Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Int J Biol Macromol ; 275(Pt 1): 133555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960240

ABSTRACT

Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.


Subject(s)
Enzymes, Immobilized , Eurotiales , Lipase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Esterification , Eurotiales/enzymology , Biocatalysis , Hydrolysis , Sulfones/chemistry , Sulfones/pharmacology , Temperature
2.
ACS Biomater Sci Eng ; 10(8): 4958-4969, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39074333

ABSTRACT

Nanostructured lipid carriers (NLC) have emerged as innovative drug delivery systems, offering distinct advantages over other lipid-based carriers, such as liposomes and solid lipid nanoparticles. Benzocaine (BZC), the oldest topical local anesthetic in use, undergoes metabolism by pseudocholinesterase, leading to the formation of p-aminobenzoic acid, a causative agent for allergic reactions associated with prolonged BZC usage. In order to mitigate adverse effects and enhance bioavailability, BZC was encapsulated within NLC. Utilizing a 23 factorial design, formulations comprising cetyl palmitate (solid lipid), propylene glycol monocaprylate (liquid lipid), and Pluronic F68 as surfactants were systematically prepared, with variations in the solid/liquid lipid mass ratios (60:40-80:20%), total lipid contents (15-25%), and BZC concentrations (1-3%). The optimized formulation underwent characterization by dynamic light scattering, differential scanning calorimetry, Raman imaging, X-ray diffraction, small-angle neutron scattering, nanotracking analysis, and transmission electron microscopy (TEM)/cryo-TEM, providing insights into the nanoparticle structure and the incorporation of BZC into its lipid matrix. NLCBZC exhibited a noteworthy encapsulation efficiency (%EE = 96%) and a 1 year stability when stored at 25 °C. In vitro kinetic studies and in vivo antinociceptive tests conducted in mice revealed that NLCBZC effectively sustained drug release for over 20 h and prolonged the anesthetic effect of BZC for up to 18 h. We therefore propose the use of NLCBZC to diminish the effective anesthetic concentration of benzocaine (from 20 to 3% or less), thus minimizing allergic reactions that follow the topical administration of this anesthetic and, potentially, paving the way for new routes of BZC administration in pain management.


Subject(s)
Anesthetics, Local , Benzocaine , Drug Carriers , Lipids , Benzocaine/administration & dosage , Benzocaine/chemistry , Anesthetics, Local/administration & dosage , Anesthetics, Local/chemistry , Anesthetics, Local/pharmacokinetics , Anesthetics, Local/pharmacology , Drug Carriers/chemistry , Animals , Lipids/chemistry , Mice , Nanostructures/chemistry , Drug Liberation , Male , Nanoparticles/chemistry
3.
Environ Technol ; : 1-14, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686920

ABSTRACT

This study evaluated the effectiveness of a natural coagulant based on common mallow (Malva sylvestris) to remove turbidity in urban wastewater. A 22 factorial design was selected to determine the optimal dose and the working pH of the natural coagulant. Its potential was studied in 50.0-450 mg/L and 4.00-10.0 ranges of doses and pH, respectively. A simplex lattice mixture evaluated its effectiveness as a coagulant aid combined with aluminum sulfate (conventional coagulant). Mixture proportions 0.000-1.00 were studied for each component, finding the proportion more effective. Results showed that the coagulation treatment could be feasible since a turbidity removal efficiency of 73.7% can be achieved under optimal conditions (50.0 mg/L and pH of 10.0). Likewise, a turbidity removal of 58.9% is obtained using 250 mg/L and maintaining wastewater pH (7.45). This efficiency can be increased using 31.0% natural coagulant mixed with 69.0% aluminum sulfate at 250 mg/L without modifying the wastewater pH. This improvement was associated with the natural coagulant's high molecular weight and long-chained structure since these properties enhance settling time, floc size and strength, and low sludge production. These results support using common mallow as a natural coagulant, making its use more feasible in alkaline water pH or as a coagulant aid combined with aluminum sulfate for urban wastewater treatment. A cost of USD 370/Kg of natural coagulant was estimated, which is higher than conventional coagulants. However, a cost-effectiveness analysis of its implementation should be performed since process scaling costs could significantly reduce its price.

4.
Foods ; 13(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38397500

ABSTRACT

Interspecific hybrid crude palm oil (HCPO) HIE OxG derived from crossbred African oil palm (Elaeis guineensis) and American Caiaué (Elaeis oleifera) is prominent for its fatty acid and antioxidant compositions (carotenoids, tocopherols, and tocotrienols), lower production cost, and high pest resistance properties compared to crude palm oil. Biodegradable and sustainable encapsulants derived from vegetable byproducts were used to formulate HCPO nanoparticles. Nanoparticles with hybrid crude palm oil and jackfruit seed flour as a wall material (N-JSF) and with hybrid crude palm oil and jackfruit axis flour as a wall material (N-JAF) were optimized using a 22 experimental design. They exhibited nanoscale diameters (<250 nm) and were characterized based on their zeta potential, apparent viscosity, pH, color, and total carotenoid content. The nanoparticles demonstrated a monodisperse distribution, good uniformity, and stability (polydispersity index < 0.25; zeta potentials: N-JSF -19.50 ± 1.47 mV and N-JAF -12.50 ± 0.17 mV), as well as high encapsulation efficiency (%) (N-JSF 86.44 ± 0.01 and N-JAF 90.43 ± 1.34) and an optimal carotenoid retention (>85%). These nanoparticles show potential for use as sustainable and clean-label HCPO alternatives in the food industry.

5.
BMC Chem ; 18(1): 13, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218834

ABSTRACT

This study describes methodologies for extracting and isolating bergenin, a C-glucoside of 4-O-methylgallic acid found in some plants and it presents various in vitro and in vivo biological activities. Bergenin was previously obtained from the Pelthophorum dubim (Fabaceae) roots with a good yield. Conventional chromatographic procedures of the CHCl3 soluble fraction of the MeOH extract gave 3.62% of this glucoside. An HPLC/DAD method was also developed and validated for bergenin and its precursor, gallic acid quantifications. Microwave extractions with different solvents were tested to optimize the extraction of bergenin, varying the temperature and time. MAE (Microwave Assisted Extraction) was more efficient than conventional extraction procedures, giving a higher yield of bergenin per root mass (0.45% vs. 0.0839%). Molecularly imprinted polymer (MIP) and non-imprinted polymer (NIP) based on bergenin as the template molecule, methacrylic acid, and ethylene glycol dimethacrylate were synthesized and characterized by FTIR and SEM (Scanning Electron Microscopy). Bergenin adsorption experiments using MIP and NIP followed by molecular imprinted solid phase extraction (MISPE) showed that MIP had a higher selectivity for bergenin than NIP. A dendrochronological study using the proposed method for detection and quantification of gallic acid and bergenin in five P. dubium growth rings of a 31-year-old heartwood and in the phelloderm and barks indicated that bergenin was more abundant in the 11-14th growth rings of the heartwood and decreased from the heartwood to the barks.

6.
Heliyon ; 9(11): e21124, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37964834

ABSTRACT

For this work, iron oxide nanoparticles are synthesized by the co-precipitation method with stoichiometric amounts of Fe2+ and Fe3+ salts in a 1:2 ratio in distilled water and the pH is raised by adding an aqueous ammonia solution by controlled dripping. Nanoparticles precipitating after the reaction time are magnetically filtered and stored in ethanol for further analysis. Superparamagnetic Fe3O4 nanoparticles with a slight deviation from the stoichiometry are obtained, with sizes between 7.4 and 12.8 nm and saturation magnetization between 40 and 78 emu/gr. At pH 6, rod-shaped nanoparticles are obtained in addition to spherical ones. With a statistical design, it is shown how the morphological, structural and magnetic properties of the resulting nanoparticles can be manipulated by the synthesis parameters, offering many possibilities to tailor the materials to a wide range of applications.

7.
Heliyon ; 9(11): e21797, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027580

ABSTRACT

Many studies have been conducted to focused on developing an optimal alkali/surfactant/polymer (ASP) composition to increase the recovered fraction of oil in reservoirs that have already undergone water injection. To analyze the effect of alkali (Na2CO3), surfactant (lauryl sodium sulfate), and polymer (commercial xanthan gum) concentration on oil recovery, a complete factorial experimental design was performed with combinations of three variables (alkali, surfactant, and polymer) and three central point replications (2³ + 3). The experiments were carried out on a core holder using rock samples from the Botucatu formation. The simulated oil reservoirs have an average permeability of 348 mD and a temperature of 60 °C. The crude oil was acquired from the Carmópolis field, with 25.72 °API. Synthetic production water containing 40,000 mg L-1 of NaCl and 13,000 mg L-1 of Na2SO4 was injected through an HPLC pump to saturate the rock samples and to recover the oil in the secondary step. From the experimental results, it was verified that the surfactant and polymer concentrations are the most statistically significant independent variables and that first-order interactions are not statistically significant for the process. The oil recovery factors in the secondary stage ranged between 30 and 36 % of the OOIP, which are within the range reported in the literature. The optimal composition of the ASP fluid obtained a recovered fraction of oil of 62 % in the advanced step. Other combinations reported in the literature used higher concentrations of alkali, surfactant, and polymer with lower recoveries and higher cost in the injection design. Thus, the present study highlights the necessity to investigate the performance of each component of the ASP solution. In addition, the results obtained in this study are very attractive for possible full-scale applications.

8.
Environ Sci Pollut Res Int ; 30(59): 124041-124052, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995034

ABSTRACT

This study searched for the best synthesis route for producing an adsorbent from the alkaline fusion of volcanic rock powder waste. The samples synthesized under different conditions of temperature and alkalizing ratio/precursor material, nine in total (NP.F, NP.F1, NP.F2, ...NP.F8 ), were used in the adsorption of acid green 16 (AG 16) and acid red 97 (AR 97) dyes and Ag+, Co2+, and Cu2+ ions. Subsequently, the 22 central composite rotational design (CCRD) was applied, and the effects of the alkalizing ratio (NaOH)/volcanic rock (VR) and temperature (T) on the synthesis process were analyzed in terms of their influence on the physical properties of the materials and in the process of adsorption of contaminants. From the experimental design, it can be seen that the independent variables alkalizing ratio/volcanic rock and temperature greatly influence the characteristic and synthesis of adsorbent materials by alkaline fusion, which in turn reflects on the results achieved in the adsorption of contaminants. Therefore, the temperature of 550 °C and NaOH/VR ratio equal to 1 was the most satisfactory synthesis route to obtain high values of adsorption capacity (q, mg g-1) and removal (R, %) for all studied contaminants, as well as the optimization of the physical characteristics of the material. For example, the adsorption capacity of dye AG 16 was 49.1 mg g-1, and for Ag+ was 66.2 mg g-1, while the removal percentages were 97.6% and 93.4%, respectively. This approach made it possible to transform volcanic rock powder wastes into an efficient adsorbent to treat contaminated waters with dyes and metals.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Powders , Water , Sodium Hydroxide , Indicators and Reagents , Metals , Adsorption , Kinetics , Hydrogen-Ion Concentration
9.
Appetite ; 190: 107033, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37678587

ABSTRACT

Prior studies on perceived healthiness of foods have often compared nutrient and hedonic claims, neglecting comparisons to a control condition. The effect of food claims focusing on the food processing level has received considerably less research attention, although food processing has been included in dietary guidelines in Brazil. Thus, the present study aimed to explore the effect of a control and processing claim, additionally to the effects of a nutrient. and hedonic claim, on perceptions related to a food item typically considered "less healthy" (chocolate cake). We further compared these effects between Brazil and Germany, a country where food processing is currently not included in dietary guidelines. A total of 634 lay adults were recruited in a cross-sectional online study and randomised to see the photo of a piece of cake with one of the four different claim conditions and to report their health-related perceptions of the cake. The main analyses included two-way ANCOVAs (4 claims x 2 countries) for each dependent variable controlled for gender, age and level of hunger; followed by post hoc tests. Overall, results revealed that in both countries, the claims highlighting nutrients or processing aspects rendered the perceptions of the cake healthier compared to the control claim. These effects were more pronounced among Brazilian than among German participants. Food-related perceptions mostly did not differ between the hedonic and control claim and did not differ at all between the nutrient and processing claims. In conclusion, it is noteworthy that, even for an inherently considered "less healthy food item" (chocolate cake) nutrient and processing claims increase healthiness perceptions. While our findings may imply that in both countries lay people are highly susceptible to nutrient claims, food processing aspects seem to be similarly relevant.

10.
Environ Sci Pollut Res Int ; 30(30): 75078-75088, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37213008

ABSTRACT

In this work, CoFe2O4/TiO2 nanostructure was prepared through a facile and effective solvothermal route for efficient use in the degradation of the Erionyl Red A-3G model pollutant under ultraviolet irradiation. Characterization analysis indicated the successful heterojunction among the precursors. The composite presented band gap value of 2.75 eV, being smaller than that of the pristine TiO2, as well as mesoporous structure. The catalytic activity of nanostructure was investigated by employing a 22 factorial experimental design with 3 central points. The optimized reaction conditions were set as pH = 2 and catalyst dosage = 1.0 g L-1 for an initial pollutant concentration of 20 mg L-1. The prepared nanohybrid presented remarkable catalytic activity, reaching color removal efficiency of 95.39% after 15 min, as well as total organic carbon (TOC) removal of 69.4% after 120 min. The kinetic studies of TOC removal followed the pseudo-first order model, with a rate constant of 0.10 min-1. Moreover, the nanostructure presented magnetic behavior, being easily separated from the aqueous medium through the use of a simple external magnetic field.


Subject(s)
Environmental Pollutants , Ultraviolet Rays , Kinetics , Titanium/chemistry , Catalysis
11.
MethodsX ; 10: 102169, 2023.
Article in English | MEDLINE | ID: mdl-37122362

ABSTRACT

An operando DRIFT-MS system (Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Mass Spectrometry) was designed and set up to study the oxidative steam reforming of ethanol reaction (OSRE). This reaction involves the mixture of water, ethanol and oxygen to produce mainly hydrogen, which is a rather attractive energy carrier. Spectroscopic monitoring of the process is a key tool to contribute to the understanding of: i) the dynamics on the catalyst surface, ii) the reaction mechanism and iii) the effect of the solid's properties on the catalytic process. In this sense, this document sets forth the experimental design that allows to carry out the study under operando DRIFT-MS conditions through time for the OSRE reaction. Selection criteria for parameters, materials, configuration, and experimental conditions are included, particularly optimizing the parameters of particle size and the dilution factor with KBr as well as the temperature and flow conditions for carrying out the reaction.•Clear signals of the adsorbed species in IR that do not present interference by water in the reaction atmosphere.•Simple assembly and online product detection by MS that allow to follow the change in the products of the OSRE reaction according to the temperature.•Controlled entry of gases and quantification by loop injection.

12.
Article in English | MEDLINE | ID: mdl-37042057

ABSTRACT

Diclofenac (DCF) can cause several adverse effects in the environment and it should be removed from industrial pharmaceutical wastewaters. Advanced oxidation processes (AOPs) are promising methods for the DCF degradation. But, in many cases, AOPs require acidic pH. However, at this condition, DCF precipitates, which may hinder its oxidation. Thus, in this work, some AOP were studied for the DCF degradation, especially the photo-Fenton process, applying the experimental design technique (Doehlert matrix), operating without and with pH control (between 6.5 and 7.0). As independent variables, the initial ferrous ion concentration ([Fe2+]) and the molar addition rate of H2O2 (FH2O2) were evaluated. Empirical models were proposed and optimized conditions were determined without ([Fe2+] = 0.27 mmol L-1 and FH2O2 = 1.64 mmol min-1) and with pH control ([Fe2+] = 1.0 mmol L-1 and FH2O2 = 1.64 mmol L-1), with the following predicted mineralization percentages: 93% and 68%, respectively. So, photo-Fenton process without pH control presented the best performances. Furthermore, at this condition, iron concentration respects the limit value established by the Brazilian environmental legislation. That is, in this condition, additional processes, in order to remove iron ions, would not be necessary, that is very interesting for applications on an industrial scale.


Subject(s)
Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Diclofenac , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Iron/chemistry , Ions , Oxidation-Reduction , Hydrogen-Ion Concentration
13.
Talanta ; 259: 124469, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37019006

ABSTRACT

In this work, a vortex-assisted dispersive liquid-liquid microextraction method, using an ionic liquid as the extracting solvent was developed, for the simultaneous analysis of three UV filters in different water samples. The extracting and dispersive solvents were selected in a univariate way. Then, the parameters such as the volume of the extracting and dispersive solvents, pH and ionic strength were evaluated using a full experimental design 24, followed by Doehlert matrix. The optimized method consisted of 50 µL of extracting solvent (1-octyl-3-methylimidazolium hexafluorophosphate), 700 µL of dispersive solvent (acetonitrile) and pH of 4.5. When combined with high-performance liquid chromatography, the method limit of detection ranged from 0.3 to 0.6 µg L-1, enrichment factors between 81 and 101%, and the relative standard deviation between 5.8 and 10.0%. The developed method demonstrated effectiveness in concentrating UV filters in both river and seawater samples, being a simple and efficient option for this type of analysis.

14.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110711

ABSTRACT

Pouteria macrophylla (cutite) fruits are rich in phenolic acids, resulting in antioxidant and skin depigmenting activity. The aim of this study, then, is to evaluate the cutite extract stability under three variations of light, time, and temperature using a Box-Behnken experimental design to analyze through the surface response the variations of the total phenolic content (TPC), antioxidant activity (AA), and gallic acid content (GA). A colorimetric assay was also performed, and a decrease in the darkening index was noticed due to the high phenolic coloration in the presence of light, indicating less degradation to extract stability. The experimental planning showed variations in all responses, and second-order polynomial models were calculated and considered predictable, as well as the effects were significant. The TPC exhibited a variation in less concentrated samples (0.5% p/v) at higher temperatures (90 °C). In contrast, the temperature was the only influential variable for AA, where only higher temperatures (60-90 °C) were able to destabilize the fruit extract. Differently, GA showed only the concentration as the influential variable, exhibiting that neither temperature nor time of exposure could affect the gallic acid content stability of P. macrophylla extract. For this, P. macrophylla extract was shown to be highly stable, providing a great perspective on cosmetic application.


Subject(s)
Antioxidants , Pouteria , Antioxidants/pharmacology , Gallic Acid/analysis , Fruit/chemistry , Plant Extracts/pharmacology , Phenols/analysis
15.
Stat Methods Med Res ; 32(5): 1033-1050, 2023 05.
Article in English | MEDLINE | ID: mdl-36919447

ABSTRACT

A model for cross-over designs with repeated measures within each period was developed. It was obtained using an extension of generalized estimating equations that includes a parametric component to model treatment effects and a non-parametric component to model time and carry-over effects; the estimation approach for the non-parametric component is based on splines. A simulation study was carried out to explore the model properties. Thus, when there is a carry-over effect or a functional temporal effect, the proposed model presents better results than the standard models. Among the theoretical properties, the solution is found to be analogous to weighted least squares. Therefore, model diagnostics can be made by adapting the results from a multiple regression. The proposed methodology was implemented in the data sets of the cross-over experiments that motivated the approach of this work: systolic blood pressure and insulin in rabbits.


Subject(s)
Models, Statistical , Animals , Rabbits , Cross-Over Studies , Computer Simulation , Multivariate Analysis , Least-Squares Analysis
16.
Foods ; 12(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36766093

ABSTRACT

This study evaluated bati butter (Ouratea parviflora) as a substrate for lipase production by solid-state fermentation (SSF) using Aspergillus terreus NRRL-255. A gas chromatograph with a flame ionization detector determined the bati butter fatty acid profile. Lipase production and spore count were optimized using a 32 experimental design and evaluated using the response surface methodology. Moreover, the crude enzyme extract was evaluated against different pH, temperature, and activating and inhibitors reagents. Regarding the fatty acids identified, long-chain accounted for 78.60% of the total lipids. The highest lipase production was obtained at 35 °C and 120 h of fermentation, yielding 216.9 U g-1. Crude enzyme extract presented more significant activity at 37 °C and pH 9. ß-Mercaptoethanol increased the enzyme activity (113.80%), while sodium dodecyl sulfate inactivated the enzyme. Therefore, bati butter proved to be a potential substrate capable of inducing lipase production by solid-state fermentation.

17.
Carbohydr Polym ; 308: 120645, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813338

ABSTRACT

Cationization is a promising chemical modification technique that improves properties by attaching permanent positive charges to the backbone of biopolymers. Carrageenan is a widely available and non-toxic polysaccharide, commonly used in food industry but with low solubility in cold water. We performed a central composite design experiment to check the parameters that most influence the degree of cationic substitution and the film solubility. Hydrophilic quaternary ammonium groups on the carrageenan backbone enhance interaction in drug delivery systems and create active surfaces. Statistical analysis indicated that within the studied range, only the molar ratio between the cationizing reagent and the repeating disaccharide unit of carrageenan had a significant effect. Optimized parameters using 0.086 g of sodium hydroxide and glycidyltrimethylammonium/disaccharide repeating unit of 6.83 achieved 65.47 % degree of substitution and 4.03 % solubility. Characterizations confirmed the effective incorporation of cationic groups into the commercial structure of carrageenan and thermal stability improvement of the derivatives.


Subject(s)
Polysaccharides , Research Design , Carrageenan/chemistry , Drug Liberation , Solubility
18.
Semina ciênc. agrar ; 44(1): 171-184, jan.-fev. 2023. tab, graf
Article in English | VETINDEX | ID: biblio-1418816

ABSTRACT

The objective of this work was to compare three methods for estimating the optimal plot size to evaluate the fresh matter productivity of white oat (Avena sativa L.), IPR Suprema cultivar. Six uniformity trials (blank experiments) were carried out, three trials on the first sowing date (May 3, 2021) and three trials on the second sowing date (May 26, 2021). Fresh matter productivity was evaluated in 216 basic experimental units (BEU) of 1 m × 1 m (36 BEU per trial). The BEU was formed by five rows of 1.0 m in length, spaced 0.20 m apart, totaling 1.0 m2. The optimal plot size was determined using the methods of modified maximum curvature, linear response and plateau model and quadratic response and plateau model. The optimal plot size differs between the methods and decreases in the following order: quadratic response and plateau model (11.09 m2), linear response and plateau model (7.65 m2) and modified maximum curvature (4.00 m2). The optimal plot size to evaluate the fresh matter productivity of white oat is 7.65 m2 and the experimental precision stabilizes from this size on.


O objetivo deste trabalho foi comparar três métodos de estimação do tamanho ótimo de parcela para avaliar a produtividade de matéria fresca de aveia branca (Avena sativa L.), cultivar IPR Suprema. Foram conduzidos seis ensaios de uniformidade (experimentos em branco), sendo três na primeira data de semeadura (03 de maio de 2021) e três na segunda data de semeadura (26 de maio de 2021). Foi avaliada a produtividade de matéria fresca em 216 unidades experimentais básicas (UEB) de 1 m × 1 m (36 UEB por ensaio). A UEB foi formada por cinco fileiras de 1,0 m de comprimento, espaçadas 0,20 m entre fileiras, totalizando 1,0 m2. Foi determinado o tamanho ótimo de parcela por meio dos métodos da curvatura máxima modificado, do modelo linear de resposta com platô e do modelo quadrático de resposta com platô. O tamanho ótimo de parcela difere entre os métodos e decresce na seguinte ordem: modelo quadrático de resposta com platô (11,09 m2), modelo linear de resposta com platô (7,65 m2) e curvatura máxima modificado (4,00 m2). O tamanho ótimo de parcela para avaliar a produtividade de matéria fresca de aveia branca é 7,65 m2 e a precisão experimental estabiliza a partir desse tamanho.


Subject(s)
Linear Models , Avena/growth & development
19.
J Tradit Complement Med ; 13(1): 20-29, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685075

ABSTRACT

Background: New products with tolerogenic properties on T cell response are necessary to improve current efficacy, cost and side effects of immunosuppressants. Prosopis strombulifera aqueous extract (PsAE) have reported cytotoxic, antitumoral, antiatherogenic and antileishmanial activities, containing phytochemicals with immune-related activities. Despite these, there are no previous studies with respect to PsAE suppressive properties over T cell proliferation and their function. Goal: Because of previous antecedents, this study aims to evaluate the effect of PsAE on T cell activation, proliferation, cytokine production, and to investigate its effect over an in vivo model of type 1 diabetes (T1D). Experimental procedure: Splenocytes and sorted CD4+/CD8+ from wild type C57BL/6 mice were cultured to determine activation, IFN-γ release and T-cell proliferation after polyclonal stimulation. NOD (non-obese diabetic) mice were used to study the effects of orally administered extract on glycemia, insulitis stages and perforin-1 (PRF-1)/granzyme-B (GRZ-B) expression. Results: In primary cultures, the plant extract impairs T cell activation, decreases IFN-γ release, and reduces proliferation after different polyclonal stimuli. In vivo, PsAE improves NOD mice glycemic levels and T1D progression by diminution of pancreas insulitis and reduction of PRF-1 and GRZ-B mRNA expression. To our knowledge, this is the first report characterizing the therapeutic properties of PsAE on T cell activation. Conclusion: The current work provides evidence about in vitro and in vivo immunosuppressive effects of PsAE and promotes this plant extract as a complementary and alternative treatment in autoimmune T-cell mediated diseases as T1D.

20.
Environ Sci Pollut Res Int ; 30(14): 42416-42426, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646979

ABSTRACT

Using groundwater for human consumption is an alternative for places with no nearby surface water resources. Fluoride is commonly found in groundwater, and the consumption of this water for a prolonged time in concentrations that exceed established limits by WHO and Brazilian legislation on water potability (1.5 mg L-1) can cause harmful problems to human health. For this reason, fluoride removal is an important step before water consumption. In this work, activated alumina was impregnated with Fe-Al-La composite and employed for the first time as an adsorbent for fluoride removal from an aqueous environment. XRD, SEM/EDS, FT-IR, and point of zero charge were used to characterize the prepared adsorbent. The adsorptive performance of adsorbent material was investigated by employing a 23-central composite design (CCD), and the obtained experimental conditions were pH = 6.5 and adsorbent dosage = 3.0 g L-1. A maximum adsorption capacity of 8.17 mg g-1 at 298 K and pH = 6.5 was achieved by Langmuir isotherm to describe the adsorption. The kinetic model that better described experimental data was Avrami, with the kav parameter increasing with the initial concentration from 0.076 to 0.231 (min-1)nav. The nature of adsorption was found to be homogeneous, and it occurs in a monolayer. The fluoride removal performance for the prepared adsorbent was higher than granular activated alumina, showing that supporting Fe-Al-La at the alumina surface increased its fluoride adsorption capacity from 16 to 42% at the same experimental conditions. Finally, the influence of co-existing ions Cl-, SO42-, and NO3- was evaluated in fluoride adsorption, and the material presented great selectivity to fluoride. Thus, Fe-Al-La/AA adsorbent is a promising material for fluoride removal from water.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Fluorides/chemistry , Aluminum Oxide/chemistry , Spectroscopy, Fourier Transform Infrared , Water , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL