Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Genes (Basel) ; 15(2)2024 02 10.
Article in English | MEDLINE | ID: mdl-38397214

ABSTRACT

Skeletal dysplasia, also called osteochondrodysplasia, is a category of disorders affecting bone development and children's growth. Up to 552 genes, including fibroblast growth factor receptor 3 (FGFR3), have been implicated by pathogenic variations in its genesis. Frequently identified causal mutations in osteochondrodysplasia arise in the coding sequences of the FGFR3 gene: c.1138G>A and c.1138G>C in achondroplasia and c.1620C>A and c.1620C>G in hypochondroplasia. However, in some cases, the diagnostic investigations undertaken thus far have failed to identify the causal anomaly, which strengthens the relevance of the diagnostic strategies being further refined. We observed a Caucasian adult with clinical and radiographic features of achondroplasia, with no common pathogenic variant. Exome sequencing detected an FGFR3(NM_000142.4):c.1075+95C>G heterozygous intronic variation. In vitro studies showed that this variant results in the aberrant exonization of a 90-nucleotide 5' segment of intron 8, resulting in the substitution of the alanine (Ala359) for a glycine (Gly) and the in-frame insertion of 30 amino acids. This change may alter FGFR3's function. Our report provides the first clinical description of an adult carrying this variant, which completes the phenotype description previously provided in children and confirms the recurrence, the autosomal-dominant pathogenicity, and the diagnostic relevance of this FGFR3 intronic variant. We support its inclusion in routinely used diagnostic tests for osteochondrodysplasia. This may increase the detection rate of causal variants and therefore could have a positive impact on patient management. Finally, FGFR3 alteration via non-coding sequence exonization should be considered a recurrent disease mechanism to be taken into account for new drug design and clinical trial strategies.


Subject(s)
Achondroplasia , Osteochondrodysplasias , Child , Adult , Humans , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/genetics , Achondroplasia/diagnosis , Achondroplasia/genetics , Achondroplasia/pathology , Mutation , Exons , Phenotype , Receptor, Fibroblast Growth Factor, Type 3/genetics
2.
BMC Res Notes ; 16(1): 32, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36895043

ABSTRACT

OBJECTIVE: Alu repeats have gained huge importance in the creation and modification of regulatory networks. We previously reported a unique isoform of human CYP20A1 i.e. CYP20A1_Alu-LT with 23 Alu repeats exonized in its 9 kb long 3'UTR with 4742 potential binding sites for 994 miRNAs. The role of this transcript was hypothesized as a potential miRNA sponge in primary neurons as its expression correlated with that of 380 genes having shared miRNA sites and enriched in neuro-coagulopathy. This study provides experimental evidence for the miRNA sponge activity of CYP20A1_Alu-LT in neuronal cell lines. RESULTS: We studied the Alu-rich fragment of the CYP20A1_Alu-LT extended 3'UTR with > 10 binding sites for miR-619-5p and miR-3677-3p. Enrichment of the Alu-rich fragment with Ago2 confirmed miRNA association of this transcript. Cloning the fragment downstream of a reporter gene led to a 90% decrease in luciferase activity. Overexpression and knockdown studies revealed a positive correlation between the expression of CYP20A1_Alu-LT and miR-619-5p / miR-3677-3p target genes. GAP43, one of the key modulators of nerve regeneration, was significantly altered by the expression of CYP20A1_Alu-LT. This study, for the first time, provides evidence for a unique regulatory function of exonized Alu repeats as miRNA sponges.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , 3' Untranslated Regions/genetics , Cell Line , Binding Sites , Cytochrome P-450 Enzyme System/genetics
3.
Microorganisms ; 10(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36296178

ABSTRACT

The conventionally clear distinction between exons and introns in eukaryotic genes is actually blurred. To illustrate this point, consider sequences that are retained in mature mRNAs about 50% of the time: how should they be classified? Moreover, although it is clear that RNA splicing influences gene expression levels and is an integral part of interdependent cellular networks, introns continue to be regarded as accidental insertions; exogenous sequences whose evolutionary origin is independent of mRNA-associated processes and somewhat still elusive. Here, we present evidence that aids to resolve this disconnect between conventional views about introns and current knowledge about the role of RNA splicing in the eukaryotic cell. We first show that coding sequences flanked by cryptic splice sites are negatively selected on a genome-wide scale in Paramecium. Then, we exploit selection intensity to infer splicing-related evolutionary dynamics. Our analyses suggest that intron gain begins as a splicing error, involves a transient phase of alternative splicing, and is preferentially completed at the 5' end of genes, which through intron gain can become highly expressed. We conclude that relaxed selective constraints may promote biological complexity in Paramecium and that the relationship between exons and introns is fluid on an evolutionary scale.

4.
Genomics ; 114(4): 110434, 2022 07.
Article in English | MEDLINE | ID: mdl-35863675

ABSTRACT

Advances in RNA high-throughput sequencing and large-scale functional assays yield new insights into the multifaceted activities of transposed elements (TE) and many other previously undiscovered sequence elements. Currently, no tool for easy access, analysis, quantification, and visualization of alternatively spliced exons across multiple tissues or developmental stages is available. Also, analysis pipelines demand computational skills or hardware requirements, which often are hard to meet by wet-lab scientists. We developed ExoPLOT to enable simplified access to massive RNA high throughput sequencing datasets to facilitate the analysis of alternative splicing across many biological samples. To demonstrate the functonality of ExoPLOT, we analyzed the contributon of exonized TEs to human coding sequences (CDS). mRNA splice variants containing the TE-derived exon were quantified and compared to expression levels of TE-free splice variants. For analysis, we utilized 313 human cerebrum, cerebellum, heart, kidney, liver, ovary, and testis transcriptomes, representing various pre- and postnatal developmental stages. ExoPLOT visualizes the relative expression levels of alternative transcripts, e.g., caused by the insertion of new TE-derived exons, across different developmental stages of and among multiple tissues. This tool also provides a unique link between evolution and function during exonization (gain of a new exon) and exaptation (recruitment/co-optation) of a new exon. As input for analysis, we derived a database of 1151 repeat-masked, exonized TEs, representing all prominent families of transposons in the human genome and the collection of human consensus coding sequences (CCDS). ExoPLOT screened preprocessed RNA high-throughput sequencing datasets from seven human tissues to quantify and visualize the dynamics in RNA splicing for these 1151 TE-derived exons during the entire human organ development. In addition, we successfully mapped and analyzed 993 recently described exonized sequences from the human frontal cortex onto these 313 transcriptome libraries. ExoPLOT's approach to preprocessing RNA deep sequencing datasets facilitates alternative splicing analysis and significantly reduces processing times. In addition, ExoPLOT's design allows studying alternative RNA isoforms other than TE-derived in a customized - coordinate-based manner and is available at http://retrogenomics3.uni-muenster.de:3838/exz-plot-d/.


Subject(s)
Alternative Splicing , DNA Transposable Elements , Exons , Humans , RNA, Messenger/genetics , Sequence Analysis, RNA
5.
Genes (Basel) ; 13(6)2022 06 18.
Article in English | MEDLINE | ID: mdl-35741852

ABSTRACT

Evolution is change over time. Although neutral changes promoted by drift effects are most reliable for phylogenetic reconstructions, selection-relevant changes are of only limited use to reconstruct phylogenies. On the other hand, comparative analyses of neutral and selected changes of protein-coding DNA sequences (CDS) retrospectively tell us about episodic constrained, relaxed, and adaptive incidences. The ratio of sites with nonsynonymous (amino acid altering) versus synonymous (not altering) mutations directly measures selection pressure and can be analysed by using the Phylogenetic Analysis by Maximum Likelihood (PAML) software package. We developed a CDS extractor for compiling protein-coding sequences (CDS-extractor) and parallel PAML (paPAML) to simplify, amplify, and accelerate selection analyses via parallel processing, including detection of negatively selected sites. paPAML compiles results of site, branch-site, and branch models and detects site-specific negative selection with the output of a codon list labelling significance values. The tool simplifies selection analyses for casual and inexperienced users and accelerates computing speeds up to the number of allocated computer threads. We then applied paPAML to examine the evolutionary impact on a new GINS Complex Subunit 3 exon, and neutrophil-associated as well as lysin and apolipoprotein genes. Compared with codeml (PAML version 4.9j) and HyPhy (HyPhy FEL version 2.5.26), all paPAML test runs performed with 10 computing threads led to identical selection pressure results, whereas the total selection analysis via paPAML, including all model comparisons, was about 3 to 5 times faster than the longest running codeml model and about 7 to 15 times faster than the entire processing time of these codeml runs.


Subject(s)
Software , Codon , Open Reading Frames , Phylogeny , Retrospective Studies
6.
Biomedicines ; 9(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34829789

ABSTRACT

This paper concerns 3'-untranslated regions (3'UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3'UTR regions. Controlling 3'UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3'UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3'UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3'UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3'UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3'UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3'UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3'UTRs with differential functional features.

7.
Front Genet ; 12: 704162, 2021.
Article in English | MEDLINE | ID: mdl-34594358

ABSTRACT

The domesticated silkworm, Bombyx mori, is an important model system for the order Lepidoptera. Currently, based on third-generation sequencing, the chromosome-level genome of Bombyx mori has been released. However, its transcripts were mainly assembled by using short reads of second-generation sequencing and expressed sequence tags which cannot explain the transcript profile accurately. Here, we used PacBio Iso-Seq technology to investigate the transcripts from 45 developmental stages of Bombyx mori. We obtained 25,970 non-redundant high-quality consensus isoforms capturing ∼60% of previous reported RNAs, 15,431 (∼47%) novel transcripts, and identified 7,253 long non-coding RNA (lncRNA) with a large proportion of novel lncRNA (∼56%). In addition, we found that transposable elements (TEs) exonization account for 11,671 (∼45%) transcripts including 5,980 protein-coding transcripts (∼32%) and 5,691 lncRNAs (∼79%). Overall, our results expand the silkworm transcripts and have general implications to understand the interaction between TEs and their host genes. These transcripts resource will promote functional studies of genes and lncRNAs as well as TEs in the silkworm.

8.
Front Mol Biosci ; 8: 727537, 2021.
Article in English | MEDLINE | ID: mdl-34568430

ABSTRACT

Alu exonization events functionally diversify the transcriptome, creating alternative mRNA isoforms and accounting for an estimated 5% of the alternatively spliced (skipped) exons in the human genome. We developed computational methods, implemented into a software called Alubaster, for detecting incorporation of Alu sequences in mRNA transcripts from large scale RNA-seq data sets. The approach detects Alu sequences derived from both fixed and polymorphic Alu elements, including Alu insertions missing from the reference genome. We applied our methods to 117 GTEx human frontal cortex samples to build and characterize a collection of Alu-containing mRNAs. In particular, we detected and characterized Alu exonizations occurring at 870 fixed Alu loci, of which 237 were novel, as well as hundreds of putative events involving Alu elements that are polymorphic variants or rare alleles not present in the reference genome. These methods and annotations represent a unique and valuable resource that can be used to understand the characteristics of Alu-containing mRNAs and their tissue-specific expression patterns.

9.
BMC Evol Biol ; 20(1): 66, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32503430

ABSTRACT

BACKGROUND: Alternative splicing (AS) generates various transcripts from a single gene and thus plays a significant role in transcriptomic diversity and proteomic complexity. Alu elements are primate-specific transposable elements (TEs) and can provide a donor or acceptor site for AS. In a study on TE-mediated AS, we recently identified a novel AluSz6-exonized ACTR8 transcript of the crab-eating monkey (Macaca fascicularis). In the present study, we sought to determine the molecular mechanism of AluSz6 exonization of the ACTR8 gene and investigate its evolutionary and functional consequences in the crab-eating monkey. RESULTS: We performed RT-PCR and genomic PCR to analyze AluSz6 exonization in the ACTR8 gene and the expression of the AluSz6-exonized transcript in nine primate samples, including prosimians, New world monkeys, Old world monkeys, and hominoids. AluSz6 integration was estimated to have occurred before the divergence of simians and prosimians. The Alu-exonized transcript obtained by AS was lineage-specific and expressed only in Old world monkeys and apes, and humans. This lineage-specific expression was caused by a single G duplication in AluSz6, which provides a new canonical 5' splicing site. We further identified other alternative transcripts that were unaffected by the AluSz6 insertion. Finally, we observed that the alternative transcripts were transcribed into new isoforms with C-terminus deletion, and in silico analysis showed that these isoforms do not have a destructive function. CONCLUSIONS: The single G duplication in the TE sequence is the source of TE exonization and AS, and this mutation may suffer a different fate of ACTR8 gene expression during primate evolution.


Subject(s)
Gene Expression Regulation , Microfilament Proteins/genetics , Mutation , Primates/genetics , Alternative Splicing , Alu Elements/genetics , Animals , DNA Transposable Elements/genetics , Evolution, Molecular , Exons/genetics , Humans
10.
Gene ; 754: 144861, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32531454

ABSTRACT

Alu sequences are the most abundant repetitive elements in the human genome, and have proliferated to more than one million copies in the human genome. Primate-specific Alu sequences account for ~10% of the human genome, and their spread within the genome has the potential to generate new exons. The new exons produced by Alu elements appear in various primate genes, and their functions have been elucidated. Here, we identified a new exon in the insulin-like 3 gene (INSL3), which evolved ~50 million years ago, and led to a splicing variant with 31 extra amino acid residues in addition to the original 95 nucleotides (NTs) of INSL3. The Alu-INSL3 isoform underwent diverse changes during primate evolution; we identified that human Alu-INSL3 might be on its way to functionality and has potential to antagonize LGR8-INSL3 function. Therefore, the present study is designed to provide an example of the evolutionary trajectory of a variant peptide hormone antagonist that caused by the insertion of an Alu element in primates.


Subject(s)
Evolution, Molecular , Insulin/genetics , Primates/genetics , Proteins/genetics , RNA Splicing/genetics , Alu Elements , Amino Acid Sequence , Animals , Base Sequence , Humans , Protein Isoforms , Sequence Homology
11.
Mol Syndromol ; 11(5-6): 264-270, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33505229

ABSTRACT

We report a novel intronic variant in the MTM1 gene in 4 males in a family with severe X-linked myotubular myopathy. The A>G variant in deep intronic space activates a cryptic 5' donor splice site resulting in the inclusion of a 48-bp pseudoexon into the mature MTM1 mRNA. The variant is present in all affected males, absent in unaffected males, and heterozygous in the mother of the affected males. The included intronic sequence contains a premature stop codon, and experiments using a translational inhibitor indicate that the mutant mRNAs undergo nonsense-mediated decay. We conclude that affected males produce no, or low, levels of MTM1 mRNA likely leading to a significant reduction of myotubularin-1 protein resulting in the severe neonatal myopathy present in this family. The study highlights the need to consider noncoding variants in genomic screening in families with X-linked myotubular myopathy.

12.
Genome Biol ; 20(1): 141, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31315652

ABSTRACT

BACKGROUND: The long introns of mammals are pools of evolutionary potential due to the multiplicity of sequences that permit the acquisition of novel exons. However, the permissibility of genes to this type of acquisition and its influence on the evolution of cell regulation is poorly understood. RESULTS: Here, we observe that human genes are highly permissive to the inclusion of novel exonic regions permitting the emergence of novel regulatory features. Our analysis reveals the potential for novel exon acquisition to occur in over 30% of evaluated human genes. Regulatory processes including the rate of splicing efficiency and RNA polymerase II (RNAPII) elongation control this process by modulating the "window of opportunity" for spliceosomal recognition. DNA damage alters this window promoting the inclusion of repeat-derived novel exons that reduce the ribosomal engagement of cell cycle genes. Finally, we demonstrate that the inclusion of novel exons is suppressed in hematological cancer samples and can be reversed by drugs modulating the rate of RNAPII elongation. CONCLUSION: Our work demonstrates that the inclusion of repeat-associated novel intronic regions is a tightly controlled process capable of expanding the regulatory capacity of cells.


Subject(s)
Exons , Gene Expression Regulation , Genome, Human , Transcriptome , DNA Damage , DNA Transposable Elements , Genes, cdc , Hematologic Neoplasms/metabolism , Humans , Introns , Spliceosomes
13.
Genes Cells ; 24(4): 318-323, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30746825

ABSTRACT

Many G protein-coupled receptors have splice variants, with potentially different pharmaceutical properties, expression patterns and roles. The human brain expresses three functional splice variants of the type 2 corticotropin-releasing hormone: CRHR2α, -ß and -γ. CRHR2γ has only been reported in humans, but its phylogenetic distribution, and how and when during mammalian evolution it arose, is unknown. Based on genomic sequence analyses, we predict that a functional CRHR2γ is present in all Old World monkeys and apes, and is unique to these species. CRHR2γ arose by exaptation of an intronic sequence-already present in the common ancestor of primates and rodents-after retrotransposition of a short interspersed nuclear element (SINE) and mutations that created a 5' donor splice site and in-frame start codon, 32-43 million years ago. The SINE is not part of the coding sequence, only of the 5' untranslated region and may therefore play a role in translational regulation. Putative regulatory elements and an alternative transcriptional start site were added earlier to this genomic locus by a DNA transposon. The evolutionary history of CRHR2γ confirms some of the earlier reported principles behind the "birth" of alternative exons. The functional significance of CRHR2γ, particularly in the brain, remains to be showed.


Subject(s)
Evolution, Molecular , Receptors, Corticotropin-Releasing Hormone/genetics , Animals , DNA Transposable Elements , Humans , Protein Isoforms/genetics , RNA Splicing , Transcription Initiation Site
14.
Mob DNA ; 9: 26, 2018.
Article in English | MEDLINE | ID: mdl-30123327

ABSTRACT

BACKGROUND: The antisense insertion of a canine short interspersed element (SINEC_Cf) in the pigmentation gene PMEL (or SILV) causes a coat pattern phenotype in dogs termed merle. Merle is a semi-dominant trait characterized by patches of full pigmentation on a diluted background. The oligo(dT) tract of the Merle retrotransposon is long and uninterrupted and is prone to dramatic truncation. Phenotypically wild-type individuals carrying shorter oligo(dT) lengths of the Merle allele have been previously described and termed cryptic merles. Two additional coat patterns, dilute merle (uniform, steely-grey coat) and harlequin merle (white background with black patches), also appear in breeds segregating the Merle allele. RESULTS: Sequencing of all PMEL exons in a dilute and a harlequin merle reveals that variation exists solely within the oligo(dT) tract of the SINEC_Cf insertion. In fragment analyses from 259 dogs heterozygous for Merle, we observed a spectrum of oligo(dT) lengths spanning 25 to 105 base pairs (bp), with ranges that correspond to the four varieties of the merle phenotype: cryptic (25-55 bp), dilute (66-74 bp), standard (78-86 bp), and harlequin (81-105 bp). Somatic contractions of the oligo(dT) were observed in 43% of standard and 51% of harlequin merle dogs. A small proportion (4.6%) of the study cohort inherited de novo contractions or expansions of the Merle allele that resulted in dilute or harlequin coat patterns, respectively. CONCLUSIONS: The phenotypic consequence of the Merle SINE insertion directly depends upon oligo(dT) length. In transcription, we propose that the use of an alternative splice site increases with oligo(dT) length, resulting in insufficient PMEL and a pigment dilution spectrum, from dark grey to complete hypopigmentation. We further propose that during replication, contractions and expansions increase in frequency with oligo(dT) length, causing coat variegation (somatic events in melanocytes) and the spontaneous appearance of varieties of the merle phenotype (germline events).

15.
Proc Natl Acad Sci U S A ; 115(35): 8817-8822, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30104384

ABSTRACT

Nucleosomal modifications have been implicated in fundamental epigenetic regulation, but the roles of nucleosome occupancy in shaping changes through evolution remain to be addressed. Here we present high-resolution nucleosome occupancy profiles for multiple tissues derived from human, macaque, tree shrew, mouse, and pig. Genome-wide comparison reveals conserved nucleosome occupancy profiles across both different species and tissue types. Notably, we found significantly higher levels of nucleosome occupancy in exons than in introns, a pattern correlated with the different exon-intron GC content. We then determined whether this biased occupancy may play roles in the origination of new exons through evolution, rather than being a downstream effect of exonization, through a comparative approach to sequentially trace the order of the exonization and biased nucleosome binding. By identifying recently evolved exons in human but not in macaque using matched RNA sequencing, we found that higher exonic nucleosome occupancy also existed in macaque regions orthologous to these exons. Presumably, such biased nucleosome occupancy facilitates the origination of new exons by increasing the splice strength of the ancestral nonexonic regions through driving a local difference in GC content. These data thus support a model that sites bound by nucleosomes are more likely to evolve into exons, which we term the "nucleosome-first" model.


Subject(s)
Base Composition/physiology , Evolution, Molecular , Exons/physiology , Introns/physiology , Nucleosomes/metabolism , Animals , Genome-Wide Association Study , Humans , Macaca , Mice , Nucleosomes/genetics
16.
Front Immunol ; 9: 2934, 2018.
Article in English | MEDLINE | ID: mdl-30619294

ABSTRACT

The human IL22RA2 gene co-produces three protein isoforms in dendritic cells [IL-22 binding protein isoform-1 (IL-22BPi1), IL-22BPi2, and IL-22BPi3]. Two of these, IL-22BPi2 and IL-22BPi3, are capable of neutralizing the biological activity of IL-22. The function of IL-22BPi1, which differs from IL-22BPi2 through an in-frame 32-amino acid insertion provided by an alternatively spliced exon, remains unknown. Using transfected human cell lines, we demonstrate that IL-22BPi1 is secreted detectably, but at much lower levels than IL-22BPi2, and unlike IL-22BPi2 and IL-22BPi3, is largely retained in the endoplasmic reticulum (ER). As opposed to IL-22BPi2 and IL-22BPi3, IL-22BPi1 is incapable of neutralizing or binding to IL-22 measured in bioassay or assembly-induced IL-22 co-folding assay. We performed interactome analysis to disclose the mechanism underlying the poor secretion of IL-22BPi1 and identified GRP78, GRP94, GRP170, and calnexin as main interactors. Structure-function analysis revealed that, like IL-22BPi2, IL-22BPi1 binds to the substrate-binding domain of GRP78 as well as to the middle domain of GRP94. Ectopic expression of wild-type GRP78 enhanced, and ATPase-defective GRP94 mutant decreased, secretion of both IL-22BPi1 and IL-22BPi2, while neither of both affected IL-22BPi3 secretion. Thus, IL-22BPi1 and IL-22BPi2 are bona fide clients of the ER chaperones GRP78 and GRP94. However, only IL-22BPi1 activates an unfolded protein response (UPR) resulting in increased protein levels of GRP78 and GRP94. Cloning of the IL22RA2 alternatively spliced exon into an unrelated cytokine, IL-2, bestowed similar characteristics on the resulting protein. We also found that CD14++/CD16+ intermediate monocytes produced a higher level of IL22RA2 mRNA than classical and non-classical monocytes, but this difference disappeared in immature dendritic cells (moDC) derived thereof. Upon silencing of IL22RA2 expression in moDC, GRP78 levels were significantly reduced, suggesting that native IL22RA2 expression naturally contributes to upregulating GRP78 levels in these cells. The IL22RA2 alternatively spliced exon was reported to be recruited through a single mutation in the proto-splice site of a Long Terminal Repeat retrotransposon sequence in the ape lineage. Our work suggests that positive selection of IL-22BPi1 was not driven by IL-22 antagonism as in the case of IL-22BPi2 and IL-22BPi3, but by capacity for induction of an UPR response.


Subject(s)
Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Receptors, Interleukin/metabolism , Unfolded Protein Response , Cells, Cultured , Dendritic Cells/metabolism , Endoplasmic Reticulum Chaperone BiP , HEK293 Cells , HeLa Cells , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Humans , Interleukins/chemistry , Interleukins/genetics , Interleukins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Protein Binding , Protein Folding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Interference , Receptors, Interleukin/chemistry , Receptors, Interleukin/genetics , Signal Transduction/genetics , Interleukin-22
17.
Plant Cell Rep ; 37(2): 193-208, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29164313

ABSTRACT

KEY MESSAGE: Here, we show that Au SINE elements have strong associations with protein-coding genes in wheat. Most importantly Au SINE insertion within introns causes allelic variation and might induce intron retention. The impact of transposable elements (TEs) on genome structure and function is intensively studied in eukaryotes, especially in plants where TEs can reach up to 90% of the genome in some cases, such as in wheat. Here, we have performed a genome-wide in-silico analysis using the updated publicly available genome draft of bread wheat (T. aestivum), in addition to the updated genome drafts of the diploid donor species, T. urartu and Ae. tauschii, to retrieve and analyze a non-LTR retrotransposon family, termed Au SINE, which was found to be widespread in plant species. Then, we have performed site-specific PCR and realtime RT-PCR analyses to assess the possible impact of Au SINE on gene structure and function. To this end, we retrieved 133, 180 and 1886 intact Au SINE insertions from T. urartu, Ae. tauschii and T. aestivum genome drafts, respectively. The 1886 Au SINE insertions were distributed in the seven homoeologous chromosomes of T. aestivum, while ~ 67% of the insertions were associated with genes. Detailed analysis of 40 genes harboring Au SINE revealed allelic variation of those genes in the Triticum-Aegilops genus. In addition, expression analysis revealed that both regular transcripts and alternative Au SINE-containing transcripts were simultaneously amplified in the same tissue, indicating retention of Au SINE-containing introns. Analysis of the wheat transcriptome revealed that hundreds of protein-coding genes harbor Au SINE in at least one of their mature splice variants. Au SINE might play a prominent role in speciation by creating transcriptome variation.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant/genetics , Retroelements/genetics , Triticum/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Genes, Plant/genetics , Mutagenesis, Insertional , Plant Leaves/genetics
18.
Front Microbiol ; 8: 2252, 2017.
Article in English | MEDLINE | ID: mdl-29187847

ABSTRACT

Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Mutations or deletions of SMN1, which codes for SMN, cause spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. Aberrant expression or localization of SMN has been also implicated in other pathological conditions, including male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. SMN2 fails to compensate for the loss of SMN1 due to skipping of exon 7, leading to the production of SMNΔ7, an unstable protein. In addition, SMNΔ7 is less functional due to the lack of a critical C-terminus of the full-length SMN, a multifunctional protein. Alu elements are specific to primates and are generally found within protein coding genes. About 41% of the human SMN gene including promoter region is occupied by more than 60 Alu-like sequences. Here we discuss how such an abundance of Alu-like sequences may contribute toward SMA pathogenesis. We describe the likely impact of Alu elements on expression of SMN. We have recently identified a novel exon 6B, created by exonization of an Alu-element located within SMN intron 6. Irrespective of the exon 7 inclusion or skipping, transcripts harboring exon 6B code for the same SMN6B protein that has altered C-terminus compared to the full-length SMN. We have demonstrated that SMN6B is more stable than SMNΔ7 and likely functions similarly to the full-length SMN. We discuss the possible mechanism(s) of regulation of SMN exon 6B splicing and potential consequences of the generation of exon 6B-containing transcripts.

19.
Mol Biol Evol ; 34(12): 3216-3231, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29029327

ABSTRACT

Alu elements contribute considerably to gene regulation and genome evolution in primates. The generation of new exons from Alu elements has been found in various human genes, and the regulatory function of the Alu exon has been investigated in many studies. However, the functionalization of Alu elements in protein coding regions remains unknown. Here, we reported that an Alu-J element exonized in the glycoprotein hormone alpha (GPHA) gene and encoded an additional N-terminal peptide (Alu-J encoding peptide) of the mature GPHA peptide, leading to a splicing variant of Alu-GPHA in anthropoid primates ∼35 Ma. Interestingly, adaptive evolution of the Alu-J exon occurred in the human and ape lineages during anthropoid evolution. The Alu-J encoding peptide is found to be a new biomarker in human early pregnancy and prolongs the serum half-life of human chorionic gonadotropin (HCG) circulation. Moreover, Alu-J encoding peptide enhances the bioactivity of HCG protein, both in vivo and in vitro. Our study reveals the first example of an Alu element functioning as the encoding peptide to increase the whole protein stability and provides insight into the potential multi-functionalization of the Alu exon in the protein coding regions. Furthermore, with the chorionic gonadotropin linking with hemochorial placentation, the exonization and functionalization of the Alu-J exon in GPHA gene represent a novel mechanism to the evolution of hemochorial placentation in primates.


Subject(s)
Alu Elements/genetics , Placentation/genetics , Animals , Evolution, Molecular , Exons/genetics , Female , Gene Expression Regulation/genetics , Genome, Human , Glycoproteins/genetics , Humans , Introns , Open Reading Frames , Pregnancy , Primates/genetics , Primates/physiology , RNA Splicing
20.
Evol Bioinform Online ; 13: 1176934317690410, 2017.
Article in English | MEDLINE | ID: mdl-28469376

ABSTRACT

In exonization events, Ds1 may provide donor and/or acceptor sites for splicing after inserting into genes and be incorporated into new transcripts with new exon(s). In this study, the protein variants of Ds1 exonization yielding additional functional profile(s) were studied. Unlike Ds exonization, which creates new profiles mostly by incorporating flanking intron sequences with the Ds message, Ds1 exonization additionally creates new profiles through the presence or absence of Ds1 messages. The number of unique functional profiles harboring Ds1 messages is 1.3-fold more than that of functional profiles without Ds1 messages. The highly similar 11 protein isoforms at a single insertion site also contribute to proteome complexity enrichment by exclusively creating new profiles. Particularly, Ds1 exonization produces 459 unique profiles, of which 129 cannot be built by Ds. We thus conclude that Ds and Ds1 are independent but synergistic in their capacity to enrich proteome complexity through exonization.

SELECTION OF CITATIONS
SEARCH DETAIL