Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
J Clin Med ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38929998

ABSTRACT

Background: Various representations exist in the literature to visualize electrocochleography (ECochG) recordings along the basilar membrane (BM). This lack of generalization complicates comparisons within and between cochlear implant (CI) users, as well as between publications. This study synthesized the visual representations available in the literature via a systematic review and provides a novel approach to visualize ECochG data in CI users. Methods: A systematic review was conducted within PubMed and EMBASE to evaluate studies investigating ECochG and CI. Figures that visualized ECochG responses were selected and analyzed. A novel visualization of individual ECochG data, the ZH-ECochG Bode plot (ZH = Zurich), was devised, and the recordings from three CI recipients were used to demonstrate and assess the new framework. Results: Within the database search, 74 articles with a total of 115 figures met the inclusion criteria. Analysis revealed various types of representations using different axes; their advantages were incorporated into the novel visualization framework. The ZH-ECochG Bode plot visualizes the amplitude and phase of the ECochG recordings along the different tonotopic regions and angular insertion depths of the recording sites. The graph includes the pre- and postoperative audiograms to enable a comparison of ECochG responses with the audiometric profile, and allows different measurements to be shown in the same graph. Conclusions: The ZH-ECochG Bode plot provides a generalized visual representation of ECochG data, using well-defined axes. This will facilitate the investigation of the complex ECochG potentials generated along the BM and allows for better comparisons of ECochG recordings within and among CI users and publications. The scripts used to construct the ZH-ECochG Bode plot are provided by the authors.

2.
Curr Biol ; 34(5): 1048-1058.e4, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38377998

ABSTRACT

Whether prestimulus oscillatory brain activity contributes to the generation of post-stimulus-evoked neural responses has long been debated, but findings remain inconclusive. We first investigated the hypothesized relationship via EEG recordings during a perceptual task with this correlational evidence causally probed subsequently by means of online rhythmic transcranial magnetic stimulation. Both approaches revealed a close link between prestimulus individual alpha frequency (IAF) and P1 latency, with faster IAF being related to shorter latencies, best explained via phase-reset mechanisms. Moreover, prestimulus alpha amplitude predicted P3 size, best explained via additive (correlational and causal evidence) and baseline shift mechanisms (correlational evidence), each with distinct prestimulus alpha contributors. Finally, in terms of performance, faster prestimulus IAF and shorter P1 latencies were both associated with higher task accuracy, while lower prestimulus alpha amplitudes and higher P3 amplitudes were associated with higher confidence ratings. Our results are in favor of the oscillatory model of ERP genesis and modulation, shedding new light on the mechanistic relationship between prestimulus oscillations and functionally relevant evoked components.


Subject(s)
Alpha Rhythm , Transcranial Magnetic Stimulation , Transcranial Magnetic Stimulation/methods , Alpha Rhythm/physiology , Photic Stimulation , Electroencephalography/methods , Visual Perception/physiology
3.
Psychophysiology ; 61(2): e14452, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37787386

ABSTRACT

In recent years, steady-state visual evoked potentials (SSVEPs) became an increasingly valuable tool to investigate neural dynamics of competitive attentional interactions and brain-computer interfaces. This is due to their good signal-to-noise ratio, allowing for single-trial analysis, and their ongoing oscillating nature that enables to analyze temporal dynamics of facilitation and suppression. Given the popularity of SSVEPs, it is surprising that only a few studies looked at the cortical sources of these responses. This is in particular the case when searching for studies that assessed the cortical sources of attentional SSVEP amplitude modulations. To address this issue, we used a typical spatial attention task and recorded neuromagnetic fields (MEG) while presenting frequency-tagged stimuli in the left and right visual fields, respectively. Importantly, we controlled for attentional deployment in a baseline period before the shifting cue. Subjects either attended to a central fixation cross or to two peripheral stimuli simultaneously. Results clearly showed that signal sources and attention effects were restricted to the early visual cortex: V1, V2, hMT+, precuneus, occipital-parietal, and inferior-temporal cortex. When subjects attended to central fixation first, shifting attention to one of the peripheral stimuli resulted in a significant activation increase for the to-be-attended stimulus with no activation decrease for the to-be-ignored stimulus in hMT+ and inferio-temporal cortex, but significant SSVEF decreases from V1 to occipito-parietal cortex. When attention was first deployed to both rings, shifting attention away from one ring basically resulted in a significant activation decrease in all areas for the then-to-be-ignored stimulus.


Subject(s)
Evoked Potentials, Visual , Visual Cortex , Humans , Visual Cortex/physiology , Photic Stimulation , Visual Fields , Magnetic Fields , Electroencephalography
4.
Front Netw Physiol ; 3: 1242505, 2023.
Article in English | MEDLINE | ID: mdl-37920446

ABSTRACT

Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to track over time the transient pathways occurring in the dynamical activity of a physiological system. To address this limitation, we propose a time-varying approach based on the recursive least squares algorithm (RLS) for estimating IS at each time instant, in non-stationary conditions. We tested this approach in simulated time-varying dynamics and in the analysis of electroencephalographic (EEG) signals recorded from healthy volunteers and timed with the heartbeat to investigate brain-heart interactions. In simulations, we show that the proposed approach allows to track both abrupt and slow changes in the information stored in a physiological system. These changes are reflected in its evolution and variability over time. The analysis of brain-heart interactions reveals marked differences across the cardiac cycle phases of the variability of the time-varying IS. On the other hand, the average IS values exhibit a weak modulation over parieto-occiptal areas of the scalp. Our study highlights the importance of developing more advanced methods for measuring IS that account for non-stationarity in physiological systems. The proposed time-varying approach based on RLS represents a useful tool for identifying spatio-temporal dynamics within the neurocardiac system and can contribute to the understanding of brain-heart interactions.

5.
Elife ; 122023 Oct 27.
Article in English | MEDLINE | ID: mdl-37888955

ABSTRACT

Recent research suggests that brain-heart interactions are associated with perceptual and self-consciousness. In this line, the neural responses to visceral inputs have been hypothesized to play a leading role in shaping our subjective experience. This study aims to investigate whether the contextual processing of auditory irregularities modulates both direct neuronal responses to the auditory stimuli (ERPs) and the neural responses to heartbeats, as measured with heartbeat-evoked responses (HERs). HERs were computed in patients with disorders of consciousness, diagnosed with a minimally conscious state or unresponsive wakefulness syndrome. We tested whether HERs reflect conscious auditory perception, which can potentially provide additional information for the consciousness diagnosis. EEG recordings were taken during the local-global paradigm, which evaluates the capacity of a patient to detect the appearance of auditory irregularities at local (short-term) and global (long-term) levels. The results show that local and global effects produce distinct ERPs and HERs, which can help distinguish between the minimally conscious state and unresponsive wakefulness syndrome patients. Furthermore, we found that ERP and HER responses were not correlated suggesting that independent neuronal mechanisms are behind them. These findings suggest that HER modulations in response to auditory irregularities, especially local irregularities, may be used as a novel neural marker of consciousness and may aid in the bedside diagnosis of disorders of consciousness with a more cost-effective option than neuroimaging methods.


Subject(s)
Consciousness , Persistent Vegetative State , Humans , Consciousness/physiology , Heart Rate/physiology , Consciousness Disorders , Brain/physiology , Electroencephalography
6.
Neurosci Biobehav Rev ; 154: 105404, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748661

ABSTRACT

Predictive-coding has justifiably become a highly influential theory in Neuroscience. However, the possibility of its unfalsifiability has been raised. We argue that if predictive-coding were unfalsifiable, it would be a problem, but there are patterns of behavioural and neuroimaging data that would stand against predictive-coding. Contra (vanilla) predictive patterns are those in which the more expected stimulus generates the largest evoked-response. However, basic formulations of predictive-coding mandate that an expected stimulus should generate little, if any, prediction error and thus little, if any, evoked-response. It has, though, been argued that contra (vanilla) predictive patterns can be obtained if precision is higher for expected stimuli. Certainly, using precision, one can increase the amplitude of an evoked-response, turning a predictive into a contra (vanilla) predictive pattern. We demonstrate that, while this is true, it does not present an absolute barrier to falsification. This is because increasing precision also reduces latency and increases the frequency of the response. These properties can be used to determine whether precision-weighting in predictive-coding justifiably explains a contra (vanilla) predictive pattern, ensuring that predictive-coding is falsifiable.


Subject(s)
Neuroimaging , Humans
7.
Front Neuroinform ; 17: 1217786, 2023.
Article in English | MEDLINE | ID: mdl-37675246

ABSTRACT

Introduction: The basal ganglia (BG) are involved in motor control and play an essential role in movement disorders such as hemiballismus, dystonia, and Parkinson's disease. Neurons in the motor part of the BG respond to passive movement or stimulation of different body parts and to stimulation of corresponding cortical regions. Experimental evidence suggests that the BG are organized somatotopically, i.e., specific areas of the body are associated with specific regions in the BG nuclei. Signals related to the same body part that propagate along different pathways converge onto the same BG neurons, leading to characteristic shapes of cortically evoked responses. This suggests the existence of functional channels that allow for the processing of different motor commands or information related to different body parts in parallel. Neurological disorders such as Parkinson's disease are associated with pathological activity in the BG and impaired synaptic connectivity, together with reorganization of somatotopic maps. One hypothesis is that motor symptoms are, at least partly, caused by an impairment of network structure perturbing the organization of functional channels. Methods: We developed a computational model of the STN-GPe circuit, a central part of the BG. By removing individual synaptic connections, we analyzed the contribution of signals propagating along different pathways to cortically evoked responses. We studied how evoked responses are affected by systematic changes in the network structure. To quantify the BG's organization in the form of functional channels, we suggested a two-site stimulation protocol. Results: Our model reproduced the cortically evoked responses of STN and GPe neurons and the contributions of different pathways suggested by experimental studies. Cortical stimulation evokes spatio-temporal response patterns that are linked to the underlying synaptic network structure. Our two-site stimulation protocol yielded an approximate functional channel width. Discussion/conclusion: The presented results provide insight into the organization of BG synaptic connectivity, which is important for the development of computational models. The synaptic network structure strongly affects the processing of cortical signals and may impact the generation of pathological rhythms. Our work may motivate further experiments to analyze the network structure of BG nuclei and their organization in functional channels.

8.
Exp Neurol ; 369: 114504, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37591355

ABSTRACT

The complete or partial damage of ascending somatosensory pathways produced by a spinal cord injury triggers changes in the somatosensory cortex consisting in a functional expansion of activity from intact cortical regions towards deafferented ones, a process known as cortical reorganization. However, it is still unclear whether cortical reorganization depends on the severity of the spinal cord damage or if a spinal cord injury always leads to a similar cortical reorganization process in the somatosensory cortex. To answer these open questions in the field, we obtained longitudinal somatosensory evoked responses from bilateral hindlimb and forelimb cortex from animals with chronic full-transection or contusive spinal cord injury at thoracic level (T9-T10) to induce sensory deprivation of hindlimb cortex while preserving intact the forelimb cortex. Electrophysiological recordings from the four locations were obtained before lesion and weekly for up to 4 weeks. Our results show that cortical reorganization depends on the type of spinal cord injury, which tends to be more bilateral in full transection while is more unilateral in the model of contusive spinal cord injury. Moreover, in full transection of spinal cord, the deafferented and intact cortex exhibited similar increments of somatosensory evoked responses in both models of spinal cord injury - a feature observed in about 80% of subjects. The other 20% were unaffected by the injury indicating that cortical reorganization does not undergo in all subjects. In addition, we demonstrated an increased probability of triggered up-states in animals with spinal cord injury. This data indicates increased cortical excitability that could be proposed as a new feature of cortical reorganization. Finally, decreased levels of GABA marker GAD67 across cortical layers were only found in those animals with increased somatosensory evoked responses, but not in the unaffected population. In conclusion, cortical reorganization depends on the types of spinal cord injuries, and suggest that the phenomenon is strongly determined by cortical circuits. Moreover, changes in GABAergic transmission at the deprived cortex may be considered one of the mechanisms underlying the process of cortical reorganization and increased excitability.

9.
Cephalalgia ; 43(8): 3331024231189751, 2023 08.
Article in English | MEDLINE | ID: mdl-37551544

ABSTRACT

BACKGROUND: Monoclonal antibodies against calcitonin gene-related peptides (CGRP) are innovative therapies for migraine treatment. Although they are clinically effective, how anti-CGRP treatment reduces migraine attacks still remains unclear. OBJECTIVE: In this observational case-control study, we aimed to apply graph theory to EEG data from 20 migraine patients and 10 controls to investigate the effects of 3 months of galcanezumab on brain connectivity. METHODS: We analyzed EEG rhythms during black-white pattern reversal stimulation with 0.5 cycle per degree spatial frequency before (T0) galcanezumab injection, as well as after 3 months (T2). EEG recordings made 1 hour after galcanezumab administration served as the control session (T1). Patients' connectivity patterns obtained at T0, T1 and T2 were compared with normal controls. RESULTS: We found that galcanezumab increased network integration (with a 5% significance level corrected with the false discovery rate), changing the intensity of connections between the occipital through the frontal areas. At 3 months follow up, patients with persistent high headache intensity had a minor effect on the strength of connections (evaluated using Kendall's rank correlation test and p < 0.05). CONCLUSIONS: The potent anti-nociceptive action that galcanezumab exerts at a peripheral level could restore cortical connections and possibly factors predisposing to attack onset.


Subject(s)
Migraine Disorders , Humans , Case-Control Studies , Double-Blind Method , Migraine Disorders/drug therapy , Treatment Outcome , Calcitonin Gene-Related Peptide , Headache , Electroencephalography
10.
BMC Pediatr ; 23(1): 347, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37430233

ABSTRACT

BACKGROUND: Bilirubin neurotoxicity (BN) occurs in premature infants at lower total serum bilirubin levels than term infants and causes neurodevelopmental impairment. Usual dose lipid infusions in preterm infants may increase free fatty acids sufficiently to cause bilirubin displacement from albumin, increasing passage of unbound bilirubin (UB) into the brain leading to BN and neurodevelopmental impairment not reliably identifiable in infancy. These risks may be influenced by whether cycled or continuous phototherapy is used to control bilirubin levels. OBJECTIVE: To assess differences in wave V latency measured by brainstem auditory evoked responses (BAER) at 34-36 weeks gestational age in infants born ≤ 750 g or < 27 weeks' gestational age randomized to receive usual or reduced dose lipid emulsion (half of the usual dose) irrespective of whether cycled or continuous phototherapy is administered. METHODS: Pilot factorial randomized controlled trial (RCT) of lipid dosing (usual and reduced) with treatment groups balanced between cycled or continuous phototherapy assignment. Eligible infants are born at ≤ 750 g or < 27 weeks' gestational age enrolled in the NICHD Neonatal Research Network RCT of cycled or continuous phototherapy. Infants will randomize 1:1 to reduced or usual dose lipid assignment during the first 2 weeks after birth and stratified by phototherapy assignment. Free fatty acids and UB will be measured daily using a novel probe. BAER testing will be performed at 34-36 weeks postmenstrual age or prior to discharge. Blinded neurodevelopmental assessments will be performed at 22-26 months. Intention-to-treat analyses will be performed with generalized linear mixed models with lipid dose and phototherapy assignments as random effects covariates, and assessment for interactions. Bayesian analyses will be performed as a secondary analysis. DISCUSSION: Pragmatic trials are needed to evaluate whether lipid emulsion dosing modifies the effect of phototherapy on BN. This factorial design presents a unique opportunity to evaluate both therapies and their interaction. This study aims to address basic controversial questions about the relationships between lipid administration, free fatty acids, UB, and BN. Findings suggesting a reduced lipid dose can diminish the risk of BN would support the need for a large multicenter RCT of reduced versus usual lipid dosing. TRIAL REGISTRATION: Clinical Trials.gov, NCT04584983, Registered 14 October 2020, https://clinicaltrials.gov/ct2/show/NCT04584983 Protocol version: Version 3.2 (10/5/2022).


Subject(s)
Bilirubin , Infant, Extremely Premature , Infant , Infant, Newborn , Humans , Emulsions , Fatty Acids, Nonesterified , Phototherapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
11.
Biomedicines ; 11(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37509665

ABSTRACT

Spinal cord injuries must be treated as soon as possible. Studies of NASCIS protocols have questioned the use of methylprednisolone therapy. This study aimed to evaluate the effect of local delivery of methylprednisolone succinate in combination with a tri-block copolymer in rats with spinal cord injury. The experiments were conducted in accordance with the bioethical guidelines. We evaluated the state of the motor centers below the level of injury by assessing the amplitude of evoked motor responses in the hind limb muscles of rats during epidural stimulation. Kinematic analysis was performed to examine the stepping cycle in each rat. Trajectories of foot movements were plotted to determine the range of limb motion, maximum foot lift height, and lateral deviation of the foot in rats on the 21st day after spinal cord injury. We have shown that the local application of methylprednisolone succinate in combination with block copolymer leads to recovery of center excitability by 21 days after injury. In rats, they recovered weight-supported locomotion, directional control of walking, and balance. The proposed assessment method provides valuable information on gait disturbances following injury and can be utilized to evaluate the quality of therapeutic interventions.

12.
J Clin Neurol ; 19(6): 581-588, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37455508

ABSTRACT

BACKGROUND AND PURPOSE: Whether brain-heart communication continues under ventricular fibrillation (VF) remains to be determined. There is weak evidence of physiological changes in cortical activity under VF. Moreover, brain-heart communication has not previously been studied in this condition. We aimed to measure parallel changes in heart-rate variability (HRV), cortical activity, and brain-heart interactions in a patient who experienced VF. METHODS: The EEG and EKG signals for the case report were acquired for approximately 20 h. We selected different 1-min-long segments based on the changes in the EKG waveform. We present the changes in heartbeat-evoked responses (HERs), HRV, and EEG power for each selected segment. RESULTS: The overall physiological activity appeared to deteriorate as VF proceeded. Brain-heart interactions measured using HERs disappeared, with a few aberrant amplitudes appearing occasionally. The parallel changes in EEG and HRV were not pronounced, suggesting the absence of bidirectional neural control. CONCLUSIONS: Our measurements of brain-heart interactions suggested that the evolving VF impairs communication between the central and autonomic nervous systems. These results may support that reduced brain-heart interactions reflect loss of consciousness and deterioration in the overall health state.

13.
Eur J Neurosci ; 58(4): 3098-3110, 2023 08.
Article in English | MEDLINE | ID: mdl-37382151

ABSTRACT

Because consciousness does not necessarily translate into overt behaviour, detecting residual consciousness in noncommunicating patients remains a challenge. Bedside diagnostic methods based on EEG are promising and cost-effective alternatives to detect residual consciousness. Recent evidence showed that the cortical activations triggered by each heartbeat, namely, heartbeat-evoked responses (HERs), can detect through machine learning the presence of minimal consciousness and distinguish between overt and covert minimal consciousness. In this study, we explore different markers to characterize HERs to investigate whether different dimensions of the neural responses to heartbeats provide complementary information that is not typically found under standard event-related potential analyses. We evaluated HERs and EEG average non-locked to heartbeats in six types of participants: healthy state, locked-in syndrome, minimally conscious state, vegetative state/unresponsive wakefulness syndrome, comatose and brain-dead patients. We computed a series of markers from HERs that can generally separate the unconscious from the conscious. Our findings indicate that HER variance and HER frontal segregation tend to be higher in the presence of consciousness. These indices, when combined with heart rate variability, have the potential to enhance the differentiation between different levels of awareness. We propose that a multidimensional evaluation of brain-heart interactions could be included in a battery of tests to characterize disorders of consciousness. Our results may motivate further exploration of markers in brain-heart communication for the detection of consciousness at the bedside. The development of diagnostic methods based on brain-heart interactions may be translated into more feasible methods for clinical practice.


Subject(s)
Consciousness Disorders , Consciousness , Humans , Consciousness/physiology , Heart Rate , Consciousness Disorders/diagnosis , Consciousness Disorders/etiology , Brain , Persistent Vegetative State/diagnosis , Persistent Vegetative State/complications , Electroencephalography
14.
Biol Psychol ; 179: 108566, 2023 04.
Article in English | MEDLINE | ID: mdl-37086903

ABSTRACT

Aging influences the central auditory system leading to difficulties in the decoding and understanding of overlapping sound signals, such as speech in noise or polyphonic music. Studies on central auditory system evoked responses (ERs) have found in older compared to young listeners increased amplitudes (less inhibition) of the P1 and N1 and decreased amplitudes of the P2, mismatch negativity (MMN), and P3a responses. While preceding research has focused on simplified auditory stimuli, we here tested whether the previously observed age-related differences could be replicated with sounds embedded in medium and highly naturalistic musical contexts. Older (age 55-77 years) and younger adults (age 21-31 years) listened to medium naturalistic (synthesized melody) and highly naturalistic (studio recording of a music piece) stimuli. For the medium naturalistic music, the age group differences on the P1, N1, P2, MMN, and P3a amplitudes were all replicated. The age group differences, however, appeared reduced with the highly compared to the medium naturalistic music. The finding of lower P2 amplitude in older than young was replicated for slow event rates (0.3-2.9 Hz) in the highly naturalistic music. Moreover, the ER latencies suggested a gradual slowing of the auditory processing time course for highly compared to medium naturalistic stimuli irrespective of age. These results support that age-related differences on ERs can partly be observed with naturalistic stimuli. This opens new avenues for including naturalistic stimuli in the investigation of age-related central auditory system disorders.


Subject(s)
Music , Adult , Humans , Aged , Middle Aged , Young Adult , Acoustic Stimulation/methods , Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Auditory Perception
15.
Audiol Neurootol ; 28(4): 294-307, 2023.
Article in English | MEDLINE | ID: mdl-36958296

ABSTRACT

INTRODUCTION: This study was designed to investigate the use of electrically evoked cortical auditory evoked potentials (eCAEPs) as a tool for cochlear implant (CI) verification, the relationships between the site and intensity of stimulation and the detection rates and morphologies of eCAEPs as well as investigate whether correlations exist between the morphologies of eCAEPs and speech perception in quiet and in noise, duration of hearing loss, age at implantation, whether the hearing loss bilateral or single-sided and the electrode current level required to elicit MCL stimulation. METHODS: 32 adult unilateral CI users with postlingual hearing loss were enrolled. The stimuli were 1 kHz biphasic alternating pulses and were presented at either the behaviorally measured MCL or 50% of this value (MCL0.5) via the CI fitting software. Pulses were directed to apical, medial, or basal electrodes. CAEPs were recorded from a scalp electrode placed at the vertex, low forehead, and contralateral mastoid and were evaluated by two electrophysiologists. RESULTS: Overall, eCAEPs could be detected in 31/32 users when stimulating at MCL, and in 29/32 users when stimulating at MCL0.5. The detection rates were 31, 31, and 28/32 for apical, medial, and basal stimulation at MCL, and 29, 29, and 26/32 at MCL0.5. Significant differences in eCAEP amplitudes and latencies were observed across electrodes and stimulation levels. No significant correlations were found between eCAEP latencies and amplitudes and user age, duration of deafness prior to CI surgery, or with bilateral versus single-sided hearing loss, nor with the charge level required to elicit MCL, or with speech perception scores in quiet. Peak latencies correlated with speech perception scores in some configurations of speech-in-noise. CONCLUSION: eCAEPs can readily be elicited in the majority of adult CI users and show normal waveform characteristics at stimulation levels corresponding to MCL, as well as at basal, medial, and apical electrode stimulation sites. Neither the latencies nor amplitudes of eCAEPs are confounded by variables of age, duration of deafness prior to CI surgery, or the laterality of hearing loss. eCAEPs are a useful, objective method evaluate sound perception in CI users.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Hearing Loss , Speech Perception , Adult , Humans , Evoked Potentials, Auditory/physiology , Hearing Loss/surgery , Speech Perception/physiology , Electric Stimulation , Deafness/surgery , Deafness/rehabilitation
16.
Vision Res ; 207: 108219, 2023 06.
Article in English | MEDLINE | ID: mdl-36947918

ABSTRACT

Human sensitivity to visual input often scales with the magnitude of evoked responses in the brain. Here, we demonstrate an exception. We record electroencephalography (EEG) while people attempt to resolve fine print - similar to people attempting to read eye charts (the world's most popular means of testing vision). We find that the ability to resolve fine print is associated with smaller evoked responses recorded by large clusters of occipital-parietal sensors ∼150 ms after people see words. Moreover, we find that a better ability to resolve fine print is associated with enhanced alpha-band oscillatory brain activity immediately prior to word presentations. These investigations were inspired by psychophysical data, which suggested the ability to resolve fine print can be enhanced by pre-adaptation to flicker, which should encourage a reduced neural response to inputs. We included this manipulation in this study, and our results are broadly consistent with this conjecture. As alpha-band activity has been linked to inhibitory interactions in visual cortex, we regard our data as evidence that smaller neural responses to fine print can be promoted by inhibitory processes that target unhelpful blur-related signals, which thereby sharpen subsequent visual experiences.


Subject(s)
Vision Tests , Visual Cortex , Humans , Visual Acuity , Electroencephalography/methods , Visual Cortex/physiology , Evoked Potentials, Visual
17.
Neuroimage ; 268: 119867, 2023 03.
Article in English | MEDLINE | ID: mdl-36610678

ABSTRACT

Feeling happy, or judging whether someone else is feeling happy are two distinct facets of emotions that nevertheless rely on similar physiological and neural activity. Differentiating between these two states, also called Self/Other distinction, is an essential aspect of empathy, but how exactly is it implemented? In non-emotional cognition, the transient neural response evoked at each heartbeat, or heartbeat evoked response (HER), indexes the self and signals Self/Other distinction. Here, using electroencephalography (n = 32), we probe whether HERs' role in Self/Other distinction extends also to emotion - a domain where brain-body interactions are particularly relevant. We asked participants to rate independently validated affective scenes, reporting either their own emotion (Self) or the emotion expressed by people in the scene (Other). During the visual cue indicating to adopt the Self or Other perspective, before the affective scene, HERs distinguished between the two conditions, in visual cortices as well as in the right frontal operculum. Physiological reactivity (facial electromyogram, skin conductance, heart rate) during affective scene co-varied as expected with valence and arousal ratings, but also with the Self- or Other- perspective adopted. Finally, HERs contributed to the subjective experience of valence in the Self condition, in addition to and independently from physiological reactivity. We thus show that HERs represent a trans-domain marker of Self/Other distinction, here specifically contributing to experienced valence. We propose that HERs represent a form of evidence related to the 'I' part of the judgement 'To which extent do I feel happy'. The 'I' related evidence would be combined with the affective evidence collected during affective scene presentation, accounting at least partly for the difference between feeling an emotion and identifying it in someone else.


Subject(s)
Brain , Emotions , Humans , Emotions/physiology , Brain/physiology , Electroencephalography , Empathy , Happiness
18.
Neuroimage ; 266: 119817, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36535320

ABSTRACT

Heartbeat-evoked responses (HERs) can interact with external stimuli and play a crucial role in shaping perception, self-related processes, and emotional processes. On the one hand, the external stimulus could modulate HERs. On the other hand, the HERs could affect cognitive processing of the external stimulus. Whether the same neural mechanism underlies these two processes, however, remains unclear. Here, we investigated this interactive mechanism by measuring HERs using magnetoencephalography (MEG) and two name perception tasks. Specifically, we tested (1) how hearing a subject's own name (SON) modulates HERs and (2) how the judgment of an SON is biased by prestimulus HERs. The results showed a dual interaction between HERs and SON. In particular, SON can modulate HERs for heartbeats occurring from 200 to 1200 ms after SON presentation. In addition, prestimulus HERs can bias the SON judgment when a stimulus is presented. Importantly, MEG activities from these two types of interactions differed in spatial and temporal patterns, suggesting that they may be associated with distinct neural pathways. These findings extend our understanding of brain-heart interactions.


Subject(s)
Brain , Magnetoencephalography , Humans , Heart Rate/physiology , Brain/physiology , Emotions , Judgment
19.
Cardiol Young ; 33(9): 1569-1573, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36062556

ABSTRACT

MAIN AIM: To electrophysiologically determine the impact of moderate to severe chronic hypoxia (H) resulting from a wide array of CHD (HCHD) conditions on the integrity of brainstem function. MATERIALS AND METHODS: Applying brainstem auditory-evoked response methodology, 30 chronically afflicted HCHD patients, who already had undergone heart surgery, were compared to 28 healthy control children (1-15 yo) matched by age, gender and socioeconomic condition. Blood oxygen saturation was clinically determined and again immediately before brainstem auditory-evoked response testing. RESULTS: Among HCHD children, auditory wave latencies (I, III and V) were significantly longer (medians: I, 2.02 ms; III, 4.12 ms, and; V, 6.30 ms) compared to control (medians: I, 1.67ms; III, 3.72 ms, and; V, 5.65 ms), as well as interpeak intervals (HCHD medians: I-V, 4.25 ms, and; III-V, 2.25ms; control medians: I-V, 3.90 ms and, III-V, 1.80 ms) without significant differences in wave amplitudes between groups. A statistically significant and inverse correlation between average blood oxygen saturation of each group (control, 94%; HCHD, 78%) and their respective wave latencies and interpeak intervals was found. CONCLUSIONS: As determined by brainstem auditory-evoked responses, young HCHD patients manifestly show severely altered neuronal conductivity in the auditory pathway strongly correlated with their hypoxic condition. These observations are strongly supported by different brainstem neurological and image studies showing that alterations, either in microstructure or function, result from the condition of chronic hypoxia in CHD. The non-altered wave amplitudes are indicative of relatively well-preserved neuronal relay nuclei.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Hypoxia , Humans , Child , Evoked Potentials, Auditory, Brain Stem/physiology , Brain Stem
20.
Eur J Appl Physiol ; 123(1): 65-79, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36169737

ABSTRACT

PURPOSE: Foot sole cooling increases vestibular-evoked balance responses, but less is known about foot dorsum temperature alterations. The purpose was to determine whether decreasing cutaneous receptor sensitivity via foot dorsum cooling modulates the vestibular control of balance. METHODS: Eighteen participants (9 males; 9 females) stood quietly on a force plate with feet together, eyes closed, and head rotated leftward during 4, 90-s trials (2 control; 2 cooled) of continuous electrical vestibular stimulation (EVS). Icepacks placed on the dorsum of both feet for 15 min induced cooling and remained throughout the EVS trials. Monofilament testing was performed at multiple locations before and after cooling to determine tactile detection thresholds. T-type thermocouples monitored skin temperature over the tibialis anterior, soleus, foot dorsum and arch of the right leg. Vestibular-evoked balance responses were characterized using time (cumulant density) and frequency (coherence and gain) domain analyses to determine the relationship between the EVS input and motor output (anteroposterior force-AP force; right medial gastrocnemius electromyography-MG EMG). RESULTS: Skin temperature of the foot dorsum and arch decreased ~ 70 and 15%, respectively during cooling (p < 0.05), but was unaltered at other locations (p ≥ 0.10). Detection thresholds for the foot dorsum increased following cooling (p < 0.05). Surprisingly, cooling reduced EVS-AP force and EVS-MG EMG coherence and gain at multiple frequencies, and peak-to-peak amplitude compared to control (p < 0.05). CONCLUSION: Our results indicate that vestibular-driven balance responses are reduced following foot dorsum cooling, likely owing to alterations in cutaneous mechanoreceptor sensitivity and subsequent alterations in the transformation of vestibular cues for balance control.


Subject(s)
Muscle, Skeletal , Postural Balance , Male , Female , Humans , Postural Balance/physiology , Muscle, Skeletal/physiology , Electromyography , Foot/physiology , Lower Extremity
SELECTION OF CITATIONS
SEARCH DETAIL