf2 levels, and levels of glutathione, superoxide dismutase, catalase, and hemeoxygenase-1, but reduced the levels of malonaldehyde, TNF-α, and mRNA, total, and nuclear levels of NF-κB. All the detected nephroprotective effects and improvements in the levels of markers of oxidation and inflammation were prevented by coadministration of CC. In conclusion, the coadministration of eriodictyol and DOX alleviates DOX-induced renal damage. In renal tissues, eriodictyol is an AMPK activator and its nephroprotective antioxidant and anti-inflammatory effects are AMPK-dependent.

8.
Environ Toxicol ; 39(6): 3389-3399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38445457

ABSTRACT

Breast cancer stands as the predominant malignancy and primary cause of cancer-related mortality among females globally. Approximately 25% of breast cancers exhibit HER2 overexpression, imparting a more aggressive tumor phenotype and correlating with poor prognoses. Patients with metastatic breast cancer receiving HER2 tyrosine kinase inhibitors (HER2 TKIs), such as Lapatinib, develop acquired resistance within a year, posing a critical challenge in managing this disease. Here, we explore the potential of Artemisia argyi, a Chinese herbal medicine known for its anti-cancer properties, in mitigating HER2 TKI resistance in breast cancer. Analysis of the Cancer Genome Atlas (TCGA) revealed diminished expression of transmembrane serine protease 2 (TMPRSS2), a subfamily of membrane proteolytic enzymes, in breast cancer patients, correlating with unfavorable outcomes. Intriguingly, lapatinib-responsive patients exhibited higher TMPRSS2 expression. Our study unveiled that the compounds from Artemisia argyi, eriodictyol, and umbelliferone could inhibit the growth of lapatinib-resistant HER2-positive breast cancer cells. Mechanistically, they suppressed HER2 kinase activation by enhancing TMPRSS2 activity. Our findings propose TMPRSS2 as a critical determinant in lapatinib sensitivity, and Artemisia argyi emerges as a potential agent to overcome lapatinib via activating TMPRSS2 in HER2-positive breast cancer. This study not only unravels the molecular mechanisms driving cell death in HER2-positive breast cancer cells induced by Artemisia argyi but also lays the groundwork for developing novel inhibitors to enhance therapy outcomes.


Subject(s)
Artemisia , Breast Neoplasms , Drug Resistance, Neoplasm , Lapatinib , Plant Extracts , Receptor, ErbB-2 , Serine Endopeptidases , Lapatinib/pharmacology , Lapatinib/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Artemisia/chemistry , Female , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Cell Line, Tumor , Plant Extracts/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
9.
J Fungi (Basel) ; 10(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38392791

ABSTRACT

(2S)-eriodictyol (ERD) is a flavonoid widely found in citrus fruits, vegetables, and important medicinal plants with neuroprotective, cardioprotective, antidiabetic, and anti-obesity effects. However, the microbial synthesis of ERD is limited by complex metabolic pathways and often results in a low production performance. Here, we engineered Saccharomyces cerevisiae by fine-tuning the metabolism of the ERD synthesis pathway. The results showed that the ERD titer was effectively increased, and the intermediate metabolites levels were reduced. First, we successfully reconstructed the de novo synthesis pathway of p-coumaric acid in S. cerevisiae and fine-tuned the metabolic pathway using promoter engineering and terminator engineering for the high-level production of (2S)-naringenin. Subsequently, the synthesis of ERD was achieved by introducing the ThF3'H gene from Tricyrtis hirta. Finally, by multiplying the copy number of the ThF3'H gene, the production of ERD was further increased, reaching 132.08 mg L-1. Our work emphasizes the importance of regulating the metabolic balance to produce natural products in microbial cell factories.

10.
J Agric Food Chem ; 72(8): 4292-4300, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38364826

ABSTRACT

(2S)-Eriodictyol, a polyphenolic flavonoid, has found widespread applications in health supplements and food additives. However, the limited availability of plant-derived (2S)-eriodictyol cannot meet the market demand. Microbial production of (2S)-eriodictyol faces challenges, including the low catalytic efficiency of flavone 3'-hydroxylase/cytochrome P450 reductase (F3'H/CPR), insufficient precursor supplementation, and inadequate NADPH regeneration. This study systematically engineered Yarrowia lipolytica for high-level (2S)-eriodictyol production. In doing this, the expression of F3'H/CPR was balanced, and the supply of precursors was enhanced by relieving feedback inhibition of the shikimate pathway, promoting fatty acid ß-oxidation, and increasing the copy number of synthetic pathway genes. These strategies, combined with NADPH regeneration, achieved an (2S)-eriodictyol titer of 423.6 mg/L. Finally, in fed-batch fermentation, a remarkable 6.8 g/L (2S)-eriodictyol was obtained, representing the highest de novo microbial titer reported to date and paving the way for industrial production.


Subject(s)
Flavanones , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , NADP/metabolism , Metabolic Engineering , Metabolic Networks and Pathways
11.
Heliyon ; 10(3): e24401, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317873

ABSTRACT

NLRP3 involves in the development of hepatocellular carcinoma (HCC). Eriodictyol has shown its inhibitory effect on HCC cell proliferation. However, the underlying mechanism of eriodictyol in HCC is still unclear. This study aimed to explore the effect of and mechanism of eriodictyol on HCC. In this study, compared with eriodictyol (0 µM) group, eriodictyol significantly suppressed HepG2 cells (eriodictyol of 25, 50 and 100 µM) and Huh-7 cells (eriodictyol of 50 and 100 µM) viability, invasion, tube formation, metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions with IC50 of 45.63 µM and 78.26 µM in vitro, respectively. Besides, eriodictyol significantly repressed NLRP3 expression, and reduced the protein levels of NLRP3 inflammasome-related proteins, adapter protein ASC, caspase-1, interleukin (IL)-18, and IL-1ß in HepG2 (eriodictyol of 25, 50 and 100 µM) and Huh-7 cells (eriodictyol of 50 and 100 µM), respectively. Meanwhile, compared with control group, NLRP3 overexpression reversed the anti-metastatic effects of 100 µM eriodictyol on HCC cells invasion, tube formation, and metastasis-related genes MMP3, MMP16 and angiogenesis regulator VEGFA expressions, whereas NLRP3 knockdown enhanced the anti-metastatic effects of 100 µM eriodictyol on HCC cells. In vivo, compared with control group, eriodictyol significantly reduced the tumor growth, liver damage, inhibited the activation of NLRP3 inflammasome, and improved liver function, whereas NLRP3 overexpressing neutralized the anti-tumor effects of eriodictyol and degraded liver function. Hence, eriodictyol inhibited HCC cell viability, motility, angiogenesis and tumor growth via NLRP3 inflammasome inactivation both in vitro and in vivo.

12.
Appl Microbiol Biotechnol ; 108(1): 84, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38189953

ABSTRACT

The flavonoid naringenin is abundantly present in pomelo peels, and the unprocessed naringenin in wastes is not friendly for the environment once discarded directly. Fortunately, the hydroxylated product of eriodictyol from naringenin exhibits remarkable antioxidant and anticancer properties. The P450s was suggested promising for the bioconversion of the flavonoids, but less naturally existed P450s show hydroxylation activity to C3' of the naringenin. By well analyzing the catalytic mechanism and the conformations of the naringenin in P450, we proposed that the intermediate Cmpd I ((porphyrin)Fe = O) is more reasonable as key conformation for the hydrolyzation, and the distance between C3'/C5' of naringenin to the O atom of CmpdI determines the hydroxylating activity for the naringenin. Thus, the "flying kite model" that gradually drags the C-H bond of the substrate to the O atom of CmpdI was put forward for rational design. With ab initio design, we successfully endowed the self-sufficient P450-BM3 hydroxylic activity to naringenin and obtained mutant M5-5, with kcat, Km, and kcat/Km values of 230.45 min-1, 310.48 µM, and 0.742 min-1 µM-1, respectively. Furthermore, the mutant M4186 was screened with kcat/Km of 4.28-fold highly improved than the reported M13. The M4186 also exhibited 62.57% yield of eriodictyol, more suitable for the industrial application. This study provided a theoretical guide for the rational design of P450s to the nonnative compounds. KEY POINTS: •The compound I is proposed as the starting point for the rational design of the P450BM3 •"Flying kite model" is proposed based on the distance between O of Cmpd I and C3'/C5' of naringenin •Mutant M15-5 with 1.6-fold of activity than M13 was obtained by ab initio modification.


Subject(s)
Citrus , Flavanones , Hydroxylation , Flavonoids
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1017320

ABSTRACT

Objective:To investigate the efficacy of Balanophora involucrata Hook.f.in treatment of hyperuricemia(HUA)based on network pharmacology,molecular docking,and hyperuricemia models in vivo and in vitro,and to clarify the main targets of its active components and related signaling pathway mechanism.Methods:The potential targets of Balanophora involucrata Hook.f.in treatment of HUA were identified by Databases such as the Traditional Chinese Medicine Database in Taiwan,the Chinese Herbal Medicine Identification Database,Professional Chemical Database,TargetNet Database,SwissTargetPrediction Database,GeneCards,Therapeutic Target Database(TTD),DrugBank Database,DisGeNET Database,Online Mendelian Inheritance in Man(OMIM)Database,and Venny Database.STRING Database and Cytoscape software were used to construct the active component-predictive target network and protein-protein interaction(PPI)network for Balanophora involucrata Hook.f.;topological analysis was used to select the main active components and core targets;Gene Ontology(GO)functional and Kyoto Encyclopedia of Genes and Genomes(KEGG)signaling pathway enrichment analysis were performed by R software;AutoDock Vina software was used for molecular docking validation.The NRK-52E cells were divided into blank control group,blank administration group,model group,and different concentrations(2.0,10.0,and 50.0 μmol·L-1)of erythrodiol(EDT)groups.High-performance liquid chromatography culture(HPLC)was used to detect the uric acid(UA)levels in the cell culture supernatants in various groups.The male ICR mice were divided into blank control group,blank administration group,model group,and EDT group;the mice in the last two groups were used to prepare the HUA models;kits were used to detect the levels of UA,creatinine(Cr),and blood urea nitrogen(BUN)in serum of the mice in various groups;the bilateral kidney tissue of the mice was harvested and weighed;the kidney indexes of the mice in various groups were calculated;TUNEL staining was used to observe the apoptosis in kidney tissue of the mice in various groups;Western blotting method was used to detect the expression levels of protein kinase B(AKT),phosphorylated AKT(p-AKT),phosphoinositide 3-kinase(PI3K),phosphorylated PI3K(p-PI3K),B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax),and matrix metalloproteinase-9(MMP-9)proteins in kidney tissue of the mice in various groups.Results:Six active components of Balanophora involucrata Hook.f.were identified,involving 116 intersecting targets and 14 core targets.The enrichment analysis yielded 1 828 GO terms and 145 signaling pathways.The molecular docking results showed that EDT had good binding activity with MMP-9.The high uric acid cell experiment results showed that compared with blank control group,the UA level in the cells in model group was significantly increased(P<0.01);compared with model group,the UA levels in the cells in 2.0,10.0,and 50.0 μmol·L-1 EDT groups were significantly decreased(P<0.01).Compared with blank control group,the levels of UA,Cr,and BUN in serum of the mice in model group were increased(P<0.01),and the kidney indexes were significantly increased(P<0.01);compared with model group,the levels of UA,Cr,and BUN in serum of the mice in EDT group were decreased(P<0.05 or P<0.01),and the kidney index was significantly decreased(P<0.05 or P<0.01).Compared with blank control group,the number of apoptotic cells in kidney tissue of the mice in model group was increased;compared with model group,the number of the apoptotic cells in kidney tissue of the mice in EDT group was significantly decreased.Compared with blank control group,the ratios of p-AKT/AKT and p-PI3K/PI3K and expression level of Bcl-2 protein in kidney tissue of the mice in model group were significantly decreased(P<0.05 or P<0.01),while the expression levels of Bax and MMP-9 proteins were significantly increased(P<0.01);compared with model group,the ratios of p-AKT/AKT and p-PI3K/PI3K and expression level of Bcl-2 protein in kidney tissue of the mice in EDT group were significantly increased(P<0.05 or P<0.01),and the expression levels of Bax and MMP-9 proteins were significantly decreased(P<0.01).Conclusion:The active component of Balanophora involucrata Hook.f.,EDT,has a UA-decreasing effect and may inhibit the apoptosis and alleviate the kidney injury by activating the PI3K/AKT signaling pathway.

14.
China Pharmacy ; (12): 449-452, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1011326

ABSTRACT

OBJECTIVE To prepare the Eriodictyol chewable tablet and to evaluate its quality. METHODS The chewable tablet was prepared by the wetting granulation method by using microcrystalline cellulose (MCC) and mannitol as fillers, polyvinylpyrrolidone (PVP) as adhesive, citric acid and sucralose as flavor correction agents, magnesium stearate as lubricant. The comprehensive evaluation was conducted on Eriodictyol chewable tablets with the dosage of each excipient as a factor using the appearance, taste, flavor and texture as indicators. The ratio of excipients was optimized by orthogonal test, and the quality of Eriodictyol chewable tablets prepared by optimized formulation was evaluated in terms of appearance, weight difference, hardness, fragility, eriodictyol content, dissolution and content uniformity. RESULTS The optimal formulation was as follows: 26.4% eriodictyol (50 mg each piece), 45% mannitol, 25% MCC, 0.3% citric acid, 0.3% sucralose, 1% magnesium stearate, 2% PVP (preparing 5% solution using purified water). The scores of 3 batches of Eriodictyol chewable tablets in the validation test were 8.76, 8.75 and 8.80 (RSD=0.30%, n=3), respectively. The Eriodictyol chewable tablet had a complete appearance and a smooth surface; the average tablet weight was 192.57 mg, the average hardness was 57.36 N, the fragility was 0.09%, the average content of eriodictyol per tablet was 50.74 mg, the cumulative dissolution within 30 min was exceeding 80%, and the content uniformity was 5.51. CONCLUSIONS Eriodictyol chewable tablet prepared by optimal formulation conforms to the requirements of the 2020 edition of Chinese Pharmacopoeia.

15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021876

ABSTRACT

BACKGROUND:Glucocorticoid-induced osteoporosis is a common complication of systemic glucocorticoid therapy,which is mainly characterized by its inhibitory effect on osteoblasts.Eriodictyol inhibits osteoclast differentiation and osteoporosis-induced by ovariectomy.However,it is unclear whether eriodictyol regulates glucocorticoid-induced osteoblasts. OBJECTIVE:To explore whether eriodictyol plays a role in glucocorticoid-induced osteoblast apoptosis and its potential regulatory mechanisms. METHODS:Dexamethasone-pretreated osteoblasts MC3T3-E1 were treated with the different concentrations(0,0.5,1,2.5,5,10 μmol/L)of eriodictyol or 5 μmol/L 3-methyladenine,an autophagy inhibitor,and then transfected with heme oxygenase 1 overexpression vector(pcDNA-HMOX1)and empty vector(pcDNA vector).Cell proliferation and apoptosis were assessed by using cell counting kit-8 assay and flow cytometry,respectively.The activity of caspase-3 was detected with ELISA.Western blot assay was used to detect the protein expression of autophagy-related proteins LC3-Ⅱ/LC3-Ⅰ,p62,Atg5 and Atg12,the expression of apoptotic related proteins Bax and Bcl-2,as well as the protein expression of AMPK and p-AMPK. RESULTS AND CONCLUSION:Low concentrations of eriodictyol were non-toxic to MC3T3-E1 cells and promoted cell proliferation,as well as increased the expression of autophagy related proteins LC3-Ⅱ/LC3-Ⅰ,p62,Atg5 and Atg12,decreased caspase-3 enzyme activity,inhibited Bax protein expression,promoted Bcl-2 protein expression and reduced dexamethasone-induced apoptosis in MC3T3-E1 cells in a dose-dependent manner.Moreover,eriodictyol significantly promoted heme oxygenase 1 expression in osteoblasts,whereas overexpression of heme oxygenase 1 promoted AMPK phosphorylation,activated autophagy,and inhibited dexamethasone-induced osteoblast apoptosis.While 3-methyladenine treatment counteracted the effects of heme oxygenase 1 overexpression on MC3T3-E1 cells.To conclude,low concentration of Eriodictyol is non-toxic to osteoblasts and activates AMPK signaling pathway by upregulating the expression of heme oxygenase 1,thereby promoting autophagy and inhibiting dexamethasone-induced osteoblast apoptosis.Eriodictyol has great potential for the treatment of glucocorticoid-induced osteoporosis.

16.
Saudi Pharm J ; 31(11): 101817, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37915829

ABSTRACT

The pathogenesis of diabetic nephropathy (DN) involves cellular activation of oxidative stress and inflammation. Eriodictyol is a citrus-derived flavonoid with multiple pharmacological and protective effects in various conditions. The protective role of Eriodictyol against diabetes and diabetic nephropathy is less investigated. The current research aimed to explore the role of eriodictyol in protecting against DN prompted by streptozotocin in male rats and investigate some possible mechanisms of action. Diabetes was brought about in rats by an i.p injection of a lone dose (65 mg/kg). Five groups of rats were included (n = 8 each) as control (non-diabetic), eriodictyol (20 mg/kg, orally), STZ-diabetic, STZ + eriodictyol (20 mg/kg, orally), and STZ + eriodictyol (20 mg/kg, orally) + ML385 (30 µg/kg, i.p.). Kidney histology and the levels of some markers of kidney function, renal oxidative stress, and renal inflammation were analyzed in all groups of rats. Treatment with eriodictyol prevented the damage in the renal glomeruli and tubules and reduced renal immune cell infiltration in STZ-treated animals. It also spiked urinary creatinine excretion and reduced urine volume and urinary levels of albumin, monocyte chemoattractant protein 1 (MCP-1), urinary kidney injury molecule-1 (KIM-1), and nephrin in these diabetic rats. In addition, eriodictyol stimulated the nuclear protein accumulation of Nrf2 and boosted the expression of superoxide dismutase (SOD), glutathione (GSH), heme oxygenase-1 (HO-1), and catalase (CAT) in the diabetic rat kidneys. In concomitance, it reduced the nuclear levels of NF-κB and levels of interleukine-6 (IL-6), malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) and attenuated the reduction in renal ATP levels and the increase in the mitochondria transition pore opening (mtTPT). However, the administration of eriodictyol did not affect rats' body weights and fasting glucose and insulin levels but significantly reduced serum levels of cholesterol, triglycerides, LDL-c, and oxidized LDL-c (ox-LDL-c). In conclusion, eriodictyol prevents STZ-induced nephropathy by a hypolipidemic effect and concomitant antioxidant and anti-inflammatory effects mediated by activating Nrf2/NF-κB/antioxidant axis.

17.
Nutrients ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37892424

ABSTRACT

Eriodictyol occurs naturally in a variety of fruits and vegetables, and has drawn significant attention for its potential health benefits. This study aims to look into the effects of eriodictyol on acute liver injury (ALI) induced by LPS/D-GalN and elucidate its potential molecular biological mechanisms. A total of 47 targets were predicted for the treatment of ALI with eriodictyol, and the PI3K/AKT signaling pathway played a key role in the anti-ALI processing of this drug. The in vivo experiment showed that eriodictyol can effectively reduce liver function-related biochemical indicators such as ALT, AST, and AKP. Eriodictyol can also up-regulate the levels of SOD and GSH, and inhibit the release of IL-1ß, IL-6, and TNF-α. Additionally, TUNEL staining, immunohistochemistry, and RT-PCR experiments showed that eriodictyol activated the PI3K/AKT pathway and decreased the expression of Bax, caspase3, and caspase8 while increasing the expression of Bcl-2 m-RNA. Finally, molecular docking experiments and molecular dynamics simulations confirmed the stable binding between eriodictyol and PI3K, AKT molecules. This study showed that eriodictyol can activate the PI3K/AKT signaling pathway to alleviate ALI-related oxidative stress and apoptosis.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Signal Transduction , Liver/metabolism , Oxidative Stress , Apoptosis
18.
Molecules ; 28(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446775

ABSTRACT

Peanut hulls (Arachis hypogaea, Leguminosae), which are a side stream of global peanut processing, are rich in bioactive flavonoids such as luteolin, eriodictyol, and 5,7-dihydroxychromone. This study aimed to isolate these flavonoid derivatives by liquid-liquid chromatography with as few steps as possible. To this end, luteolin, eriodictyol and 5,7-dihydroxychromone were isolated from peanut hulls using two different techniques, high-performance countercurrent chromatography (HPCCC) and fast-centrifugal partition chromatography (FCPC). The suitability of the biphasic solvent system composed of n-hexane/ethyl acetate/methanol/water (1.0/1.0/1.0/1.5; v/v/v/v) was determined by the Conductor like Screening Model for Real Solvents (COSMO-RS), which allowed the partition ratio KD-values of the three main flavonoids to be calculated. After a one-step HPCCC separation of ~1000 mg of an ethanolic peanut hull extract, 15 mg of luteolin and 8 mg of eriodictyol were isolated with purities over 96%. Furthermore, 3 mg of 5,7-dihydroxychromone could be isolated after purification by semi-preparative reversed-phase liquid chromatography (semi-prep. HPLC) in purity of over 99%. The compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectroscopy (NMR).


Subject(s)
Countercurrent Distribution , Flavonoids , Countercurrent Distribution/methods , Solvents/chemistry , Flavonoids/analysis , Arachis , Luteolin/analysis , Plant Extracts/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
19.
Cell Biosci ; 13(1): 118, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37381062

ABSTRACT

BACKGROUND: Artemisia argyi (A. argyi), also called Chinese mugwort, has been widely used to control pandemic diseases for thousands of years since ancient China due to its anti-microbial infection, anti-allergy, and anti-inflammation activities. Therefore, the potential of A. argyi and its constituents in reducing the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was investigated in this study. RESULTS: Among the phytochemicals in A. argyi, eriodictyol and umbelliferone were identified to target transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) proteins, the essential factors for the cellular entry of SARS-CoV-2, in both FRET-based enzymatic assays and molecular docking analyses. These two ingredients of A. argyi suppressed the infection of ACE2-expressed HEK-293 T cells with lentiviral-based pseudo-particles (Vpp) expressing wild-type and variants of SARS-CoV-2 spike (S) protein (SARS-CoV-2 S-Vpp) via interrupting the interaction between S protein and cellular receptor ACE2 and reducing the expressions of ACE2 and TMPRSS2. Oral administration with umbelliferone efficiently prevented the SARS-CoV-2 S-Vpp-induced inflammation in the lung tissues of BALB/c mice. CONCLUSIONS: Eriodictyol and umbelliferone, the phytochemicals of Artemisia argyi, potentially suppress the cellular entry of SARS-CoV-2 by preventing the protein binding activity of the S protein to ACE2.

20.
Ecotoxicol Environ Saf ; 259: 115003, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37224777

ABSTRACT

Furan (C4H4O) is a naturally occurring organic compound. It develops as a result of the thermal processing of food and stimulates critical impairments in male reproductive tract. Eriodictyol (Etyol) is a natural dietary flavonoid possessing diverse pharmacological potentials. The recent investigation was proposed to ascertain the ameliorative potential of eriodictyol against furan-instigated reproductive dysfunctions. Male rats (n = 48) were classified into 4 groups: untreated/control, furan (10 mg/kg), furan+ eriodictyol (10 mg/kg + 20 mg/kg) and eriodictyol (20 mg/kg). At the 56th day of the trial, the protective effects of eriodictyol were evaluated by assessing various parameters. Results of the study revealed that eriodictyol attenuated furan-induced testicular toxicity in the biochemical profile by increasing catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) along with glutathione reductase (GSR) activities, whereas reduced the reactive oxygen species (ROS) along with malondialdehyde (MDA) levels. It also restored the normal state of sperm motility, viability, the count of hypo-osmotic tail swelled sperm as well as epididymal sperm number along with reduced sperm anomalies (morphological) tail, mid-piece and head. Furthermore, it elevated the decreased levels of luteinizing hormone (LH), plasma testosterone and follicle-stimulating hormone (FSH) as well steroidogenic enzymes (17ß-HSD, StAR protein & 3ß-HSD) and testicular anti-apoptotic marker (Bcl-2) expression, whereas, down-regulating apoptotic markers (Bax & Caspase-3) expression. Eriodictyol treatment also effectively mitigated the histopathological damages. The outcomes of the current study provide fundamental insights into the ameliorative potential of eriodictyol against furan-instigated testicular toxicity.


Subject(s)
Semen , Sperm Motility , Rats , Male , Animals , Rats, Wistar , Testis , Oxidative Stress , Antioxidants/metabolism , Testosterone , Apoptosis , Furans/toxicity , Furans/analysis
SELECTION OF CITATIONS
SEARCH DETAIL